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Abstract: It is a knotty task to amicably identify the sporadically changing real-world context information of a learner
during M-learning processes. Contextual information varies greatly during the learning process. Contextual information
that affects the learner during a learning process includes background knowledge, learning time, learning location,
and environmental situation. The computer programming skills of learners improve rapidly if they are encouraged to
solve real-world programming problems. It is important to guide learners based on their contextual information in
order to maximize their learning performance. In this paper, we proposed a cloud-supported machine learning system
(CSMLS), which assists learners in learning practical and applied computer programming based on their contextual
information. Learners’ contextual information is extracted from their mobile devices and is processed by an unsupervised
machine learning algorithm called density-based spatial clustering of applications with noise (DBSCAN) with a rule-based
inference engine running on a back-end cloud. CSMLS is able to provide real-time, adaptive, and active learning support
to students based on their contextual information characteristics. A total of 150 students evaluated the performance
and acceptance of CSMLS for a complete academic semester, i.e. 6 months. Experimental results revealed the threefold
success of CSMLS: extraction of students’ context information, supporting them in appropriate decision-making, and
subsequently increasing their computer programming skills.

Key words: Artificial intelligence, machine learning, DBSCAN, intelligent system, mobile learning, cloud computing,
adaptive learning, computer programming

1. Introduction
It has been recognized that the computer programming abilities of learners increase if they are encouraged to
solve problems that they encounter in the real world [1]. In order to provide suitable and tailored programming
exercises, detailed learning context data must be first extracted from learners’ mobile devices. In comparison
to other subjects, computer programming is more difficult and challenging for learners [2]. Factors that make
computer programming difficult to learn include the inherent sensitivity of programming languages, students’
perceptions and motivations for learning programming, creativity, tenacity, and specialized domain-specific
concepts [3]. Moreover, for a better understanding of computer programming, its practical applications in real-
life scenarios must be imparted to learners. Keeping the above-mentioned facts in mind, we cannot use context
data to recommend appropriate computer programming learning content on learners’ mobile devices in the same
way that learning content is delivered while learning English, history, medicine, etc. Environmental context
data are useful in framing real-world programming exercises for learners and then can be delivered to them
on their mobile devices at appropriate learning times. Learning computer programming is in stark contrast
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to other learning fields where learning is possible at any time and anywhere. It requires thinking processes,
silence, analytical abilities, patience, and persistence [4]. In learning computer programming, understanding
and remembering concepts, terminologies, and language constructs is necessary, and applying the acquired
knowledge in writing computer programs that solve real-world problems is challenging and needs a significant
amount of practice [5].

In this research, we propose a novel cloud-supported machine learning system (CSMLS) for context-aware
and adaptive learning of computer programming. CSMLS generates differential learning paths for individual
learners from context data gathered through their respective mobile devices, which are then processed by a
machine learning algorithm on the back-end cloud. These learning paths subsequently recommend solving real-
world computer programming problems at an appropriate time based on performance states of the learners.

Supporting learners in the learning process based on proper contextual information is a challenging
issue [6]. Contextual information includes the learner’s background knowledge, learning content, location, and
time and duration of learning process. A context-aware learning system facilitates students in adaptive learning
unrestricted by temporal or spatial factors. With the invention of various types of mobile devices, it is now
possible to reveal the proper context of learners and subsequently support them in adaptive learning (u-learning,
m-learning) processes [7, 8]. A number of research studies have investigated technologies such as GPS [9, 10],
RFID [11], mobile devices [12], QR code interfaces [13], NFC [14, 15], Bluetooth [16], and virtual keyboards [17]
to explore the characteristics of students’ learning contexts.

For the last decade, research studies have been conducted that first explore the proper context of learners
and then guide them accordingly through Internet-connected mobile devices (e.g., smartphones and tablets).
For example, Jorge et al. developed a context-aware system that simulated students’ active learning [18].
This context-aware system used five context dimensions, namely students, learning objects, time, location, and
learning activity. To deliver effective learning resources, the system used reasoning capability based on context-
based ontology. Smartphone-enabled technologies such as NFC (near field communication), QRCODE (quick
response code), GPS (Global Positioning System), and BLE (Bluetooth Low Energy) were used to discover
learning objects and learner locations in a learning context. The entire system was based on client-server
architecture.

Likewise, many other studies have investigated methods for providing relevant information to mobile
users taking into account their contextual information. The architectures used in these studies were mainly
based on a client-server architecture, where most of the processing is done at the web-server side [19, 20].

The drawback of the web-server approach is that separate processing and memory resources are dedicated
to compute the learning path of each learner based on his or her learning context information [21]. Moreover,
web servers need continuous hardware and software installation, configuration, monitoring, and upgrading [22].
Compared to computer clouds, web servers perform poorly in scalability, power consumption, and resource
utilization [23]. In this paper, we present a cloud-supported mobile learning system (CSMLS) that uses a
machine learning algorithm for exploring different learning paths of learners having similar learning behaviors,
context information, and learning preferences. The main objective of CSMLS is to encourage learners in solving
those programming problems that they encounter in the real world, thus making their learning riveting and
engaging.

