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Abstract: Quantitative structure–activity relationships and quantitative structure–property relationships have proved
their usefulness for predicting toxicities of drug molecules regarding their biological activities. In silico toxicity prediction
techniques are essential for reducing testing on rodents (in vivo) and for a less time-consuming and more cost-efficient
alternative for the identification of toxic effects at an early stage of drug development. The authors aim to build a
prediction model for better assessment of toxicity to quickly and efficiently test whether certain chemical compounds
have the potential to disrupt the processes in the human body that may adversely affect human health. Here, we
have proposed a computational method (in silico) for the toxicity prediction of small drug molecules using their various
physicochemical properties (molecular descriptors) that can bind to the aryl hydrocarbon receptor. Pharmaceutical data
exploration laboratory software is used for extracting the features of drug molecules. The dataset of the aryl hydrocarbon
receptor contains 9008 drug molecules, where 1063 are active and 7945 are inactive, and each drug molecule contains
1444 features. It is a novel prediction model based on ensemble learning that can efficiently classify active (binding)
and inactive (nonbinding) compounds of the dataset. In our proposed ensemble model, we primarily performed feature
selection using the Boruta library in R, after which we resolved the class imbalance problem itself by ensemble learning
where we divided the dataset into seven data frames, which have approximately equal numbers of active and inactive
drug molecules. An ensemble model based upon the votes of seven random forest models is proposed, which gives an
accuracy of 93.76%. K-fold cross-validation is conducted to measure the consistency of the model. Finally, the validity
of the proposed ensemble model for some drug molecules of acquired immune deficiency syndrome therapy and androgen
receptor has been proved.

Key words: Aryl hydrocarbon receptor, molecular descriptor, feature selection, class imbalance, toxicity, ensemble
model

1. Introduction
Most drugs are small molecules that are invented to interact with, bind, and regulate the activity of specific
biological receptors. Receptors are a group of proteins present in the cell that interact and bind with other
molecules to perform the various tasks necessary for the maintenance of life. Receptors include a vast array of
cell-surface receptors (hormone receptors, neurotransmitter receptors, cell-signaling receptors, etc.), enzymes,
and other functional proteins. Owing to physiological stressors and genetic abnormalities, the function of specific
enzymes and receptors may alter to the point that our well-being is diminished. These alterations seem to cause
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minor physical symptoms, such as a running nose due to allergies, or life-threatening and debilitating events
like depression or sepsis [1].

Typically, drugs are small organic molecules that accomplish their desired activity by binding with a
target site on a receptor. The initial phase in the discovery of a new drug is usually to identify and separate
the receptor to which it should bind, followed by testing many small molecules for their ability to bind to the
target site [2]. Researchers must distinguish the active (binding) compounds from the inactive (nonbinding)
compounds. This can lead to the design of new compounds that will not only bind but will also have all other
properties needed for a drug. These properties are solubility, oral absorption, appropriate duration of action,
toxicity, lack of side effects, and so on. 1

The data challenge of Tox21 with the collaboration of the National Center for Biotechnology Information
(NCBI) is held to help researchers understand the chemical and compound toxicology that can disrupt biological
pathways in a manner that may result in toxic effects. It is an open challenge where researchers must predict
about compounds’ interventions in biochemical pathways by using only physicochemical structure data. Active
drug molecules are those molecules that can bind to one or more biochemical pathway assays and create some
toxic effects in our bodies. These toxic effects are stress response (SR) effects and nuclear receptor (NR) effects.
Both SR and NR effects are highly relevant to human health because the activation of nuclear receptors can
disrupt endocrine system function, and the activation of stress response pathways can lead to liver injury or
cancer [3]. We can build computational models to predict the activity of the drug molecules in one or more of
the 12 pathway assays of NR or SR based on their physicochemical properties. In this paper, we are analyzing
the toxic effects only on the aryl hydrocarbon receptor. Table 1 shows the 12 biological pathway assays that
can give distinct adverse health effects on its activation.

Table 1. Nuclear receptor signaling and stress response pathways.

