
Turk J Elec Eng & Comp Sci
(2019) 27: 2898 – 2907
© TÜBİTAK
doi:10.3906/elk-1712-252

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Robust power system state estimation by appropriate selection of tolerance for
the least measurement rejected algorithm

Mohammad Shoaib SHAHRIAR1,∗ , Ibrahim Omar HABIBALLAH2

1Department of Electrical Engineering, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
2Department of Electrical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

Received: 19.12.2017 • Accepted/Published Online: 03.03.2019 • Final Version: 26.07.2019

Abstract: Modern power systems are highly complicated and nonlinear in nature. Accurate estimation of the power
system states (voltage-magnitude and phase-angle) is required for the secure operation of the power system. The
presence of bad-data measurements in meters has made this estimation process challenging. An efficient estimator
should detect and eliminate the effect of bad data during the estimation process. Least measurement rejected (LMR) is
a robust estimator that has been found successful in dealing with various categories of bad data. The performance of
LMR depends upon the proper selection of a tolerance for each measurement. This paper presents a novel approach for
tolerance value selection to improve the capability of handling different single and multiple bad-data scenarios successfully.
The performance of this updated LMR (ULMR) is compared with weighted least squares, weighted least absolute value,
and two versions of LMR from the literature. IEEE 30-bus and 118-bus systems are used to demonstrate the robustness
of the proposed estimator under different bad-measurement (single and multiple) scenarios.

Key words: State estimation, weighted least square, postprocessing, weighted least absolute value, least measurement
rejected, bad data, tolerance selection

1. Introduction
State estimation (SE) is the process of estimating the values of state variables (voltage magnitudes and phase
angles) of buses based on some redundant measurements, such as voltage magnitudes and power injections on
buses, as well as power and current flows in branches [1]. It is an imperative process that ensures power system
security by monitoring the network precisely. A conventional supervisory control and data acquisition (SCADA)
system utilizes these measurements collected by remote terminal units (RTUs) installed at various substations
in order to estimate the system states. For normally distributed errors, least squares or the weighted version
of it are able to provide the optimal solution. Currently, postprocessed weighted least squares (WLS) is very
widely used in power utilities but suffers from the long time requirement to complete the estimation task [2,3].

Several robust estimators are presented in the literature that can withstand bad-data presence. Algo-
rithms with nonlinear objective functions like quadratic constant (QC), quadratic root (QR), and quadratic
square root are proposed [4–6]. They try to minimize the function of measurement errors. Equivalent linear
programming (LP) based on the least absolute value (LAV) estimator and its reweighted version is displayed in
the literature [7-9]. Least median squares (LMS) and least trimmed squares (LTS) are updated versions of the
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LS algorithm [10,11]. LMS has the drawback of rejecting several good measurements along with the outliers.
LTS considers the sum of squared errors for (m-K) smallest residuals only. Mixed integer linear programming
(MILP) of a robust estimator is formulated in [12], which uses CPLEX as the solving tool and it is found to
be time efficient for larger systems. Another robust estimator is exhibited in [13], which is designed from the
concept of normal measurement rate (NMR) and the theory of uncertainty of measurements. Recently, a robust
estimator is demonstrated in [14] based on maximum exponential absolute value (MEAV) and solved by the
primal-dual interior-point method. One of the useful robust estimators using MILP is the least measurement
rejected (LMR) algorithm, which was first proposed by Irving [15,16]. Comparison between the estimators is
presented by different authors. Habiballah [17] and Caro et al. [18] compared LMR with other robust estima-
tors. In LMR, a tolerance value needs to be provided to each measurement and in all these papers a fixed value
is chosen as tolerance. In [19], the tolerance is chosen in an iterative procedure, while [20] proposes the tolerance
values by relating with standard deviation values. In [21] 3% of the measurement is proposed as tolerance for
measured values. The authors of [22] selected the tolerable range from the quality of the meter.

The present paper presents the regression-based estimator LMR as a robust solution to power system
state estimation with an original approach of selecting the tolerance values of measurements. The developed
robust estimator is compared with weighted least squares (WLS), weighted least absolute value (WLAV), and
two versions of LMR from the literature. Single, multiple interacting and multiple noninteracting bad-data
cases were simulated in the present work to check the robustness of the proposed technique. IEEE 30-bus and
118-bus power systems are used to prepare the test cases.

The rest of the paper is organized as follows. Different aspects of tolerance value selection are discussed
in Section 2. Section 3 gives details of the proposed updated-LMR estimator. Section 4 describes the strategies
of test cases preparation. Section 5 provides the simulation results and comments on them. Section 6 concludes
the paper.