Mobile devices (smartphones and tablets), when connected to the cloud, can upsurge their processing
power and storage capacity [24]. The continued improvement of cloud computing technologies has enabled ubiq-
uitous, real-time, and on-demand access to computing resources (e.g., applications, platforms, infrastructure)
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with nominal management efforts [25]. Currently, many smartphone applications related to health, entertain-
ment, communication, education, and safety are using complementary features of clouds to mix and match their
needs [26, 27].

The prevalent M-learning studies have investigated methods for knowing learners’ learning behaviors and
preferences by analyzing learning records at the back-end web servers and then facilitating them accordingly.
Some M-learning studies target the enhancement of students’ English listening, speaking, reading, and writing
skills [28]. M-learning systems like those in [29, 30] facilitate students to learn on the move, e.g., at zoos,
museums, parks, colleges, and universities campuses. These types of M-learning systems first consider the
learner’s location, time, preferred learning contents, and learning behavior and then provide relevant and
adaptive learning contents.

For the purpose of optimizing the programming language skills of learners, this study was exercised
to establish learning analytics based on environmental context data and students’ knowledge and behavior to
provide applied and personalized computer programming learning material. This adaptive learning mechanism is
distinctive from previous context-aware recommendation systems that store and use limited context information
to recommend appropriate learning resources to individual students. For a comprehensive learning mechanism,
a complete statistical model of data about learners and their context should be built. This statistical model
includes detailed information about learners including learners’ learning behavior; the number of places they
visit (location context) on a daily, weekly, or monthly basis; learning time and duration of learning time (time
context); learning preferences; learning performance; learning support; and preferred learning content.

This study executed a clustered-based machine learning algorithm called DBSCAN on learners’ context
data stored in the Google Firebase database cloud to discover the relationships among learning context variables.
Based on context variables’ characteristics explored by DBSCAN, the system generates different learning
patterns for individual students to enhance their computer programming efficiency. For exploratory analysis
of students’ context data, the system relied on large-scale fine-grained data generated by learners during the
learning process. The context data are procured from learners’ mobile devices and stored in the Firebase cloud.
The proposed system can be used to guide learners in learning computer programming subjects that need ample
practice and are practical in nature. The system relies on large-scale granular context data of learners; for this
reason, it is able to represent a more accurate and reliable picture of a learner’s learning context and provide
appropriate learning content and guidance.

2. Literature review
The purpose of this study was to enhance the computer programming skills of learners by encouraging them to
solve the programming problems that they encounter in real life. For this purpose, we established a learning
environment where learners could practice and solve programming problems using their mobile devices such as
smartphones and tablets.

The following sections present generic context-aware studies, applications, and theories that are explored
by researchers in various branches of learning.

2.1. Context-aware learning

The growing use of mobile devices and their sister technologies have made it possible to discover learning styles
and behaviors of students by mining their learning context information [31, 32]. The M-learning context is
where learning takes place, with temporal constraints, graphical user interface (GUI) interaction details, and

2800



ADNAN et al./Turk J Elec Eng & Comp Sci

the learner’s current knowledge, preferences, and performance states [33]. The results of experimental studies
show that M-learning assists students in various learning settings by providing them suitable content at the
right time and the right place.

Increasingly, English, Japanese, and Chinese vocabulary has been examined by a few context-aware
ubiquitous M-learning systems [34, 35]. Context-aware learning has also been applied in the spheres of road
safety, health services, education, physical exercise, etc. [36]. Hwang et al. explored the learning context through
RFID-enabled technologies for providing appropriate learning assistance to learners in completing their learning
activities [37].

2.2. Machine learning in context-aware M-learning

Machine learning (ML), which evolved from artificial intelligence and computational learning theory, gives
computers the ability to learn without explicitly being programmed [38]. ML algorithms highly rely on
data patterns to make clusters, classifications, and data-driven decisions. With the advancements in wireless
communication technologies, mobile devices, and localizing/tracking sensors it is now possible to mine and store
large-scale information generated from learning settings in the back-end cloud [39]. This information could be
used by ML algorithms to discover new insights about how a learner learns in particular learning settings.

Very few studies have used ML techniques to create a meaningful learning context model of students and
to provide context-aware learning material. Krause et al. used wearable sensors to gather and estimate stu-
dents’ context qualities such as location, learning activities, learning schedule, and ambient context information
to determine a student’s current learning state in order to configure learning settings on mobile devices proac-
tively [40]. They reported that predefined learning paths and context-sensitive responses are not appropriate in
mobile learning settings and ML techniques can successfully reveal context-aware preferences of the individual
learner.