Nuclear receptor panel

AR: androgen receptor, full
AR-LBD: androgen receptor, LBD
ER: estrogen receptor alpha, full
ER-LBD: estrogen receptor alpha, LBD
AhR: aryl hydrocarbon receptor
PPAR-gamma: peroxisome proliferator-activated receptor gamma
aromatase

Stress response panel

Nrf2/ARE: nuclear factor-like 2/antioxidant responsive element
HSE: heat shock factor response element (HSE)
ATAD5: genotoxicity indicated by ATAD5
MMP: mitochondrial membrane potential
p53

Generally, the in silico approach is a predictive science utilized for defining discovery and safety efforts
in therapeutics [4]. The primary purpose of toxicity prediction with the use of computational methods is to
reduce the testing on living cells or tissues. Therefore, it is an alternative to the bioassay. The concept of
Russell and Burch regarding the growing popularity of the 3Rs (replacement, reduction, refinement) focuses on

1Kaggle (2018). Drug Activity Prediction [online]. Website https://www.kaggle.com/c/DrugActivityPrediction [accessed 02
July 2018].
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the limited use of animals and the unlimited use of computational techniques for toxicity testing [5]. In silico
models also can predict ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties in
chemical space, which can reduce the dependency of chemical laboratory synthesis (in vitro) [6].

The aryl hydrocarbon receptor (AhR) is a protein, and it is a member of the family of basic helix-loop-helix
transcription factors. AhR adopts the responses of environmental pollutants such as aromatic hydrocarbons
through the induction of phase I and phase II enzymes. These adaptive responses are toxic responses with various
side effects, whereas the elicitation of metabolizing enzymes results in the production of toxic metabolites. AhR
is also called the dioxin receptor because it is a ligand-activated transcriptional regulator that binds dioxin
and other exogenous contaminants and is responsible for their toxic effects. Dioxin and dioxin-like compounds
(DLCs) are highly toxic environmentally persistent organic pollutants (POPs), which can cause developmental
problems and immunological disorders by interfering with hormones. DLCs can also create disorders in the
nervous system, endocrine system, and reproductive functions and can even cause cancer. Exposure to high
levels of dioxin in humans may result in skin lesions, such as patchy and chloracne darkening of the skin,
impairment of the immune system, and modified liver function [7].

In this paper, we have proposed a novel ensemble-based binary classification model for forecasting the
activity of AhR drug molecules whether a given specific compound is active (1) or inactive (0). In our proposed
ensemble model, initially, we have performed feature selection using the Boruta library in R, and then the class
imbalance problem is resolved through an ensemble learning method where we divide the dataset into seven
data frames, which have approximately equal numbers of active or inactive drug molecules. Subsequent to this,
each data frame is trained and tested at 70% and 30%, respectively. An ensemble model based on the votes of
seven random forest models is created, which is our proposed ensemble model that has also resolved the issue
of class imbalance. K-fold cross-validation is performed to measure the robustness of the proposed ensemble
model. Finally, we have proved the validity of this model for some new drug molecules that are neither part
of the training dataset nor part of the testing dataset. Therefore, we applied our proposed ensemble model to
some drug molecules of AIDS therapy and some drug molecules of androgen receptors for validation, where our
model has given the best accuracy. The significant contributions of this paper are as follows:

1. To develop better toxicity assessment features, methods, and algorithms for drug molecules of AhR.

2. To develop a machine learning-based model for quick and efficient testing of certain chemical compounds
that have probable chance of disrupting the processes in the human body.

3. To develop a stand-alone application for helping researchers to predict the toxicity of newly discovered
chemical compounds and environmental chemicals.

4. To develop a computational method (in silico) for checking the toxicity of drug molecules of AhR rather
than inside the living organism (in vivo) or within glass (in vitro).

Figure 1 shows the general diagram of the prediction model, where the various physicochemical properties
of any small drug molecule are taken, and its activity is predicted through our prediction model. The research
community of the state of art Tox21 data challenge did not consider the problem of feature dimensionality
or the class imbalance problem during the model formation, but we have built the proposed ensemble model
considering these issues and tuned the parameter for the betterment of prediction accuracy [14].

The paper is composed as follows: Section 2 contains related work regarding toxicity prediction using
various methods. Section 3 introduces a quick overview of the dataset, feature extraction using PaDEL, feature
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Figure 1. Prediction method. Figure 2. PaDEL-Descriptor GUI.

selection, and the class imbalance problem. Section 4 clarifies the procedure of the proposed ensemble model.
Section 5 presents the description of the random forest model, which is used as a base classifier for ensemble
learning. Section 6 presents the different performance evaluation parameters of the model for classification.
Section 7 describes the investigated, compared, and validated results, followed by the conclusion in Section 8.

2. Related work
Basak et al. proposed a hierarchical QSAR approach, which used topological indices to predict aryl hydrocarbon
receptor binding potency on a set of 34 chlorinated dibenzofurans [8].

Kola and Landis proposed that toxicity is also the central issue for the development of a new drug.
According to reported clinical trials, more than 30% of drug candidates fail because of undetected toxic effect
[9].

