
Turk J Elec Eng & Comp Sci
(2019) 27: 2769 – 2783
© TÜBİTAK
doi:10.3906/elk-1812-57

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Between-host HIV model: stability analysis and solution using memetic
computing

Musharif AHMED1,∗ , Ijaz Mansoor QURESHI2 , Muhammad Aamer SALEEM3 ,
Muhammad ZUBAIR1 , Saad ZAFAR1

1Faculty of Computing, Riphah International University, Islamabad, Pakistan
2Department of Electrical Engineering, Air University, Islamabad, Pakistan

3Hamdard Institute of Engineering & Technology, Hamdard University, Islamabad, Pakistan

Received: 09.12.2018 • Accepted/Published Online: 05.05.2019 • Final Version: 26.07.2019

Abstract: HIV poses a great threat to humanity for two major reasons. First it attacks the immunity system of the
body and second, it is epidemic in nature. Mathematical models of HIV have been instrumental in understanding and
controlling the infection. In this paper, we solve the between host epidemic model of HIV, described by nonlinear coupled
differential equations, by using memetic computing. Under this model, the sexually active population is divided into
four classes and we investigate the transfer of individuals from one class to another. The solution consists of Bernstein
polynomials whose parameters have been optimized by using differential evolution as global and sequential quadratic
programming as local optimizer. Our second contribution is the stability analysis of this model. The disease-free
equilibrium is stable while endemic equilibrium is unstable within the practical range of the values of parameters.
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1. Introduction
HIV infection is considered among the world’s biggest health problems affecting millions of people around

the world. HIV infects various body cells in the immune system, particularly CD4
+ T cells. Without any

treatment, this infection leads to the failure of the host immune system and ultimately to death [1]. The spread
of infection is considered to be a vital part of any infectious disease where the dynamics of the disease primarily
depends on the rate of transmission from an infectious individual to a susceptible individual [2]. The deadly and
epidemic nature of HIV has several biological characteristics and has attracted epidemiologists, mathematicians
and biologists resulting in various mathematical models that have proven to be valuable for understanding the
evolution of the disease, the epidemiological patterns of HIV, especially the mechanism associated with the
spread of the disease [3].

The HIV transmission models are used to specify the dynamics of the spread of the disease by a system
of equations. In these equations, the transition rates between defined states are described quantitatively [4]. To
describe the HIV transmission and simulate the natural history of infection and disease process, these models
use various biological and behavioral variables. By using the valid models and accurate datasets, they are
capable of reliably projecting the infection rates [5].

To describe the HIV dynamics, three broad classes of mathematical models [6], namely, immunological,
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epidemiological, and immunoepidemiological models have been developed. At individual level, the within-host
viral dynamics are described as immunological models, while at the population level, transmission dynamics
is explained using between-host transmission and are categorized as epidemiological models. The dynamics of
population-level HIV transmission as a function of immune viral responses at individual level are described
using the immunoepidemiological models [7–9].

The epidemiological models of HIV infections categorize each individual as susceptible or infected.
Infected individuals are assumed to transmit HIV virus to susceptible individuals with the same transmission
rate in the duration of disease [10, 11]. It is also studied that host biological factors such as age, sex, genetic
susceptibility, time since infection, and status of immune system may cause variation in infectiousness of infected
individuals [12]. Various models belonging to these three categories have been under continuous investigation
and modification.

These models are described using coupled nonlinear differential equations and their exact solutions do not
exist. As a consequence, researchers attempted to come up with nonanalytical solutions by employing various
numerical techniques, which are largely deterministic in nature. However, the quest for faster, more stable, and
more accurate algorithms is still in progress. Recently, the abundance of the computing power has motivated
researchers to use the evolutionary algorithms for the solution of various research problems in engineering and
medicine.