A predictive modeling approach called decision tree (DT) learning was used in [41] to predict the
performance of students based on information collected from an online learning management system (LMS) at
the end of the semester. The learning context information gathered from the LMS included students’ attendance,
quiz results, assignments, submissions, etc. The study suggested that ML techniques such as decision trees can
be used to predict students’ learning performances in the future and could help reduce dropout rates of weaker
students.

ML techniques are successfully applied in other fields, including stock market prediction, retail sales,
bioinformatics, clinical medicine, and counter-terrorism. Webb et al. pointed out key challenges in modeling
students’ behavior in modern educational settings and how these challenges have hindered ML techniques
in modeling the learning behavior of students [42]. This study brought to the surface four critical issues
that are limiting the real-world application of modeling students’ educational settings and how corresponding
attempts are trying to overcome them. The four issues addressed were the lack of a large dataset representing
students’ learning behavior, the lack of labeled data, concept drift, and computational complexity. The authors
optimistically concluded that advancement in modern technologies such as the World Wide Web (WWW),
mobile devices, mature users’ feedback systems, and learning management systems will be able to provide
fine-grained users’ context data.

2.3. Mobile cloud computing

The purpose of mobile cloud computing (MCC) is to enable users to execute resource-hungry rich mobile
applications on a plethora of mobile devices. MCC provides unrestricted processing, functionality, and storage
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to a multitude of mobile devices based on a pay-as-you-use principle. Cloud resources are offered to users based
on multiple categories including infrastructure as a service (IaaS) [43], e.g., Amazon Web Services, Microsoft
Azure, and Google Compute Engine; platform as a service (PaaS) [44], e.g., Heroku, Google ML Engine, IBM
Bluemix, and SaleForce; software as a service (SaaS) [45], e.g., Evernote, Gmail, Facebook, Office 365, and
Google Apps; and back-end as a service (BaaS) [46], e.g., Parse and Google Firebase. Our proposed system
uses Google Firebase for real-time database support, user authentication, remote configuration, performance
monitoring, and users’ analytics. Google Firebase is further integrated with Google Cloud ML Engine. Students’
learning context data are stored at the Firebase back-end whereas machine learning processing is performed by
Google Cloud ML Engine.

To enable and facilitate learners in learning computer programming language using their mobile devices
and to overcome the limitations and disadvantages of previous studies, we developed a cloud-supported machine
learning system (CSMLS) for enhancing real-world programming skills of students. CSMLS comprises three
operational layers for its working, namely a context acquisition layer, context analysis layer, and learning
path generation layer. In summary, the purpose of this study was manifold: to assist learners in solving the
real-world programming problems that they encounter on a daily basis; to provide personalized programming
learning contents to learners based on their performances and preferences; to explore location- and time-based
learning characteristics of learners and provide them with relevant programming problems and material; to
maintain and update learning analytics of learners used by the ML algorithm; to discover learners’ learning
behavior patterns and split students into a set of learning categories; to explore learning patterns of learners
using a rule-based inference engine; and to provide suitable learning support that makes learning programming
engaging and interesting.

3. Architecture of cloud-supported machine learning system

This study used the Google Firebase cloud and Google Cloud ML Engine for providing data storage and data
mining services. These clouds were integrated with learners’ smartphones for retrieving and processing their
contextual information. The operational mechanism of the CSMLS architecture comprises three layers: a
context acquisition layer, context analysis layer, and learning path generation layer, as shown in Figure 1.

The context acquisition layer uses an Android client app for determining and capturing the learner’s
location, preferences, and performance. In order to recommend suitable programming content and exercises
to different learners that encourage understanding and solving real-world programming problems, geographical
information generated by learners’ smartphones was first excavated by the DBSCAN ML algorithm running on
the Google Cloud ML Engine. The output data generated by the DBSCAN algorithm form different clusters
according to learners’ geophysical information. The excavated data in the form of clusters are further integrated
with other contextual information (preferences, performance, learning time, etc.) and processed by the rule-
based inference engine in the learning path generation layer for generating learning paths for individual learners.
These learning paths recommend adaptive and real-world programming content to learners on their smartphones,
thus making learning programming more stimulating and exciting. A brief introduction to CSMLS working
layers is given in the following subsections.

3.1. Context acquisition layer

The context acquisition layer uses GPS and geofencing techniques for location services facilitated by satellite
signals, Wi-Fi hotspot IDs, and cell tower IDs. The learner’s learning behavior data such as learning preferences,
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Figure 1. Architecture of the cloud-supported machine learning system (CSMLS).

learning time, learning duration, and learning performance are logged and transferred to a persistent Firebase
database by the Android client app running on the learner’s smartphone. The client app was developed for
Android Lollipop 5.0 and later mobile operating systems to gather learning behavior information of learners. For
providing real-world programming exercises to learners based on their learning behavior, it was important to first
gather detailed fine-grain learning behavior information from learners’ smartphones. For our experimental study,
selected locations for learners included real-world places, e.g., classrooms, libraries, recreational playgrounds, and
marketplaces, where the learners made frequent visits during their daily life activities. Performance information
includes their current enactment in learning programming, which logically falls into low, medium, and high
categories. Along with performance information, the learner’s learning preferences in the form of visual, auditory,
or read/write learning and learning time constraints including learning time and duration are logged on their
smartphones and transferred to the Firebase cloud for learning context analysis. The following subsection
explains the mobile learning attributes that form the learner’s mobile learning model.