Piparo et al. proposed a computational model for predicting aryl hydrocarbon receptor binding, where
the authors decided to use QSAR models for the binding prediction virtual screening due to the unavailability
of the AhR X-ray crystal structure. They used a training set of 84 AhR ligands [10].

Cassano et al. developed the CAESAR QSAR model to minimize false negatives to make them more
usable for the European REACH legislation (Registration, Evaluation, Authorization, and Restriction of Chem-
ical Substances). The CAESAR online application ensures that both industry and regulators can easily access
and use the developmental toxicity model. The CAESAR platform is a freely available tool for the study of
human toxicity [11].
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Drwal et al. proposed molecular similarity-based and naive Bayes classification for the prediction of the
toxicity of the nuclear receptor and stress response pathway, which was screened from the Tox21 data challenge
of 2014. It was implemented in KNIME software [12].

Stefaniak proposed a machine learning model to predict the activity of drug molecules in the nuclear
receptor panel and stress response panel using low-dimensional molecular descriptors and machine learning
algorithms. The models were built using the rotation forest and ADTree classifier, and the performance of the
model was measured using area under the receiver operating characteristic curve metrics [13].

Capuzzi et al. built QSAR models for 12 stress response and nuclear receptor signaling pathway toxicity
assays as part of the 2014 Tox21 challenge. These models were built using random forest, deep neural networks,
and various combinations of descriptors, where deep neural networks performed better. The drawback of this
methodology is the high demand for computational resources [14].

3. Materials and methods
3.1. Pharmaceutical Data Exploration Laboratory (PaDEL)

Pharmaceutical Data Exploration Laboratory (PaDEL) software is used to compute the molecular descriptors
and fingerprints. The input of PaDEL-Descriptor is the structure-data files (SDFs) of AhR drug molecules, and
its output is a comma-separated values (CSV) file. The CSV file contains a total of 9008 drug molecules, and each
drug molecule has 1444 features. The PaDEL-Descriptor is a Java-based free and open source software, which
is similar to Dragon, MOE, and MARVIN Beans and supports more than 90 different molecular file formats
including PDB, SDF, and SMILE. The molecular descriptors are extracted using the Chemistry Development
Kit (CDK) library of Java, which is related to the chemoinformatics and bioinformatics that are used internally
in PaDEL. The PaDEL software can calculate 1876 molecular descriptors (1444 1D and 2D descriptors, and 431
3D descriptors) and 12 kinds of fingerprints. We have used only 1444 1D and 2D descriptors in our dataset for
activity prediction of drug molecules. Figure 2 shows the graphical user interface (GUI) of PaDEL-Descriptor
[15], and Figure 3 shows the format of a structure-data file for an active drug molecule of AhR.

3.2. Dataset
The AhR signaling pathway data is taken from PubChem (https://pubchem.ncbi.nlm.nih.gov/bioassay/743122),
where 743122 is the PubChem identification number for AhR. PubChem is maintained by the National Center
for Biotechnology Information and provides access to biomedical and genomic information from its website. In
this study, our dataset consists of a total of 9008 AhR drug molecules, of which 1063 are active molecules and
the remaining 7945 are inactive molecules. All the drug molecules have 1444 features, which are also known
as physicochemical properties or molecular descriptors, which are extracted by PaDEL-Descriptor. The most
common molecular descriptors are the partition coefficient (AlogP), molar refractivity (AMR), volume, elements
count, ETA descriptors, autocorrelation, nBase, nRing, apol, number of hydrogen atoms (nH), and number of
carbon atoms (nC). Table 2 lists some essential physicochemical properties of the drug molecules of AhR and
their descriptions.

Table 3 shows an overview of the dataset that contains various AhR drug molecules, such as NCGC00257625-
01, NCGC00259354-01, and NCGC00255335-01. The columns of Table 3 show the various molecular descrip-
tors/features, such as ATS0m, AATSC8m, and Mlogp. These features are extracted from the structured-data
file using PaDEL-Descriptor. Here, activity is a target class, which shows whether a drug molecule is active or
inactive.
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Figure 3. Structure-data file (SDF) format for a single drug molecule of the aryl hydrocarbon receptor.