In the last two decades, a variety of approaches have been proposed to solve various models of HIV infec-
tion. For example, to solve the immunological models, different techniques have been used, such as homotopy
analysis method [13], quasilinearization–Lagrangian method [14], the shifted boubaker Lagrangian approach
[15], Laplace–Adomian decomposition method [16], and Legendre wavelet method [17]. The epidemiological
models are studied both from stability analysis perspective, as well as, their numerical solutions [1, 18–21]. In
this paper, we propose Memetic computing approach to solve the HIV epidemic model. The use of memetic
computing is a recent phenomenon which has become popular in the last decade [22–26]. The cost function
which is an error function is not at all convex. It has many local minima and one global minimum. Such a
situation demands the use of algorithms like genetic algorithm or differential evolution to search for a global
minimum as they do not get stuck in a local minimum. This global search method is then integrated with a
local method like sequential quadratic programming (SQP) or interior point algorithm (IPA) to intensify and
hasten the search in the narrow areas and reach almost close to optimal solution i.e. global minimum. We
consider the HIV epidemic model that considers four categories of populations, the suspected individuals (S),
infected individuals who are unaware of infection (Iu ), infected individuals who are aware of infection (Ia ), and
the individuals with AIDS (A). Specifically, we have employed Bernstein polynomial to construct the solution
of the epidemic model of HIV. Furthermore, we have provided detailed stability analysis of the model.

The novel contributions of this paper are as follows:

• For solving this system of nonlinear coupled differential equations representing between host HIV/AIDS
model, we have used global search method as differential evolution (class of evolutionary algorithms) that
is good for exploration over a wide space of local minimas and a global minimum. It has been hybridized
with sequential quadratic programming which is a fast convergent local search method thus achieving the
global minimum. Moreover, we have used Bernstein polynomials whose different linear combinations give
us solutions for susceptible population, infected population, and population with AIDS.

• We have analyzed the stability of the undiseased equilibrium, as well as endemic equilibrium. We have
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found that with the realistic range values of the parameters, equilibrium without disease is stable. However,
the endemic equilibrium is unstable by using the values of parameters within the realistic range. This
result contradicts that in [19].

2. Between-host HIV epidemic models

Various epidemic models have been developed to describe the transmission dynamics at population level [27].
The epidemic models of HIV differ in many aspects; ranging from different classifications of the total population
to various terms used to represent transmission rates. Total population is generally divided into susceptible
individuals, infected individuals and individuals with AIDS [1, 19, 20]. The infected individuals may further
be divided into the individuals who are aware of their infection and who are not aware of their infection. The
transmission rate is considered constant in some models while other models may differ in terms of transmission
rates depending upon stages of HIV infection [28–30].

The simplest form of a susceptible-infection model is given in Eqs. (1) and (2):

dS

dt
= B − βSI − δS, (1)

dI

dt
= βSI − (α+ δ)I. (2)

We have considered the model that divides the infected population into two groups, Iu , who do not know they
are infected and Ia , who know that they are infected. This model is given by Eqs. (3–6) which includes more
realistic infection rate term and the individuals with AIDS infection:

dS

dt
= B − (

β1Iu + β2Ia
N

)S − µS, (3)

dIu
dt

= (
β1Iu + β2Ia

N
)S − ωIu − δ1Iu − µIu, (4)

dIa
dt

= ωIu − δ2Ia − µIa, (5)

dA

dt
= δ1Iu + δ2Ia − (µ+ d)A. (6)

In this model, the total sexually-active population at time t, is divided into four mutually exclusive groups
represented by S(t) , Iu(t) , Ia(t) , and A(t) . Here, S(t) denotes the susceptible class, Iu(t) denotes the infected
individuals unaware of their infection, Ia(t) denotes the infected individuals aware of their infection, and finally
AIDS populations is represented by A(t) . Individuals are recruited at a constant rate B . It is assumed that
susceptible individuals are infected through a contact with infected individuals at a rate β1Iu+β2Ia

N . Here β1 is
the transmission rate of HIV in Iu(t) class, while β2 is for Ia(t) class. δ1 is the transfer rate of Iu individuals
to aids group, A, while δ2 is the transfer rate of Ia individuals to aids group, A. B is recruitment rate of sexually
active adults to the population per year. All of the parameters are summarized in Table 2.
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Table. Parameters in epidemic HIV infection model.

Parameter Description Values
β1 Infection rate of Iu group 0.28 [31]
β2 Infection rate of Ia group 0.35 [32]
ω Transfer rate of individuals of Iu group into Ia group 0.9 [32]
δ1 Transfer rate of individuals of Iu group into A group 0.7 [19, 20]
δ2 Transfer rate of individuals of Ia group into A group 0.4 [19]
µ Natural mortality rate 0.000027 [19]
d Disease-induced death rate 0.00002 [20]
B Susceptibles adding per year 30

3. Problem formulation
Since the exact solution to the set of coupled nonlinear differential equations, does not exist, the researchers
have attempted the solution through numerical as well as heuristic techniques. We propose to employ the
memetic computing approach which uses both global and local optimizers for getting the suboptimal solution.
Specifically, we have used differential evolution (DE) algorithm as global optimizer and as local optimizer, SQP
is used. DE belongs to the class of evolutionary algorithms and was proposed by Rainer Storn & Kenneth Price
in 1997 [33] for optimization problems in continuous domain. It has some distinguishing properties like simple
structure, speed, ease of use, and robustness [34]. Differential evolution mainly relies on mutation while GAs
rely on both crossover and mutation [35, 36].