2. Aspects of tolerance selection

LMR tries to reduce the number of rejected measurements in each iteration and the nonrejected measurements
take part in the regression process to estimate the states of the power system. As the meter readings are mixed
with errors like SCADA, it needs to be given an appropriate tolerance that suits its accuracy level.

Some special features of LMR and the tolerance value selection are presented below:

• During the estimation process, the estimated value tries to fit itself within the tolerable range. Failure to
do so will result in rejection of the measurement from the regression process.

• A rejected measurement in LMR does not always mean that the measurement is bad.

• High value of T may cause the rejection of a lower number of measurements during the estimation process.

• Lower value of T may cause the rejection of a higher number of measurements during the estimation
process.

• T could be as low as zero for highly accurate measurements only (such as PMUs).

• Voltage magnitude meters, being the most sensitive and accurate measurements, should be provided with
lower tolerance values than power flow and injection meters.
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Based on the above considerations, the next section explains the method that has been devised to ensure proper
selection of tolerance.

3. Proposed state estimation procedure

3.1. Initial estimation using initial tolerance (T ini)

After preparing the test cases, the measurements should be used to carry on the initial estimation with LMR
that minimizes the total number of rejected values (pi) [16]:

min
n∑

i=1

pi, (1)

where Pi is the 0/1 binary variable for measurement i.
Each of the measurements provided with tolerance can be modeled by inequality constraints and with

binary 0/1 values that represent the status of the measurement, whether it is rejected or not:

hi(x) < Zi + t+i +Npi (2)

hi(x) > Zi − t−i −Npi, (3)

where zi is the SCADA measurement vector.
hi (x) corresponds to a nonlinear function vector that relates measurements to states.
t+i and t−i are the upper and lower limit obtained from the ith element in vector T added to and

subtracted from the ith measurement zi , respectively. x is the state vector.
N is the arbitrarily large positive scalar value. The value of N was selected large enough to avoid any

kind of influence by the rejected values.
For the “good” measurements, which are within the tolerance limit, the pi value is 0. Whenever it is

needed to ignore or switch off a measurement, the value of pi becomes 1.
The problem formulation of LMR described above is then converted into a mixed integer linear program

(MILP) problem formulation to deal with it. Thus, the problem becomes like this:

minCTY

Subject to A.Y ≤ B,

where CT = [02n, 12q] , 0n = [0... ...0] , and 1q = [1... ...0] ; n is the number of buses and q represents meter
locations.

The following matrices represent the inequality constraints of the problem:

A =

[
H −N
−H −N

]
;Y T = [∆x, p]; H is the Jacobian matrix, and B =

[
b1
b2

]
=

[
b+ t
b− t

]
; b = ∆z =

z − zest , where b is the residue, which means the difference between measurement and estimated values.
SCADA meter measurements are given as input to the initial estimator to run the initial estimation. At

this stage of estimation, there are no bad data present and all the measurements are subjected to white noise
only.

In selecting the tolerance (Tini) for the initial estimation, the idea of the standard deviation of different
meter types is used. Minimum values are given to voltage magnitude meter readings. Power flows will have
maximum values and the injections are in between.
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3.2. Finding intermediate tolerance (T inter)

The estimated values by the initial estimation are used to find out the difference between estimated and measured
values for each meter. Each meter is assigned a unique and new tolerance equal to the corresponding ( |Estimated-
Measurement |) value. This is considered the intermediate tolerance (Tinter) for the meters. The value
of ( |Actual i -Measurement i|) reflects the accuracy of ith measurement, which is very close to the value of
( |Estimated i -Measurement i|) if the estimation is good. Higher values of Tinter reflect that the meter readings
of those locations are not good and vice versa. Comparison between the actual and the initially estimated values
of state variables for the IEEE 30-bus and 118-bus systems are shown in Figures 1 and 2 below.

5 10 15 20 25 30
Bus number

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

V
o

lt
ag

e 
in

 p
.u

.

Estimated Value
True Value

5 10 15 20 25 30
Bus number

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

V
o

lt
ag

e 
an

gl
e 

in
 d

eg
re

es

Estimated Value
True Value

Figure 1. Estimated vs. true values of Vm for the 30-bus
system in initial estimation.

Figure 2. Estimated vs. true values of Va for the 30-bus
system in initial estimation.

3.3. Sorting the measurements
In this stage, the available measurements will be sorted according to their corresponding values of intermediate
tolerance in a descendent way. The purpose of the sorting is to identify the “better” meter locations in terms
of accuracy.