3.3. Feature selection using the Boruta algorithm

During the process of model building, the feature selection is used to filter the highly correlated variables,
descriptors with too many zero values, several missing values, and unwanted noise from the dataset. Our dataset
has 1444 features, which are very high in quantity; therefore, it will increase the time and space complexity
during model building. Feature selection is a process of selecting the important features that may improve the
performance of the model and remove those attributes that have redundant and irrelevant information. Here,
the process of feature selection is carried out using the Boruta() function under the Boruta library in R. It is
a wrapper algorithm that finds relevant features on the basis of the values of meanImp, medianImp, minImp,
maxImp, and normHits [16].

The input parameters of Boruta function are the dataset of 1444 features and target variable (activity).
After the execution of this algorithm, only 150 attributes are confirmed as important, whereas 1294 attributes
are confirmed as unimportant. Now only the confirmed attributes are used for model building. Table 4 shows
all the important features of AhR dataset.

3.4. Class imbalance
Class imbalance is a problem in machine learning where the main class of interest is rare, which triggers bias
of the classifier. Here, our dataset for the prediction of activity contains two classes; one is active and the
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Table 2. Physicochemical properties of aryl hydrocarbon receptor’s drug molecules.

S. no. Name Description
1 Crippen logP Atom-based calculation of logP using Crippen’s method,

also called the octanol/water partition coefficient.
2 Eccentric connectivity index It is a distance-based atomic descriptor used for numerical

modeling of biological activities, which are of varied nature.
3 Fragment complexity It reduces the “interaction” complexity and correlates with

the increased probability of binding to a target.
4 Kappa shape indices The kappa shape records are the premise of a technique

for molecular structure quantization in which the charac-
teristics of molecular shape are encoded into three indices
(kappa values).

5 Molecular linear free energy relation These descriptors are intended to reflect the crucial molec-
ular properties, which are critical in solvation-related pro-
cedures, specifically polarity, size, and hydrogen bonding.

6 Weighted path Weighted path numbers used to describe the molecular de-
scriptors for structure–property–activity studies.

7 Charged partial surface area These descriptors were initially designed for studies of
structure–physical relationships. They capture information
about different features of molecules that are responsible for
polar intermolecular interactions.

8 Molecular refractivity (AMR) Molecular refractivity is a measure of the aggregate polar-
izability of a mole of a substance. It is dependent on the
pressure, temperature, and index of refraction.

9 Extended topochemical atom (ETA) Index for modeling drug-induced and chemical toxicities.
10 Autocorrelation (ATS_0, ATS_1) Index that measures the degree of linear relationship be-

tween a given time series and a lagged version of itself over
successive time intervals.

Table 3. Dataset of aryl hydrocarbon receptors.

Name Activity ATS0m AATSC8m GATS5m Mi MLogP VE3_D Apol
NCGC00257625-01 1 3829.964592 –0.459127243 0.813611134 7.618377096 3.44 –6.693111535 55.24
NCGC00259354-01 1 2901.539444 2.391427338 1.207252358 7.36495489 3.66 –7.011135521 30.40
NCGC00255335-01 1 3909.376441 2.721650422 0.887052279 7.561662379 3.55 –8.791765353 19.62
NCGC00181290-01 0 3820.09244 –0.038428669 0.79059275 7.645415724 3.22 –7.4769931 50.46
NCGC00181294-01 0 8146.012676 –1.213070372 1.475781891 7.685123769 2.56 –132.8711591 31.53
NCGC00181300-01 0 8149.887015 –1.651536457 1.059976061 7.660974482 3.55 –8.190848602 41.56

other is inactive. This dataset is extremely imbalanced, as the total number of active drug molecules is 1063
(minority class) and the total number of inactive drug molecules is 7945 (majority class). Therefore, active drug
molecules are far fewer than inactive drug molecules. The main function of class balancing is to balance the class
symmetry of instances. There are several conventional approaches to handle the class imbalance problem, which
are undersampling, oversampling, and the synthetic minority oversampling technique (SMOTE) [17, 18]. Here,
the class imbalance problem is resolved by the ensemble learning method, as ensemble learning is more effective
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Table 4. Important features of aryl hydrocarbon receptor.