3.1.1. Mobile learning model

The mobile learning model embodies learner learning behavior while using a smartphone. In the mobile learning
model, learners’ learning attributes are represented by different variables formed during their learning activities.
From time to time, the values of these learning variables are periodically synchronized between the learners’
smartphones’ client app and the Firebase cloud. The learning time variable is represented by timestamp T
(T1, T2, T3…, Tn), where ‘n’ denotes the total number of learning activities in chunks in 24 h of time, i.e.
morning, noon, afternoon, evening, and night. The values of the learning time variable represent the optimum
time the learner is interested in learning computer programming. Connected with the learning time variable
is learning time duration, represented by D (D1, D2, D3,…, Dm). The values of learning duration variable D
represent learning duration time in increasing order. Real-world programming exercises are arranged according
to a physical location and their difficulty levels. For example, (PL1, PL2, PL3,…, PLv) denotes programming
exercises arranged in learning modules according to physical location and difficulty level. ‘v’ denotes the total
number of programming modules as represented in Table 1.

Recommended learning contents are the programming exercises to be rendered on the learner’s smart-

2803



ADNAN et al./Turk J Elec Eng & Comp Sci

Table 1. Real-world programming exercises according to difficulty levels.

S.No Real-world programming exercises Related physical location Difficulty level
1 PL1 Recreation ground Difficulty low (DL)
2 PL1 Recreation ground Difficulty high (DH)
3 PL2 Marketplace Difficulty low (DL)
4 PL2 Marketplace Difficulty medium (DM)
5 PL2 Marketplace Difficulty high (DH)
6 PL3 Library Difficulty low (DL)
7 PL3 Library Difficulty medium (DM)
8 PL3 Library Difficulty high (DH)
..... ..... ...... ......

phone in the form of visual, auditory, and read/write material based on learners’ preferences that were elicited
from learners’ smartphones during learning activities. In the mobile learning model, preferred learning contents
are represented by a set denoted as LCPR (LP1, LP2, LP3,…, LPc), where ‘c’ denotes the total number of
learning content types. In our study, we have limited the content types to visual, auditory, and read/write
types. Background knowledge represents a learner’s prior knowledge or prior performance for a particular pro-
gramming exercise. For brevity, background knowledge is categorized into low, medium, and high levels. The
background knowledge changes dynamically according to learner performance in daily, weekly, and monthly
programming quizzes.

Our proposed system encourages learners to learn programming by undertaking real-world programming
exercises based on their learning context information so that the learners are able to realize that unlike other
subjects, programming needs active interaction, attention, and practice rather than learning in the passive
mode.

3.2. Context analysis layer

The purpose of the context analysis layer is to develop the mobile learning model. As discussed in the previous
section, the mobile learning model consists of learning attributes of the learner while learning with the help of
a smartphone. DBSCAN relies on learners’ location attributes (latitude and longitude coordinates) to cluster
learners into different groups. Table 2 shows generic and specific learning attributes of learners related to
programming levels/exercises. Instructors can specify generic learning attributes of programming levels in the
XML-based attributes description documents.

The context analysis layer integrates the Google API client library in Python code running on the Firebase
cloud to make calls to Google Cloud ML Engine REST APIs. Location information in the Firebase cloud is
sent to Google Cloud ML Engine as a job along with the required parameters. Job parameters include training
application name, job name, module name, machine learning algorithm, and job directory. For quick and easy
sharing of location data between Firebase and Google Cloud ML Engine, we used the Firebase SDK (software
development kit), which uses a default storage bucket in Google Cloud ML Engine. The DBSCAN Python code
running on Google Cloud ML Engine determines which places are commonly visited by learners in the form of
clusters.
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Table 2. Generic and specific learning attributes of learners.

Generic learning attribute of programming levels
Learning
time &
duration

Difficulty
level

Real-world
programming
examples
(location-wise)

Generic
learning
contents

Background
knowledge

Learner learning attribute of programming levels
Learning
time &
duration

Performance
in learning
level

Preferred
real-world
programming
exercises

Adaptive
learning
contents

Background
knowledge

3.2.1. Geofencing learners’ locations

For our experimental setup, four types of monitored location zones were defined, namely recreation grounds,
library, classrooms, and marketplace. The Android client app was responsible for sending the learner’s location
statistics to the Firebase database every time a learner entered or left a particular Google maps geofenced zone.
Four monitored locations of interest were specified using their latitude and longitude data. Due to the difference
in the proximity of location zones, different radii were defined. The latitude, longitude, and radius defined the
geofence for four different monitored locations. The following Android code snippet shows how geofencing was
defined.