Let the total number of available measurements be “p”. Select the “q” number of measurements in
accordance with the following conditions:

• q is equal to 2N – 1, where N is the number of buses available in the system. The selected number of
measurements must make the system observable.

• The q measurements should be among the lowest corresponding ( |estimated-measurement |) values.

3.4. Selecting new tolerance (Tnew)

Force the tolerance of the “q” meters in step “b” to be zero. This enforcement is done due to the fact that
the selected “q” meters are the best among the “p” available meters. The remaining meters will keep the
intermediate tolerance (Tinter) as the ones obtained in step “a”. Both the revised “q” and remaining “p-q”
tolerances are referred to Tnew .

Tnew is a vector with a dimension of(p×1) that contains all the revised tolerances for each meter reading.
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3.5. Final estimation
After the proper selection of the tolerance values, the final estimation will be carried out by LMR with Tnew .

The problem formulation is like the initial estimation but the new values of tolerances (Tnew) will be
used in this step. Eqs. (2) and (3) used for initial estimation are updated as follows:

hi(x)−Npi < Zi + t+newi
(4)

hi(x)−Npi < Zi + t−newi
(5)

Since the measurements now have properly chosen tolerance, the sorted “better” measurements will take part in
the regression and will improve the accuracy of the estimation. For a specific meter arrangement of the power
system, steps (a–c) should be done only once. Whenever there is a change in the meter configuration, the
process of initial estimation, sorting, and determination of Tnew (steps a−−c) will be repeated once again to
get the revised Tnew . Otherwise, the estimator will directly go to step e and run the estimation with Tnew .

4. Test case preparation
To examine the validity of the proposed LMR estimator, several bad-data cases are considered along with the
white noise (WN) mixed measurement case. Simulation is carried out on IEEE 30- and 118-buses to investigate
the performance of the estimators with different bad-data scenarios.

In the cases of simulating bad data for power-flow meters or power-injection meters, the value is selected
to have the opposite sign of the original one. For the case of voltage-magnitude meters, five times the sigma
value is added to or subtracted from the meter reading such that it could easily be considered an outlier. Specific
locations of the bad data for each of the test cases are listed in Table 1 below.

Table 1. Different bad-data locations in 30- and 118-bus systems.

Bad-data types Bad-data locations
30-bus 118-bus

SBD-1 QG 14 QG 13
SBD-2 PF 1–3 PF 5–6
SBD-3 Vm 10 Vm 51

MNI QG 14, PT 2–1, PF 15–18,
Vm 1, Vm 24

QG 13, PF 50–57, PF 4–11, QF 14–15,
Vm 3, Vm 24, Vm 30

MI PG 5, PT 2–1, PF 12–14,
QF 12–14, Vm 5

QG 9, PF 4–11, PF 12–14, QF 12–14,
Vm 9, Vm 4, Vm 5,

Table 1 shows three single bad-data (SBD) scenarios: power-injection, power-flow, and voltage-magnitude.
Five bad-data meters are simulated in the 30-bus system for both multiple noninteracting (MNI) and multiple
interacting (MI) cases. A total of seven bad-data meters are simulated in the 118-bus system for both MNI and
MI cases.

The 30- and 118-bus test cases are made with voltage-magnitude (Vm) , power-injections (PG and QG),
real power flows (PF and PT), and reactive power flows (QF and QT) with the redundancy level of around 2.

The values of the standard deviation for WLS and WLAV need to be chosen carefully. Since the weight
applied to a meter measurement is the inverse of the corresponding sigma value, it is required to assign the
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maximum value of standard deviation to reactive values and then to real values, and the minimum values are
assigned to the voltage magnitudes [1]. The tolerance values for the initial estimation were chosen using the
same pattern. The values of sigma in WLS and Tini are taken from [22].

Simulation is carried out in MATLAB. All test cases are performed on a laptop with Intel Core i5, 2.30
GHz CPU, and 8 GB RAM. The value of N for the LMR estimator is taken as 50,000. This value is large enough
to guarantee that there will be no effect of the rejected values during the estimation process. The estimators
of references [16] and [20] are considered for the purpose of comparison and denoted as LMR-1 and LMR-2,
respectively.