S. no. Features S. no. Features S. no. Features S. no. Features S. no. Features
1 AMR 31 SpMax1_Bhm 61 SHsNH2 91 maxdsN 121 MLFER_S
2 naAromAtom 32 SpMin1_Bhm 62 SHdsCH 92 maxdS 122 MLFER_E
3 nAromBond 33 SpMax1_Bhv 63 SHaaCH 93 gmin 123 MLFER_L
4 nN 34 SpMax1_Bhe 64 SHother 94 MAXDP 124 MPC5
5 ATS3m 35 SpMin1_Bhe 65 SdsCH 95 DELS 125 piPC2
6 AATS0m 36 SpMax1_Bhp 66 SaaCH 96 MAXDP2 126 piPC3
7 AATS1m 37 SpMax1_Bhi 67 SsssCH 97 DELS2 127 piPC4
8 AATS2m 38 SpMin1_Bhi 68 SdssC 98 ETA_dEpsilon_B 128 piPC5
9 AATS4m 39 C2SP2 69 SaasC 99 ETA_Beta 129 piPC6
10 AATS0v 40 SCH.6 70 SsNH2 100 ETA_BetaP 130 piPC7
11 AATS4v 41 SCH.7 71 SssNH 101 ETA_Beta_ns 131 TpiPC
12 AATS0p 42 VCH.6 72 SdsN 102 ETA_BetaP_ns 132 R_TpiPCTPC
13 AATSC1p 43 SP.3 73 SdS 103 ETA_dBeta 133 PetitjeanNumber
14 AATSC1i 44 SP.5 74 SsCl 104 ETA_dBetaP 134 n6Ring
15 MATS1v 45 Mv 75 minHdsCH 105 ETA_Beta_ns_d 135 nT6Ring
16 ATSC2s 46 Mpe 76 minHaaCH 106 ETA_BetaP_ns_d 136 topoRadius
17 AATSC1v 47 Mp 77 minHother 107 ETA_Eta 137 topoDiameter
18 AATSC1p 48 ECCEN 78 mindsCH 108 ETA_EtaP 138 topoShape
19 AATSC1i 49 nwHBa 79 minaaCH 109 ETA_Eta_R 139 GGI4
20 MATS1v 50 nHsNH2 80 mindssC 110 ETA_Eta_F 140 SpMax_D
21 MATS1p 51 nHdsCH 81 minaasC 111 ETA_Eta_F_L 141 SpDiam_D
22 MATS1i 52 nHaaCH 82 mindsN 112 FMF 142 SpAD_D
23 GATS1m 53 ndsCH 83 mindS 113 nHBDon_Lipinski 143 SpMAD_D
24 GATS1v 54 naaCH 84 maxwHBa 114 HybRatio 144 EE_D
25 GATS1p 55 ndssC 85 maxHdsCH 115 MIC4 145 VE1_D
26 GATS1i 56 naasC 86 maxHaaCH 116 MIC5 146 TopoPSA
27 nBondsS3 57 nsNH2 87 maxdsCH 117 nAtomP 147 AMW
28 nBondsD 58 ndsN 88 maxaaCH 118 MDEC.33 148 WTPT.3
29 nBondsD2 59 ndS 89 maxdssC 119 MDEN.11 149 WTPT.5
30 nBondsM 60 SwHBa 90 maxaasC 120 MDEN.12 150 WPATH

than data sampling techniques to enhance the classification performance of imbalanced data. It is performed
by the creation of seven data frames by dividing the dataset. These data frames all have approximately equal
numbers of active and inactive drug molecules [19] (see Section 4.3 for more details).

3.5. Target class

Activity is the target class that contains two instances, which are active (1) and inactive (0). Active compounds
have the capability to bind with AhR and produce toxic effects by modulating its activity, and inactive
compounds are nontoxic and do not bind with AhR. The intensity of the toxic effects of an active drug molecule
can be analyzed by its activity score. The active drug molecules are harmful, which can disrupt the processes
in the human body. Therefore, we can remove these kinds of molecules in the early stage of drug development
(preclinical trials) to save the lives of animals as well as money and time. Figure 4 shows the flowchart where
our proposed ensemble-based classification model performs the categorization of a new drug molecule in active
and inactive categories.
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4. Proposed ensemble-based prediction model
Ensemble learning is a technique to improve classification accuracy by combining the series of base classifiers.
All the base classifiers vote for any new data tuple; based on these votes, a class label prediction is returned. The
ensemble classification model can build using the same base classifiers on different splits of the same training
dataset or different base classifiers on the same training dataset. Here, we used the first technique, where we
created different splits of the same training dataset, and the random forest model is applied as a base classifier
on all these split datasets. This approach is designed to improve our classification accuracy as well as to solve
the issue of the class imbalance problem [19, 20]. Here, the random forest model is taken as a base classifier
because the performance of this model is better than other models. Figure 5 shows the methodology of the
proposed ensemble-based prediction model, and Figure 6 shows only the approach of ensemble learning applied
in the proposed ensemble model. The following five phases show the methodology of our proposed ensemble
model.