The proposed methodology comprises two major steps. The first step is the formulation of fitness (error)
function. Bernstein polynomials are linearly combined to represent the solution and are substituted in the
differential equations to give us fitness function. In the second step, the coefficients of the linear combination
are optimized by employing the memetic computing so as to give us minimal possible error function.

3.1. Bernstein polynomials

The Bernstein polynomials [37] are generally used for the approximation of continuous functions, uniformly, on
a closed interval of interest. These polynomials have some peculiar properties, such as positivity, continuity,
excellent numerical stability, uniform convergence, partition of unity property, and expansion in terms of power
basis, that differentiate them from other polynomials. Bernstein polynomials are defined as follows:

Bi,n(t) =


(
n
i

) ti(τ−t)n−i

τn , 0 ⩽ i ⩽ n

0, otherwise
(7)

with the properties that

Bi,n(t) > 0 and

n∑
i=0

Bi,n(t) = 1 (8)

Bernstein polynomials provide greater flexibility to levy boundary conditions at the end points of the interval.
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Bi,n at t = 0 and t = 1 is defined as follows:

Bi,n(t = 0) =

0, ∀i ̸= 0

1, for i = 0
, (9)

Bi,n(t = 1) =

0, ∀i ̸= n

1, for i = n
. (10)
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Figure 1. Behavior of Bernstein Polynomial in the interval [0, 1]

Bernstein polynomials have inherent and higher level of agility and provide greater flexibility to approx-
imate any function due to its existence in the interval [0, 1] as shown in Figure 1. Bernstein polynomials have
recursive formulae, whereby the higher order polynomials can be expressed in terms of lower-order polynomials.
The same is true for the first- and higher-order derivatives.

The first step is to express S(t) , Iu(t) , Ia(t) , and A(t) as linear combination of Bernstein polynomials.

S(t) =

5∑
i=0

aiBi,5(t); Iu(t) =

5∑
i=0

biBi,5(t); Ia(t) =

5∑
i=0

ciBi,5(t); A(t) =

5∑
i=0

αiBi,5(t) (11)

a0 = S(0), b0 = Iu(0), c0 = Ia(0), α0 = A(0)

3.2. Fitness or error function
The set of differential equations need to be satisfied at every point on the grid from 0 to 1. This initiates an
error function for all differential equations given in Eqs. (3–6).

E1 =
1

11

10∑
j=0

[dS
dt

(tj)−B + (
β1Iu + β2Ia

N
)S(tj)− µS(tj)

]2

=
1

11

10∑
j=0

[
5(

5∑
i=1

aiBi−1,4(tj)−
4∑

i=0

aiBi,4(tj))−B + (
β1

N

5∑
i=0

biBi,5(tj) +
β2

N

5∑
i=0

ciBi,5(tj)− µ)

5∑
i=0

aiBi,5(tj)
]2

(12)
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Similarly,

E2 =
1

11

10∑
j=0

[
5(

5∑
i=1

biBi−1,4(tj)−
4∑

i=0

biBi,4(tj))− (
β1

N

5∑
i=0

biBi,5(tj) +
β2

N

5∑
i=0

ciBi,5(tj))

5∑
i=0

aiBi,5(tj)

− (ω1 + δ1 + µ)

5∑
i=0

biBi,5(tj)
]2 (13)

E3 =
1

11

10∑
j=0

[
5(

5∑
i=1

ciBi−1,4(tj)−
4∑

i=0

ciBi,4(tj)) + (δ2 + µ)

5∑
i=0

ciBi,5(tj)− ω

5∑
i=0

biBi,5(tj)
]2 (14)

E4 =
1

11

10∑
j=0

[
5(

5∑
i=1

αiBi−1,4(tj)−
4∑

i=0

αiBi,4(tj))− δ1

5∑
i=0

biBi,5(tj)− δ2

5∑
i=0

ciBi,5(tj) + (µ+ d)