Listing 1. Geofencing learner location

// Create a Geofence
p r i va t e Geofence createGeo fence (
LatLng latLng , f l o a t rad iu s ) {
Log . d(TAG, ” createGeo fence ” ) ;

r e turn new Geofence . Bu i lder ( )
. se tRequest Id (GEOFENCE_REQ_ID)
. s e tC i r cu l a rReg ion
( latLng . l a t i t u d e , latLng . long i tude , rad iu s )
. s e tExp i ra t ionDurat ion ( GEO_DURATION )
. se tTrans i t i onTypes
( Geofence .GEOFENCE_TRANSITION_ENTER
| Geofence .GEOFENCE_TRANSITION_EXIT )

. bu i ld ( ) ;
}

3.2.2. Applying DBSCAN clustering on learners’ geofenced data

We used the density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm to
determine which monitored locations were visited by learners and which were not. DBSCAN clustering enabled
location-based programming recommendations to learners on their smartphones. We used the DBSCAN
clustering algorithm as it works well with latitude-longitude geographical data and arbitrary distances. In
DBSCAN algorithm clusters, a geographical dataset is based on two parameters: epsilon and minimum number
of points (min-points). Epsilon determines physical distances to search for points near a given point, whereas
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min-points determines the minimum cluster size, i.e. how many points should be present adjacent to an assumed
given point in order to keep growing a given cluster. Eq. 1 shows how DBSCAN defines a spatial cluster.

Nϵ(P ) : {q|d(p, q) ⩽ ε} (1)

In the above equation, ‘high density’ regions are those where the ϵ neighborhood of an object contains
at least min-points of objects. The (p,q) pair represents the location objects (students’ location points) in the
DBSCAN cluster. The Google Cloud ML Engine performed learners’ DBSCAN location-clustering tasks as it
scales well with millions of users and billions of events [47]. Google Cloud ML Engine carried out location-
clustering using key-value pairs. We choose a key to be a learner’s unique identifier and a value to be the
geographical latitude and longitude data of a learner. An example of a key-value pair is shown below in a tuple
extracted from the cloud database.

Listing 2. Geofencing key-value pair

(19987 , DBSCANMatrix (33 .588570 , 71 .439529
33 .586997 , 71.441717
33 .587641 , 71.443091
33 .585388 , 71 .440773) )

For demarcation of geographical places into different clusters based on the learner’s visits, Google Cloud
ML Engine uses the following DBSCAN algorithm implemented in Python. In this code, Google Cloud ML
Engine looks for the learner’s entrance or exit in the range of 100–350 m (about 0.001 in degrees) and it starts
clustering if there are at least five points close to each other.

Listing 3. Partitioning of geographical places into clusters by DBSCAN algorithm

import pandas as pd , numpy as np ,
matp lo t l i b . pyplot as p l t
from sk l ea rn . c l u s t e r import DBSCAN
from geopy . d i s t anc e import g r e a t _ c i r c l e
from shape ly . geometry import Mult iPoint
df = pd ( ’DBSCANMatrix ’ )
coords = df . as_matrix ( columns =[ ’ l a t i t u d e ’ ,
’ l ong i tude ’ ] )

DBSCAN( e p i l s o n =0.001 , metr ic = ’ euc l idean ’ ,
min−po in t s =5)
Dbscan . f i t ( coords )
c l u s t e r s = pd . S e r i e s
( [ coords , f o r n [ l a b e l s == n ]
in range ( num_clusters ) ] )

Figure 2 shows an example of four clusters showing that a particular learner visited locations during a
period of two months. Learner visits are clustered according to their geographical trace. For instance, classrooms
visits are represented by dark green dots, library stays by dark orange dots, recreation area entry by dark red
dots, and marketplace visits by blue dots. The information related to geographical locations of every learner
is further transferred to the learning path generation layer for development and dissemination of appropriate
learning material to learners.
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Figure 2. Clustering of learner visits according to geographical location by DBSCAN.

3.3. Learning path generation layer

In the learning path generation layer, CSMLS used a rule-based inference engine on learning context data to
recommend suitable programming exercises to learners [48]. The input for the learning path generation layer is
learners’ geographical clusters generated by DBSCAN and learning context data stored in the Firebase database.
Using the rule-based inference engine, the learning path generation layer makes appropriate recommendations to
learners based on their learning attributes, which together with the passage of time from the learners’ knowledge
base that subsequently leads to the deductive derivation of new learning facts.

The rule-based inference engine module represents a model of actual learner behavior. The working of
the rule-based inference engine is based on condition-action pairs as shown in Figure ??. A rule is made of an
IF (condition) part and THEN (action) part. If the IF part of the rule is satisfied, consequently, the THEN part
is executed; otherwise, the flow of control goes to the next IF/THEN rule. The rule-based inference module
learns from experience and generates new learning knowledge for the learning database module. The learner
mobile interface module is responsible for delivering adaptive real-world programming content to learners on
their smartphones. Any new learning knowledge gathered by the learner’s smartphone is communicated to
the learning database module by the learner mobile interface, where, based on this knowledge, new rules are
established and existing rules are reorganized.