4.1. Phase 1: Dataset generation

The unprocessed dataset of AhR is obtained from the PubChem website, which is in the structure-data file
(.SDF extension) format. This dataset is grouped into two directories; one of them contains only active drug
molecules and the other contains only inactive drug molecules of AhR. These two directories are given as input
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to the PaDEL-Descriptor software individually, which generates two .CSV extension files, one for active drug
molecules and the other for inactive drug molecules. These two datasets are combined to form a resultant
dataset, whose target variable is a binary class activity (see Section 3.2 for more details).

4.2. Phase 2: Data cleansing and feature selection

Data preprocessing is a technique of improving the quality of data because high-quality input data will provide
highly accurate and consistent knowledge [21]. Data preprocessing can be performed by using data cleansing
and feature selection. In order to remove various discrepancies, we have cleaned the dataset before model
formation. Initially, we found a few corrupted and missing entries in our dataset. First, we corrected these
corrupted entries and then analyzed those attributes that had missing values in their cells. We filled these
missing values by the average value of that particular column. Since our dataset has 1444 features that are very
high in dimensionality and we applied the feature dimensionality reduction method, which reduces the features
as well as the execution time of the classifiers in machine learning [22]. Here, the Boruta algorithm is applied
to the dataset, which returns only 150 features out of 1444 features (see Section 3.3 for more details).

4.3. Phase 3: Class imbalance handling

The dataset found from PubChem is highly imbalanced, as it has a total of 9008 drug molecules of which 1063
are active and 7945 are inactive. To resolve this problem, we primarily segregate the active and inactive drug
molecules of the dataset, where we find that the number of inactive drug molecules is almost seven times higher
than the active drug molecules. Therefore, we divide the dataset of inactive drug molecules into seven data
frames. Subsequently, the copy of all active drug molecules is added in all seven data frames so that all the data
frames have approximately equal numbers of active and inactive drug molecules. Now these seven data frames
are different and balanced datasets available for model building by using ensemble learning.

4.4. Phase 4: Classification model building using ensemble learning

Now we have seven balanced and different datasets. We have trained each dataset at 70% data using the base
classifier of random forest and combined all these classifiers using the ensemble learning approach.

4.5. Phase 5: Voting system

An ensemble model based on the votes of seven random forest models is created, which is the proposed ensemble
model. Subsequently, we prepared a single testing dataset, which is the combination of 30% tuples of each dataset
frame. The performance of the proposed ensemble model is evaluated on this testing dataset (see Figure 6).
Now this model can be used to predict the activity of any new drug molecule of AhR.

5. Random forest model
The prediction of activity of any drug molecule is important while deciding its toxic effects on human health. The
results of our proposed ensemble model using the random forest model are better in comparison to other existing
models of classification. Each model has its various parameters where some parameters have their constant
values, while others can take different values. We can improve the performance of models by manipulating
these values, and this process is called the tuning of parameters. Table 5 shows various models with their
corresponding packages, methods, and tuned parameters. Random forest with its tuned parameters has been
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Figure 6. Ensemble method for activity prediction.

used in the proposed ensemble model, and other models with tuned parameters have been used for comparison
with the proposed ensemble model. All the models are implemented in R, under the GNU general public license.
The random forest method has “mtry” and “ntree” parameters for tuning, where mtry shows the number of
variables randomly sampled as candidates at each split and ntree is the number of trees to grow. The value of
ntree should be large enough to ensure that every input row gets predicted at least a few times. Therefore, we
optimized the performance of the random forest model by setting the values of mtry = 2 and ntree = 500. We
used the random forest method as randomForest(formula, trainDataset, ntree=500, mtry=2), where its formula
comprised 150 important features and target class as shown below:

Activity ∼ f(AMR+ naAromAtom+ nAromBond+ · · ·+WTPT.5 +WPATH). (1)

Table 4 shows all the features used in this formula. Random forest is an aggregate classifier, which is the
collection of several decision trees. Random forest is itself an ensemble-based model, where each tree votes and
the most popular class is returned during classification [23, 24]. If n is the number of records and d is the depth
of the tree, then the time complexity of the random forest algorithm is O(ntree *mtry *d *n) and the space
complexity of random forest algorithm is O(n*d). Therefore, we can say that the random forest model depends
on the depth and size of the decision tree [17].

6. Binary classification-based performance evaluation parameters
Performance comparison for the various binary classification model is generally performed on some specific pa-
rameters, which are the Gini coefficient, sensitivity, specificity, precision, AUC, and accuracy. These parameters
are explained below.
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Table 5. Machine learning models used and their tuning parameters.