5∑
i=0

αiBi,5(tj)
]2

(15)
We are interested in minimizing the sum of these four errors:

E = E1 + E2 + E3 + E4. (16)

3.3. Sequential steps of the hybrid algorithm

For achieving optimal values of the coefficients, we propose the use of DE for global optimization and sequential
quadratic programming as local optimization. DE like other heuristic computing algorithms (HCAs) are efficient
to explore global search space because of their capability to quickly explore and discover desired results in the
search space. The evolutionary algorithms, like DE, has the useful property of exploring the wide search
space and not getting stuck in local minima [38]. However, it has the tendency of slow convergence to the
optimal solution[39, 40]. Therefore, it is hybridized with a local search method, like SQP or IPA, which has
the probability of search intensification and quick convergence to near optimal solution in the global minimum.
This creates a good balance between exploration and exploitation.

Step 1: Initialization: In general, the differential evolution algorithm starts with the initialization of the
candidate solutions and it may be biased or random initialization. In our case, it is a random initialization
with real numbers between 10 and –10. For our discussion, we assume that xi,g(j) is the jth element of the ith

candidate solution in the generation g .
Step 2: Fitness evaluation: Before we go for applying DE operators, we have to evaluate fitness of each

candidate solution. This is done by using Eq. (16) for each candidate within the initial generation. The lower
the error E is, the more the fitness is.

Producing new generation for i = 1 : N , repeat steps 3–5.
Step 3: Mutation: A mutant vector is created by selecting three random numbers s.t. n1 ≠ n2 ̸= n3 ̸= i

as follows: The mutant vector is given

vg+1
i = xg

n1 + µ{xg
n2 − xg

n3}, (17)
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where vg+1
i and n1 , n2 , and n3 are random numbers within the range of 1 to size of population such that

n1 ̸= n2 ̸= n3 . µ ∈ (0, 2] and it is important to mention that a large mutation factor µ expands the search
space but results in slowing down the convergence.

Step 4: Recombination: The parent vector is combined with the mutated one to generate a trial vector.
For j = 1 : D ,

ug+1
i,j =

vgi,j if(rand < CR)orj = randomly chosen index

xg
i,j otherwise

. (18)

Here CR is the crossover constant ∈ [0, 1] .
Step 5: Selection:

xg+1
i =

ug+1
i iffitness (ug+1

i ) is better than fitness (xg
i )

xg
i otherwise

. (19)

Step 6: Termination criterion: The algorithm is stopped if either error occurs or the number of iterations
reached.

Step 7: Initialization of SQP: After the termination of DE, the candidate solution with the best fitness
is selected and handed over to SQP which is one of the best local optimizer, in terms of fast convergence, for
the numerical solution of nonlinear optimization problems.

Step 8: Fitness Evaluation: Fitness evaluation is performed by using eq. (16) as in DE.
Step 9: Termination: After the specified number of iterations the SQP algorithm is stopped and the final

result (solution) is obtained.

4. Results and discussion
For the HIV interhost model described by coupled nonlinear differential equations, in Section 2, we have
carried out simulations in MATLAB for various values of model parameters. These parameter values have
been explained in Table 2, and their values have been taken from the contemporary research work. Figure 2
shows the impact of increasing the transfer rate between Iu and Ia . As we increase the transfer rate between
the Iu group and Ia group, the number of susceptible individuals increases over the specified time interval,
which is 100 days. For the highest transfer rate ω , we have the highest conversion rate from the Iu group to
the Ia group.

Figure 3 shows the comparative view of the susceptible individuals under different parameter combina-
tions. For a fixed value of ω , an increasing trend in deltas results in an increase in the number of susceptible
individuals. This is easily seen in the lower two curves of Figure 3. Similarly if we keep δ1 and δ2 fixed and
increased ω from 0.3 to 0.6, the number of susceptible individuals increases again. In summary, there is an
increasing trend from Iu to Ia , Iu to A , and Ia to A as the parameter of transfer rates (δ1 , δ2 , and ω ) are
increased.

Figure 4 shows the trend in the number of susceptible individuals in the typical simulation scenario which
is exponential in nature, after the mid of the observation interval.

Figure 5 shows the pattern of Iu , the number of people who do not know about their infection, with
different values of the parameters. For fixed value of ω (transfer rate between Iu and Ia ), an increase in δ1
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Figure 2. Number of susceptible individuals (S ) for
different values of ω .