The learning path generation layer uses a forward chaining approach of the rule-based inference engine
to generate dynamic learning paths to learners based on their contextual data. As shown in Figure ??, the
rule-based inference engine uses three modules to generate appropriate learning paths to the learners. In the
learning database module, the knowledge acquisition activity obtains the learner’s location and learning behavior
information from the context analysis layer. With the passage of time, the learning database module gets more
mature and complete as it gets information from the context analysis layer and new data generated by the
rule-based inference engine. Depending on the learning behavior information, new learning recommendation
rules are recognized, formulated, and restructured in the learning database module.

4. Experimental procedure

In order to evaluate the effectiveness of CSMLS, we carried out our experimental study at Kohat University
of Science and Technology, Pakistan. Three monitored physical locations, i.e. classrooms, a recreation area,
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Figure 3. Students’ IEPLS interaction activities.

and a library, were defined and selected inside the university while one monitored location, the marketplace,
was monitored and geofenced outside of the campus. The main objective of this experimental study was to
reveal whether or not the adaptive and real-world computer programming makes the learning of computer
programming exciting and engaging to learners.

4.1. Participants

A total of 150 undergraduate students participated in our experimental study. We acquired a large number
of participants because the DBSCAN machine learning algorithm generates better results for larger datasets.
We randomly divided the participating students into two independent groups of the same size (75 participants
in each group). A control (C) group received normal programming contents and exercises independently of
considering their physical locations and learning behavior. The experimental (E) group received real-world
programming content and exercises considering their physical locations and learning behavior preferences.
While selecting participants, we made sure that all participants had earlier programming learning experience
and had Android smartphones running Android KitKat 4.4.4 or a later version of OS. We also ascertained
that the Android client app was installed and running properly on the smartphones of all the participants. A
brief 30-min training session was given to all participants regarding Android client app functionality, modules,
customization, and connectivity to the Firebase cloud. For detailed evaluation, both the C and E groups
used CSMLS for one complete semester, i.e. 6 months. An exhaustive experiment was needed as DBSCAN
generates more accurate results on a large dataset. Routine visits to monitored geographical locations and
learning behavior (preferences, performances, times) of both groups were recorded in the Firebase persistent
database storage on a regular basis. With the passage of time, the E group participants received real-world
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programming content and exercises according to the places they visited and learning behavior patterns while
C group participants received normal programming content independent of their physical location visits and
learning behavior patterns on their smartphones.

4.2. Android client app interaction
Figure 4 shows Android client app interaction interfaces for the E group participants. Figure ?? shows a learner’s
personal profile, from which he or she can navigate to learning modules, quiz attempts, notifications from the
Firebase cloud, options to customize settings, learning statistics, and history of visited locations. Figure ??
illustrates the Java programming modules in chronological order, which a learner has to cover in a 6-month
period. For E group participants, the content of these programming modules becomes adaptive with respect
to the locations visited and learning behavior. This content adaptiveness is further presented in Figure ??,
where a learner who often visits the recreational area (playgrounds, physical training zone) is presented with a
programming task that is related to his or her visited location.

Figure 4. Learner interaction with CSMLS Android client app.

4.3. CSMLS operational analysis
In this section, we discuss the influence of CSMLS in improving the computer programming skills of learners. At
the start of the CSMLS experimental phase, a pretest was conducted to gather initial programming capabilities
of both groups. The programming language selected for the pretest was Java. The pretest content included
basic Java concepts, which are also applied in other object-oriented programming languages, such as conditional
statements, loops, variables, arrays, and classes. The pretest lasted for 60 min and students were informed to
submit the solutions online through their smartphones. The analysis results of both groups are shown in Table 3,
where it can be concluded that the initial programming capabilities of both groups were almost the same with
mean values of 52.48 and 51.85, respectively.

From Table 4, we also notice that the P-value of Levene’s test is 0.498 (>0.05), which implies that the
variances of both groups are the same. Similarly, the significance P-value is 0.277 (>0.05), so we conclude that
there is no significant difference between the mean score of the E group and C group at 5% significance level.
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Table 3. Pretest group statistics.

Participants N Mean Std. deviation Std. error mean
Programming score Experimental group 75 52.48 3.60 0.4164
score Control group 75 51.85 3.41 0.3948

Table 4. Pretest independent sample t-test.

Variances
Levene’s test for
equality of variances

t-Test for equality of means

F Sig. t df Sig. (2-tailed)

Programming

Equal
variances
assumed 0.461 0.498

1.092 148 0.277

score Equal
variances
not assumed

1.092 147.58 0.277

After making sure in the pretest that both groups had the same computer programming skills, we
conducted six posttests after every one month in a 6-month period to identify the difference between the
two groups after using our proposed CSMLS learning system. With the passage of time, the E group received
adaptive programming content that encouraged learning and solving real-world programming problems, whereas
the C group received normal programming content taught in textbooks where learners have to solve general
programming problems. We were interested in finding the difference in programming skills between the two
groups after using CSMLS and finding how much CSMLS is engaging and helpful during the learning process.
In this experiment the target learning language was Java and its learning contents were divided into 10 modules.