The performance of the estimators is evaluated based on the cumulative estimated error (CEE) indicator,
which is the summation of all the absolute difference between actual values and estimated values. Moreover,
the error indicator for two state variables: voltage-magnitude (Vm) and phase-angle (Va) , are provided for the
118-bus system. Vm indicator and Va indicator are calculated by summation of all the differences between the
true values and the estimated values of the voltage-magnitudes and phase-angles, respectively. The lower the
CEE, Vm , or Va indicator is, the better the performance of the estimator and vice versa.

5. Simulation results
5.1. Results of CEE error indicator
IEEE 30-bus and 118-bus systems are used to investigate the performance of the proposed robust estimator.
For performance under white noise measurements, three scenarios of single and two of multiple bad data are
investigated. Tables 2 and 3 show the performance of the proposed ULMR estimator against four estimators in
terms of CEE indicator.

Table 2. CEE indicator results for the 30-bus test case.

No. of
bad data

WLS WLAV LMR-1 LMR-2 ULMR

WN 0 0.64851 1.2108 2.0150 0.9565 0.41044
SBD-1 1 0.72292 1.3813 2.0437 1.1791 0.41192
SBD-2 1 7.1658 1.2108 2.1018 0.8595 0.4292
SBD-3 1 2.1232 1.2108 2.0161 1.1803 0.41044
MNI 5 14.578 5.6407 2.1155 1.4653 0.4316
MI 5 13.368 1.2108 2.0732 1.1162 0.42207

Table 3. CEE indicator results for the 118-bus test case.

No. of
bad data WLS WLAV LMR-1 LMR-2 ULMR

WN 0 5.2016 9.6026 9.6489 6.3942 4.4702
SBD-1 1 5.3595 9.8085 10.236 6.4435 4.6799
SBD-2 1 21.7130 9.6026 13.19 6.5129 4.4702
SBD-3 1 5.7296 9.6026 9.8911 6.4120 4.4725
MNI 7 22.5090 10.0740 11.803 6.9023 4.5088
MI 7 15.8460 9.6968 9.814 6.8915 4.5048
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It is seen that for each type of scenario, whether the bad data are applied or not, the proposed ULMR
shows better performance than the other approaches. WLS fails to perform well in most of the bad-data cases.
WLAV, LMR-1, and LMR-2 show superior performance over WLS for almost all bad-data cases as they are
robust in nature. CEE indicator values of those are still very high compared to the ULMR. It outperforms the
other four approaches with an extremely robust nature.

5.2. Estimation of the state variables
Better estimation of the state variables (voltage-magnitude and phase-angle) reflects the better estimation of
all the power system variables. Tables 4 and 5 show the error indicator values for two state variables of the
118-bus system.

Table 4. Voltage-magnitude indicator results for the 118-bus test cases.

Cases WLS WLAV LMR-1 LMR-2 ULMR
WN 0.107021 0.279181 0.1772 0.1732 0.171396
SBD-1 0.18706 0.279181 0.18907 0.1751 0.171396
SBD-2 0.174059 0.283155 0.26436 0.1760 0.15483
SBD-3 0.185041 0.279181 0.2308 0.1744 0.171559
MNI 0.585942 0.307835 0.3635 0.1821 0.172872
MI 0.415389 0.332007 0.33483 0.1798 0.174868

Table 5. Voltage-angle indicator results for the 118-bus test cases.

Cases WLS WLAV LMR-1 LMR-2 ULMR
WN 5.323958 6.564508 8.2371 5.5342 4.837947
SBD-1 23.91264 6.564508 8.4519 5.6719 4.837947
SBD-2 5.444693 6.907321 8.9741 5.6025 4.397536
SBD-3 7.335471 6.564508 11.083 5.7208 4.839507
MNI 28.77546 6.202573 12.122 5.8804 4.805811
MI 16.59588 7.66958 11.378 5.9045 5.080243

It is seen from the tables above that the proposed estimator results in a lower Va indicator among all for
all the cases. For the Vm indicator, WLS outperforms the proposed estimator for the WN case only but the
situation changes completely in the presence of bad data.

5.3. Estimation of the bad-data locations
It is observed that the WLS estimator is very sensitive to the presence of bad data. Robust estimators (WLAV,
LMR-1, LMR-2), on the other hand, performed better in most of the bad-data cases. Table 6 shows the details
of a multiple bad-data occurrence case for the 118-bus system and reflects clearly how the estimators behave in
the bad-data locations.

A total of 7 bad data are applied in interacting locations and it is encouraging to see that the proposed
ULMR can estimate the values for all of them. WLS failed in several cases. WLAV successfully estimated the
bad-data locations except for the case of QF 12–13. The failure cases are highlighted in Table 6. LMR-1 and
LMR-2 showed better performance than WLAV but were outperformed by ULMR.
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Table 6. Bad-data estimation results for the 118-bus MNI case.