Figure 3. Number of susceptible individuals (S ) for
different values of δ .
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Figure 4. Number of susceptible individuals (S ). Figure 5. Number of unaware infected individuals (Iu )
for different values of δ .
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Figure 6. Number of unaware infected individuals (Iu )
for different values of ω .

Figure 7. Number of unaware infected individuals (Iu ).

and δ2 shows a considerable increase in the number of unaware infected individuals and this increase goes up
to an order of magnitude. Similarly, keeping δ1 and δ2 fixed, and increasing ω results in an increase in the
number of unaware infected individuals.

In Figure 6, we have fixed the values of δ1 and δ2 and investigated the impact of increasing ω on the
number of unaware infected individuals. The impact of changing ω starts becoming visible after the mid of
the observation interval i.e. after 50 days and it becomes increasingly different by the end of the observation
interval. In fact, the impact of different values of ω results in a nonlinear increase in the number of unaware
infected individuals.
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Figure 7 shows the pattern of increase in the number of unaware infected individuals in the typical
simulation scenario which is exponential in nature.

Figure 8 shows the impact of changing ω by keeping δ1 and δ2 fixed. This is clearly a nonlinear
relationship after the mid of the observation interval.

Figure 9 shows the variation in Ia , the number of people who know about their infection, with different
values of the parameters. For fixed value of ω (transfer rate between Iu and Ia ), if we increase in δ1 and δ2

together, the graph shows a considerable increase in the number of aware infected individuals and this increase.
Next we fixed δ1 and δ2 , and increased ω which resulted in an increase in the number of unaware infected
individuals.
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Figure 8. Number of aware infected individuals (Ia ) for
different values of ω .

Figure 9. Number of aware infected individuals (Ia ) for
different values of δ .

Figure 10 shows the pattern of increase in the number of aware infected individuals in the typical
simulation scenario which is found to be exponential in nature.

In Figure 11 we can observe that the number of AIDS infected individuals increase as the parameter ω

is increased which is quiet obvious that ω is the transfer rate between unaware infected and aware infected
population.
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Figure 10. Number of aware infected individuals (Ia ). Figure 11. Number of infected individuals with AIDS
(A) for different values of ω .

Figure 12 shows the increase in AIDS population with time under different combinations of parameters
ω , δ1 and δ2 . It is observed that by fixing any two parameters and increasing the third one, result in an increase
in the number of AIDS infected individuals.

Figure 13 shows the increase in the number of AIDS infected individuals in the typical simulation scenario
and it is found to be exponentially rising.

Figure 14 shows the mean square error versus number of iterations under the same combinations of the
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Figure 12. Number of infected individuals with AIDS(A)
for different values of δ

Figure 13. Number of AIDS infected individuals (A)

parameters ω and δ , used for getting the simulation results, shown above. In just 15 iterations, the mean
square error becomes lower than 10−7 , which is remarkable.

In Figure 15, ω is varied and other parameters have been kept constant. Similarly, for a complete set of
parameters, Figure 16 shows the error curve which goes down from 2.5 to close to zero in 15 iterations.
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5. Equilibrium points and stability analysis

For carrying out the stability analysis of equilibrium points, we have taken I(t) = Iu(t) + Ia(t) to make it
simple. So the equations become as given below. For finding equilibrium points we put the derivatives equal to
zero.

B − µS − βI

N
S = 0, (20)
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βI

N
S − δI − µI = 0, (21)

δI − (µ+ d)A = 0, (22)

Here δ represents transfer rate between I and A .

5.1. Equilibrium points

A =
δI

µ+ d
, (23)

B = (µ+
β

N
I)S ⇒ S =

B

(µ+ β
N I)

, (24)

(
βS

N
− δ − µ)I = 0. (25)

Disease-free equilibrium: Xf = (Sf , 0, 0) = (Bµ , 0, 0) where I = 0 , A = 0

For endemic equilibrium, I ̸= 0, A ̸= 0 . Hence, from Eq. (25), we get

Se = (δ + µ)
N

β
, (26)

Ie = (
B

δ + µ
− Nµ

β
), (27)

Ae = (
δ

µ+ d
)(

B

δ + µ
− Nµ

β
). (28)

Hence, endemic equilibrium is Xe = (Se, Ie, Ae) , where Se , Ie , and Ae are given in Eqs. (26)–(28),
respectively.