In order to discern the effect of the learning guidance of CSMLS, we piloted six posttests after every
one month for six months. The posttests were an integral part of the CSMLS system and every participant
used his or her smartphone to take the posttest and submit the results on the Firebase cloud. Every posttest
lasted for 60 min and for E group participants the posttest exercise contents were according to the participant’s
past learning behavior (location, performance, preferences, and learning time). On the other hand, C group
participants’ posttest exercise contents were general, irrespective of their learning behavior. Table 5 shows
a group analysis for six posttests with mean and standard deviation. The result show that during the first
two months, the performance of both groups was almost parallel with mean values of 55.10 and 54.88 for the
first month and mean values of 57.80 and 54.90 for the second month, respectively. The significant (2-tailed)
P-values for the first and second posttest are 0.819 and 0.024, both >0.05, implying that statistically there is no
significant difference between E group performance and C group performance. It was after the third test result
when we observed the influence of CSMLS in improving programming skills of experimental group participants.
In Table 6, the significant (2-tailed) P-value for the third posttest is 0.000120 (<0.05), which shows a noticeable
difference between the mean scores of the E group and C group at 5% significance level. Similarly, the significant
(2-tailed) P-values for the fourth, fifth, and sixth posttest scores are 0.000, 0.001, and 0.000, all less than a 0.05
significance level, demonstrating that the programming performance of E group participants was better than
that of C group participants.
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Table 5. Posttest group statistics.

Groups N Mean Std. deviation Std. error mean

Posttest, first month Experimental group 75 55.106 6.421 0.741
Control group 75 54.880 5.687 0.656

Posttest, second month Experimental group 75 57.800 7.289 0.841
Control group 75 54.906 8.226 0.949

Posttest, third month Experimental group 75 60.280 7.045 0.813
Control group 75 55.120 8.850 1.021

Posttest, fourth month Experimental group 75 61.493 7.831 0.904
Control group 75 54.040 10.047 1.160

Posttest, fifth month Experimental group 75 62.880 8.196 0.946
Control group 75 58.320 7.788 0.899

Posttest, sixth month Experimental group 75 63.160 8.147 0.940
Control group 75 57.253 8.243 0.951

Table 6. Posttest independent sample t-test.

Tests Variances
Levene’s test
for equality
of variances

t-Test for equality of means

F Sig. t df Sig. (2-tailed)
Posttest,
first month

Equal variances assumed 2.201 0.140 0.229 148 0.819
Equal variances not assumed 0.229 145.875 0.819

Posttest, Equal variances assumed 2.437 0.121 2.280 148 0.024
second month Equal variances not assumed 2.280 145.885 0.024
Posttest, Equal variances assumed 4.348 0.039 3.950 148 0.000
third month Equal variances not assumed 3.950 140.918 0.000
Posttest, Equal variances assumed 10.180 0.002 5.067 148 0.000
fourth month Equal variances not assumed 5.067 139.674 0.000
Posttest, Equal variances assumed 0.391 0.533 3.493 148 0.001
fifth month Equal variances not assumed 3.493 147.614 0.001
Posttest, Equal variances assumed 0.009 0.926 4.414 148 0.000
sixth month Equal variances not assumed 4.414 147.980 0.000

Later on, we analyzed the Firebase cloud database to find the prime reasons why the learning performance
of both groups was the same during the first two months and we came up with a few reasons. Initially, the
DBSCAN running on Google Cloud ML Engine was not able to adapt to the learning behavior of learners because
the learners’ dataset (learning model) contained inadequate information. Due to this, the E group participants
were having problems in getting adaptive programming content. With the passage of time and regular use,
the data model got mature, containing ample information. Subsequently, CSMLS started to recognize the
differences in learning behavior between the participants of the E and C groups. As a result, CSMLS started to
recommend adaptive and real-world programming content to E group participants, which resulted in improving
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their learning performance as compared to C group participants. One of the reasons for testing CSMLS for
6 months was to make sure that the DBSCAN algorithm had enough data points to generate proper location
clusters and to recognize individual learners based on their visited locations history.

Table 7. End user computing satisfaction (EUCS) questionnaire results.