Measurement types Actual Applied bad data Estimated values
WLS WLAV LMR-1 LMR-2 ULMR

Vm 4 0.9980 1.0328 1.0020 1.0022 1.0125 1.0045 1.0003
Vm 5 1.0020 1.0304 1.0058 1.0062 0.9945 1.0067 1.0043
Vm 9 1.0429 1.0163 1.0507 1.0488 1.0067 1.0488 1.0451
QG 13 –0.160 0.1639 0.0290 –0.161 –0.1567 –0.1554 –0.156
PF 4–11 0.6423 –0.6419 0.3123 0.6366 0.6237 0.6305 0.6375
PF 12–14 0.1831 –0.1836 –0.1032 0.1818 0.1790 0.1867 0.1808
QF 12–14 0.0262 –0.0261 –0.0015 –0.026 0.0459 0.0345 0.0323

5.4. Comparison with postprocessed WLS (WLS-PP)

None of the five approaches of state estimation presented above has any postprocessing feature. WLS, because
of not having any bad-data cleaning module within itself, fails badly in the bad-data cases.

This section gives the results of WLS with a separate module for removing bad data from the measurement
set. By checking the normalized residuals of the measurements, bad-data existence is detected, eliminated, and
then used for estimation in the further step [1]. Table 7 shows the comparison of the proposed method with
WLS-PP in terms of CEE indicator.

Table 7. Comparison between WLS-PP and updated LMR by CEE indicator.

Cases 30-bus system 118-bus system
WLS-PP Updated LMR WLS-PP ULMR

WN 0.64851 0.4104 5.2016 4.4702
SBD-1 0.6484 0.4104 5.2074 4.4510
SBD-2 0.65173 0.4292 5.2363 4.5232
SBD-3 0.6298 0.4104 5.2527 4.4725
MNI 0.64505 0.4195 5.3669 4.5088
MI 0.60192 0.4221 5.2301 4.4989

It is clear from the table above that the ULMR outperforms the WLS-PP in every case. Because of
removal of the bad measurements in a separate module, the performance of WLS-PP does not deteriorate with
bad-data presence like normal WLS. However, the proposed approach of robust estimation still performed better
with a lower error indicator.

Though it is not fair to compare a single module estimator like ULMR with the double module approach
of WLS-PP, it is still chosen for comparison as most of the current-day power systems are using this feature
of estimation. The comparison has clearly proven the effectiveness of the ULMR, which does not have any
separate bad-data processing module but still results in superior performance.

5.5. Required CPU time analysis
Computational efficiency is one of the basic concerns in the field of state estimation as the estimators are
required to be suitable to work with online systems. Table 8 shows the time requirements for all the estimators
for a single bad-data case.
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Table 8. CPU time (seconds) comparison between the estimators.

No. of buses
in the systems

Estimators
WLS WLS-PP WLAV LMR-1 LMR-2 ULMR

30 0.621 1.027 0.367 0.423 0.465 0.479
118 2.680 4.851 1.094 1.052 1.127 1.129

WLAV shows the most efficient performance in terms of CPU time, while WLS takes the longest time.
WLS with its postprocessing step has the biggest drawback of requiring a long time for estimation as it needs to
check and clean the bad data present manually before doing the estimation. Moreover, in the case of multiple
bad data presence, it requires a sequential approach to clean those one after another, and thus results in a very
poor computational efficiency [21,22]. The proposed ULMR, along with the other two versions of LMR, showed
fair performance in terms of time.

6. Conclusion
This paper presented a robust estimator capable of handling bad measurements efficiently during the estimation
process. Estimation results of the proposed robust estimator are compared with those of the most frequently
used conventional estimator WLS, the well-established robust estimator WLAV, and the two versions of LMR
from the literature. The robustness is checked based on the criteria of error indicator, bad-data estimation
accuracy, and computational efficiency. Comparison is made with the postprocessed WLS as well with different
bad-data scenarios. It was found that the proposed ULMR outperforms other estimation approaches in every
aspect. In selecting the tolerance values of measurements, a new approach has been established, and all the
results demonstrate its efficacy. Results for IEEE 30- and 118-bus power systems confirm the effectiveness of the
proposed method irrespective of the power system size. In the practical scenario of bad-data occurrence, where
most of the traditional estimators fail to cope, a robust estimator like the updated LMR will be an excellent
choice as it can play a major role in power system management to protect the system from any blackouts.
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