5.2. Stability analysis of the two equilibria

First we carry out stability analysis of disease-free equilibrium Xf = (Sf , 0, 0) . We find the Jacobian of this
nonlinear system.

J = (
∂f

∂X
)Xf

where f = [f1 f2 f3]
T and X = [S I A]T

f1 = B − µS − βI

N
S; f2 =

βI

N
S − δI − µI; f3 = δI − (µ+ d)A

J =

−µ− βI
N − β

N S 0
βI
N

β
N S − δ − µ 0

0 δ −(µ+ d)

 (29)
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(J)X=Xf
=

−µ − β
N S 0

0 β
N S − δ − µ 0

0 δ −(µ+ d)

 (30)

det(J − λI) = 0 = (−µ− λ)((
β

N
Sf − δ − µ− λ)(−µ− d− λ))

⇒ λ1 = −µ;λ2 = −µ− d;λ3 = −µ− δ +
β

N
.Sf

λ1 < 0;λ2 < 0;λ3 = −µ− δ +
β

N
.
B

µ
.

All the rates will be taken as per day.B = 30 per year ⇒ (30/365) per day. β : probability of getting disease
(0.28− 0.35) δ : Rate of regression to aids (0.4− 0.7)

Hence, λ3 is given as follows:

λ3 = −0.000027− 0.4 +
0.28

4200
.
(30/365)

0.000027
< 0.

Hence, equilibrium point without disease is stable.
Let us look at the stability of endemic equilibrium. Eq. (29) gives us

J =

−µ− β
N Ie − β

N Se 0
β
N Ie

β
N Se − δ − µ 0

0 δ −(µ+ d)

 (31)

det(J − λI) = 0 = (−µ− d− λ)((−µ− β

N
Ie − λ)(

β

N
Se − δ − µ− λ) +

β2

N2
IeSe)

Now, λ1 = −µ− d < 0 .
Let us look at λ2 and λ3 whether they are negative or not.

(λ+ µ+
β

N
Ie)(λ+ µ+ δ − β

N
Se) +

β2

N2
IeSe = 0

λ2,3 =
−(2µ+ δ + β

N (Ie − Se))±
√
(2µ+ δ + β

N (Ie − Se))2 − 4 β
N Ie(µ+ δ)− 4µ(µ+ δ − βSe

N )

2

λ2 =

[
−(2µ+ δ + β

N (Ie − Se))−
√

(2µ+ δ + β
N (Ie − Se))2 − 4 β

N Ie(µ+ δ)− 4µ(µ+ δ − βSe

N )

]
2

< 0

Let us check for λ3 . For λ3 < 0 , the following inequality should be satisfied.

(2µ+ δ +
β

N
(Ie − Se))

2 > (2µ+ δ +
β

N
(Ie − Se))

2 − 4
β

N
Ie(µ+ δ)− 4µ(µ+ δ − β

Se

N
).

After simplification it becomes,

−4
β

N
Ie(µ+ δ)− 4µ(µ+ δ) + 4µβ

Se

N
< 0.
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After inserting Se and Ie from Eqs. (26) and (27) respectively, we get:

2Bβ

N
> (µ+ δ)2.

Using the minimum values of µ and δ on RHS and maximum values of parameters on LHS, this inequality
is still far from being satisfied.

Hence, λ3 > 0 , which means that endemic equilibrium is not stable at all.

6. Conclusion
The simulation has been carried out for a range of infection and transfer rates and the results have shown that
the infection may be controlled by governing the transfer rates from the infected class to the AIDS class. This
may be achieved to some extent by applying appropriate drug therapy. A more effective way of controlling the
infection is through public awareness. We also carried out stability analysis. The disease-free equilibrium was
stable but endemic equilibrium was not stable in the whole practical range of parameters. Memetic computing
has been employed to solve the interhost HIV infection model. The evolution of susceptible, infected and
AIDS patients have been deduced from the mathematical model by using memetic computing and Bernstein
polynomials. The mean square error has been brought down to 10-7 in just 15 iterations, which shows excellent
convergence of the memetic computing.

One of the future research direction may be to improve the HIV epidemiological mathematical model by
incorporating the impact of movement of the infected individuals from one geographical location to another.
Yet another research work may be carried out to assess the impact of awareness campaign on the spread of the
infection.
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