Dimension Question Mean
1 Usefulness I think the use of CSMLS improved my programming skills 4.67

2 Usefulness I think CSMLS contributed a lot in my understanding of computer
programming

4.55

3 Engaging I was curious about learning to program using CSMLS 4.78

4 Engaging CSMLS was able to engage me in learning programming on a daily
basis

4.84

5 Ease of use I think using CSMLS is easy 4.53
6 Ease of use I think it is possible to use CSMLS without expert help 4.44
7 Timeliness The programming contents were provided on time 4.60
8 Timeliness CSMLS knew when to send programming contents 4.67
9 Adaptive The programming contents provided were tailored and personalized 4.34

10 Adaptive The programming contents provided were according to my
performance state

4.55

11 Attitude towards
CSMLS

I will use a similar type of system in the future 4.87

12 Attitude towards
CSMLS

I will continue to use CSMLS in order to increase my programming skills 4.76

4.4. Analysis of EUCS model questionnaire

We used a modified version of the end user computing satisfaction (EUCS) model [49] to elicit learners’ satis-
faction and experiences of using CSMLS. We conducted an online EUCS survey with 75 E group participants.
The EUCS survey questionnaire covered six dimensions of CSMLS, namely usefulness, engagingness, ease of
use, timeliness, adaptiveness, and attitude towards CSMLS. The online survey comprised 12 questions covering
the six dimensions of CSMLS on a five-point Likert-scale where 1 represents “strongly disagree” and 5 repre-
sents “strongly agree”. The mean user satisfaction ranking is greater than 4 (agree), which shows that, overall,
the participants were satisfied with using the CSMLS system. Table 7 displays CSMLS learning dimensions,
corresponding questions, and mean scores. The responses to dimensions 1 and 2 indicate that CSMLS was able
to increase the programming skills of learners (m = 4.67, m = 4.55). The responses to dimensions 3 and 4 show
that CSMLS was able to attract and engage participants in making time to learn computer programming (m
= 4.78, m = 4.84). The responses to dimensions 5 and 6 show that the user interface of CSMLS was easy to
use and user-friendly (m = 4.53, m = 4.44). The responses to dimensions 7 and 8 indicate that CSMLS consid-
ered learners’ preferred learning time and sent programming contents accordingly (m = 4.60, m = 4.67). The
answers to dimensions 9 and 10 indicate that personalized and tailored programming contents were delivered
to learners according to their learning performance and learning behavior (m = 4.34, m =4.55). The responses
to dimensions 11 and 12 reflect that learners agreed to use CSMLS or a similar kind of software system in the
future to increase their programming skills (m = 4.87, m = 4.76).
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5. Conclusions and future work
In this study, we proposed and developed a cloud-supported ML system, CSMLS, to guide learners in learning
real-world and applied computer programming considering their location and other learning behavior param-
eters. The density-based spatial clustering of applications with noise (DBSCAN) algorithm together with a
rule-based inference engine was administered on Firebase and Google Cloud ML Engine to recommend ap-
propriate programming exercises and content to learners on their smartphones. For this study, four types of
geographical locations were geofenced to record learners’ physical visits and subsequently, based on these visits,
to recommend real-world programming exercises. CSMLS comprises three layers, namely a context acquisition
layer, context analysis layer, and learning path generation layer. The context acquisition layer uses GPS and
a geofencing method for acquiring location information facilitated by satellite signals, Wi-Fi hotspot IDs, the
Android client app, and cell tower IDs. The purpose of the context analysis layer was to develop a mobile
learning model for individual learners. The context analysis layer used the DBSCAN algorithm to cluster the
learners based on their geographical information (latitude and longitude coordinates). The information pro-
cessed by the context analysis layer is further transferred to the learning path generation layer to generate
appropriate and suitable learning guidance and learning content to learners. The learning path generation
layer used the rule-based inference engine (IF/THEN rule) to recommend personalized programming exercises
to learners. Moreover, we also observed that experimental group participants receiving adaptive and applied
computer programming content found CSMLS more useful, engaging, adaptive, easy to use, and productive. In
the first two months of CSMLS testing, the experimental and control groups’ programming performances were
found to be the same, which was due to the fact that initially experimental group participants were considering
it as a normal programming learning system and were not able to interpret its help and support. Furthermore,
the DBSCAN learning model in the Google Cloud ML Engine was not fully trained in the first two-month
duration, due to which CSMLS was not able to differentiate among the learners based on their geographical
information database. After two months, the DBSCAN training model was complete, and as the geographical
dataset matured, CSMLS was able to cluster learners based on their physical locations and subsequently was
able to recommend real-world adaptive programming content to experimental group participants.

To the best of our knowledge, this is the first study where we premeditated the application of machine
learning on information generated from educational settings. By using mobile learning environment char-
acteristics to provide personalized programming material to learners, we developed a learning model via an
unsupervised machine learning clustering method, i.e. DBSCAN geographical clustering. This learning model
was used by the rule-based inference engine to generate personalized learning paths to diverse learners. In the
future, we would like to expand the geographical information database by including more physical locations
such as home, regular travels, banks, museums, industry, hospitals, etc. We expect that a larger geographical
information database will help us know more comprehensive information about different learners at detailed
and granular levels. We would also like to study the effect of supervised ML algorithms (supervised learning)
that deal with classification and prediction of a learner’s performance.
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