Model Required package Method Tuning parameters
Random forest (RF) randomForest randomForest mtry=2, ntree=500
Decision tree (DT) rpart rpart usesurrogate=0, maxsurrogate=0
Support vector machine(SVM) kernlab ksvm kernel=rbfdot, type=C -svc
Neural network (NN) nnet nnet size=10
Linear model (LM) none lm method = “qr”

6.1. Gini coefficient
The Gini coefficient is used to measure the distribution inequality of data [25]. Gini values range between 0 and
1. The 0 and 1 values of the Gini coefficient indicate perfect equality of data and perfect inequality of data,
respectively. Assuming that a model M has a Gini coefficient of 0.6 and model D has a Gini coefficient of 0.45,
then model M is considered a productive model in contrast to model D.

6.2. Sensitivity

Sensitivity (Sens) is also known as the true positive rate (recognition) or recall [23]. It is the ratio of actual
positives that are correctly identified as positives by the classifier. It is computed as:

Sensitivity =
TP

TP + FN
. (2)

6.3. Specificity

Specificity (Spec) is also known as the true negative rate [23]. It is the ratio of actual negatives that are correctly
identified as negatives by the classifier. It is computed as:

Specificity =
TN

TN + FP
. (3)

6.4. Precision
Precision can be thought of as a measure of exactness, i.e. what percentage of tuples labeled as positive are
actually such [23]. It is computed as:

Precision =
TP

TP + FP
. (4)

6.5. AUC
The area under the curve (AUC) measures the quality of the classifier. The receiver operating characteristic
(ROC) curve is a curve drawn between the true positive rate (TPR) and false positive rate (FPR). We can
find these parameters with the confusion matrix. The area under the ROC is called the AUC. The AUC value
ranges between 0 and 1. The quality of a model is outstanding if it has AUC close to 1. A model with a high
AUC value as compared to another model is considered an efficient model [25].
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6.6. Accuracy

Accuracy is the most important criterion for measuring the exactness of any classifier [24]. Accuracy can be
computed as:

Accuracy =
TP + TN

TP + FP + TN + FN
∗ 100, (5)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

7. Result analysis, comparison, and validation

The Gini coefficient, sensitivity, specificity, precision, AUC, and accuracy are the model performance evaluation
parameters for any binary classification model, which are described in Section 6. These parameters evaluate
activity prediction for our proposed ensemble model as well as for some existing models. The comparative
performance of our proposed ensemble model with some existing classification models is shown in Table 6. The
Gini coefficient, specificity, sensitivity, precision, AUC, and accuracy of our proposed ensemble model is 0.932,
0.967, 0.936, 0.964, 0.966, and 93.76%, respectively. The results show that our proposed ensemble model has
outperformed the other models for the 30% testing dataset of AhR. The random forest, decision tree, support
vector machine, neural network, and linear model [18] are the existing models used for comparison.

Table 6. Performance comparison of proposed ensemble model with existing classification models.

Decision method Gini coefficient Sensitivity Specificity Precision AUC Accuracy(%)
Proposed ensemble model 0.932 0.967 0.936 0.964 0.966 93.76
Random forest 0.916 0.953 0.979 0.978 0.953 91.45
Decision tree 0.901 0.915 0.931 0.942 0.911 90.21
Support vector machine 0.896 0.805 0.839 0.919 0.893 82.40
Neural network 0.813 0.895 0.884 0.834 0.837 82.34
Linear model 0.817 0.531 0.513 0.723 0.545 77.26

7.1. K-fold cross-validation
The k-fold cross-validation approach partitions the dataset into k equally sized subsets or “folds”. During each
execution, one of the partitions is chosen for testing, while the rest of the segments are used for training. This
procedure is repeated k times so that each partition is used for testing exactly once. In each fold, random
data are provided for training and testing to measure the robustness of the model [26]. Here, we have used a
7-fold cross-validation method for activity prediction, where the result of cross-validation (Figure 7) shows the
consistent performance for all the evaluation parameters of the proposed ensemble model [14]. The value of k
has been selected in such a manner that each training and testing partition of the broader dataset are large
enough to represent it statistically, but there is no formal rule to choose the value of k. In this case, the dataset
is divided into seven data frames, which have equal numbers of drug molecules. At the value of k = 7, we can
take collectively any six data frames for the training of the model and the remaining one data frame for the
testing of the model. Table 7 describes the accuracy of the proposed ensemble model by applying 7-fold cross
validation one time.
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Figure 7. K-fold cross-validation for activity prediction.

Table 7. Accuracy in 7-fold cross-validation of proposed ensemble model.

Folds Accuracy
1 94.31
2 90.65
3 93.28
4 94.76
5 92.05
6 92.83
7 91.21

7.2. Validation of the proposed ensemble model

Validation of the proposed ensemble model means that we are testing this model on some new drug molecules,
which are neither part of the training dataset nor part of the testing dataset. If the prediction accuracy of this
model for these new drug molecules is similar to our testing dataset to some extent, then we can say that our
proposed ensemble model has been validated. Here, we have validated our proposed ensemble model on some
AIDS therapy drug molecules and some androgen receptor drug molecules, which are not the part of the actual
dataset. Nonnucleoside and nucleoside reverse transcriptase inhibitors (NNRTIs) are the first types of drug
available to treat HIV that block HIV enzymes, and corresponding to nevirapine (NVP), delavirdine (DLV),
efavirenz (EFV), and rilpivirine (RPV), which are the essential drugs for AIDS therapy [27]. These drugs show
potent anti-HIV-1 activity and modest toxicity. Nevirapine is linked with hepatic toxicity, and it causes liver
injury during therapy, which is also followed by fever, oral lesions, blistering, conjunctivitis, swelling, and muscle
or joint aches. The major toxicity of delavirdine is skin rashes. Efavirenz has fatal severe side effects on the
liver and the central nervous system. Rilpivirine also has some side effects, which are sores in the mouth and
redness or swelling of the eyes, face, lips, mouth, tongue, or throat. Now we have two-dimensional structures of
all nine drug molecules, which are downloaded as structure-data files from the PubChem database, and their
molecular descriptors have been extracted with the help of PaDEL-Descriptor. Now we apply the proposed
ensemble model for activity prediction of NVP, DLV, EFV, and RPV and five drug molecules of the androgen
receptor. The output of the proposed ensemble model is summarized in Table 8. The results of the table show
that the drug molecules predicted to be active are actually found to be active and the drug molecules predicted
inactive are actually found to be inactive. These correct predictions of all the drug molecules show the validity
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of the proposed ensemble model. Figure 8 shows the validation process of the proposed ensemble model on the
four drug molecules of AIDS therapy.

Navirapine Delavirdine Efavirenz Rilpivirine

PaDEL Descriptor

Proposed Ensemble Model

Prediction Result

Molecular Descriptors

2D Structure of Drug Molecules (Input)

Figure 8. Activity prediction of AIDS therapy drug molecules using proposed ensemble model.

Table 8. Validation of proposed ensemble model on some AIDS therapy and androgen receptor drug molecules.

Target drug molecule Actual class Predicted class Accuracy(%)
Nevirapine (NVP) 1 1 100%
Delavirdine (DLV) 1 1 100%
Efavirenz (EFV) 1 1 100%
Rilpivirine (RPV) 1 1 100%
NCGC00261776-01 1 1 100%
NCGC00261900-01 0 0 100%
NCGC00260869-01 0 0 100%
NCGC00261842-01 0 0 100%
NCGC00261926-01 0 0 100%
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8. Conclusion
In this paper, we have proposed an ensemble-based efficient computational method, which has solved the
problem of toxicity prediction of drug molecules that activate the aryl hydrocarbon receptor signaling pathway.
It is a decision support system to predict the toxicity of unknown drug molecules that act on AhR, where we
can get the results of toxicity prediction by uploading the SDF of any single drug molecule. The target class
for the toxicity prediction is activity. The dataset used in this study is very high in features and extremely
imbalanced. Initially, we have performed feature selection by the Boruta method and balanced the dataset by
using an ensemble learning approach. Here, the ensemble method is used for dual purposes. First, it resolves
the problem of class imbalance, and second, it is used for classification. The proposed ensemble model has
been evaluated with various performance parameters, i.e. the Gini coefficient, sensitivity, specificity, precision,
AUC, and accuracy, for the activity prediction. Through intensive experiments, it is found that our proposed
ensemble model, in spite of having a highly imbalanced dataset, has given better accuracy than other existing
models, which are random forest, decision tree, support vector machine, neural network, and linear model, and
its performance is nearly linear in k-fold cross-validation. Finally, to prove the validity of the proposed ensemble
model, we have tested it on AIDS therapy drug molecules and some drug molecules of the androgen receptor,
where we found 100% accuracy. The limitation of this proposed model is that it can predict the activity of only
those kinds of drug molecules on which it has been trained. This model cannot recognize different types of drug
molecules’ activity, because these drug molecules can have different physicochemical properties or features.
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