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Abstract: This work uses newly introduced variations of the sparse representation-based classifier (SRC) to challenge
the issue of automatic facial expression recognition (FER) with faces belonging to a wide span of ages. Since facial
expression is one of the most powerful and immediate ways to disclose individuals’ emotions and intentions, the study
of emotional traits is an active research topic both in psychology and in engineering fields. To date, automatic FER
systems work well with frontal and clean faces, but disturbance factors can dramatically decrease their performance.
Aging is a critical disruption element, which is present in any real-world situation and which can finally be considered
thanks to the recent introduction of new databases storing expressions over a lifespan. This study addresses the FER
with aging challenge using sparse coding (SC) that represents the input signal as the linear combination of the columns
of a dictionary. Dictionary learning (DL) is a subfield of SC that aims to learn from the training samples the best
space capable of representing the query image. Focusing on one of the main challenges of SC, this work compares the
performance of recently introduced DL algorithms. We run both a mixed-age experiment, where all faces are mixed,
and a within-age experiment, where faces of young, middle-aged, and old actors are processed independently. We first
work with the entire face and then we improve our initial performance using only discriminative patches of the face.
Experimental results provide a fair comparison between the two recently developed DL techniques. Finally, the same
algorithms are also tested on a database of expressive faces without the aging disturbance element, so as to evaluate DL
algorithms’ performance strictly on FER.

Key words: Aging, dictionary learning, facial expression recognition, sparse representation-based classifier

1. Introduction
Humans are social creatures who communicate via body language. Since faces are the most expressive part
of the body, facial expressions are widely used in psychological studies for research in several areas including
perception, human development, social reasoning, and neuroscience. Previous studies in psychology suggested
that faces are special types of visual stimuli, which are processed in a separate part of the brain [1], and
that, whereas recognition of complex scenes is not affected by age [2], when compared with young individuals,
older adults are impaired in the acknowledgment of unfamiliar faces [3]. In the parallel field of computer
engineering, automatic facial expression recognition (FER) is an open and interesting issue with a wide range of
applications, including human behavior understanding, human–computer interaction, marketing, and synthetic
face animation.

To date, most of the studies done on automatic FER used pictures belonging to a small interval of ages.
∗Correspondence: elena.sonmez@bilgi.edu.tr
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This is mainly due to the type of stimulus presents in the popular FER databases, e.g., the Cohn Kanade (CK)
[4], the Extended Cohn Kanade (CK+) [5], the Japanese Female Facial Expression (Jaffe) [6], and the MMI [7]
datasets, which store faces of middle-aged women and men. On the contrary, the Facial Expressions in the Wild
[8] dataset has a wide lifespan, but the age of the actor present in an image is not given, since the database was
built for a different challenge.

In 2004, psychologists Minear and Park [9] realized that the lack of available datasets with expressive
faces crossing all lifespan was limiting the generality of the research, and they introduced the CAL/PAL face
database, which stores faces of 218 people divided into four groups with age ranges of 18–29, 30–49, 50–69, and
70-and-over years. Every subject acts one or more neutral and happy emotions for a total of 844 stimuli.

In 2008, the psychologists Ebner [10] showed that age matters in both human perception and expression
of a stimulus. Ebner asked an equal number of young and old participants to rate a selection of faces from the
CAL/PAL database [9], with regards to several dimensions such as attractiveness, likability, distinctiveness,
goal orientation, energy, mood, and age. Analysis of the results showed that old faces were less attractive,
less likable, and less distinctive than young ones. Considering the differences in judgment, as a function of the
age of the participants, old individuals evaluated the faces in a more positive way. Overall, the results of this
study stressed the necessity of using more appropriate stimulus material; that is, it underlined the need for face
databases covering the whole lifespan.

In 2010, Ebner et al. [11] introduced the FACES database, which stores expressive faces made by 171
actors in the age range from 19 to 80 years old. The database is divided into three age groups: young, middle,
and old. Each actor in FACES made the five basic facial expressions of happiness, sadness, disgust, fear, and
anger, plus the neutral pose. Having validated the dataset, the authors of [11] ran several experiments; this
work challenged the ‘expression identification as a function of the age of the face’ experiment of [11].

In the parallel and complementary field of engineering, an automatic FER system must be able to detect
the correct expression of every person, regardless of the age of the actor. From a computation point of view,
mixing emotional faces belonging to different ages increases the complexity of the problem since older people
show expressions in a subtle way [12], and the presence of wrinkles in older faces can mislead the classifier.

In 2013, Guo et al. investigated the influence of aging in automatic FER [13]. They worked with both the
CAL/PAL and the FACES databases; to compare their results across the two datasets, they imposed the four
age-groups division of CAL/PAL to FACES. In all experiments, they used manually labeled facial landmarks
(FLs).

In 2016, Algaraawi and Morris questioned how the changes in shape and texture information affect
automatic facial expression recognition [14]. They worked with preannotated training images of the FACES
database where key landmark points were manually labeled.

While manually labeled FLs are more precise, a fully automatic system requires an automatically detected
FL, which is a fundamental preprocessing step that allows performing face alignment and addressing more
complex issues such as subject identification, expression recognition, gender, and age estimation. In 2018,
Johnston and Chazal published a review of automatic FL detectors [15]. Experiments run in this study used
automatically detected FLs.

This paper challenges the FACES database using sparse coding (SC) as it is a very effective way to convert
signals into a high-level representation of the data. Since SC exploits the property of signals to be sparse in
an appropriate dictionary, one of its main challenges is dictionary learning (DL), i.e. the search for the best
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dictionary to represent the given data. A survey on DL algorithms for face recognition was given by Xu et al.
[16].

The aim of this work is twofold. First, it aims to present the first computational study of the FACES
database with automatically annotated FLs, and then it investigates the performance of two recently proposed
DL algorithms.

The obtained accuracy is compared against the performance of humans on FACES, documented in [11];
the analysis of similarity against human performance could be used in the engineering field to suggest future
development of more robust algorithms. Comparison with the artificial systems proposed by Guo et al. [13]
and Algaraawi and Morris [14] is possible but not logically correct because both papers used manually labeled
FL; however, like them, we run mixed-age and within-age experiments using 10-fold cross-validation.

To summarize, the main contributions of this work are (1) to compare the performance of several sparse
representation-based algorithms with the age disturbance element, (2) to propose a benchmark for the FER
challenge on FACES with automatically detected FLs, (3) to spread FACES in the engineering community, and
(4) to bridge the gap between researchers in psychology and the engineering field.

The rest of the paper is organized as follows: Section 2 presents the FACES database, Section 3 gives an
overview of the used classifiers, Section 4 details the experimental setup, Section 5 presents the results obtained
on FACES and compares them against the two benchmark papers, and Section 6 reports the performance of
SC algorithms strictly on FER. Finally, conclusions are drawn in Section 7.

2. The FACES database
The FACES database was introduced in 2010 by Ebner et al. [11] with the aim of varying both expressions and
ages of the faces. It stores expressive faces of 171 actors divided into three age groups: 58 young models, with
an age range of 19–31; 56 middle-aged people, with an age range of 39–55 years; and 57 older actors, with an
age range of 69–80 years. All models are Caucasian average-type subjects. Each actor of FACES makes one
neutral face and the five basic facial expressions of happiness, sadness, disgust, fear, and anger; the surprise
basic expression is missing. The FACES database is a good opportunity to investigate traditional computer
vision and machine learning issues, as recommended in [17].

At recording time, each model was asked to take off jewelry and glasses, and to remove any makeup.
After that, every picture was rated by two pretrained evaluators, who considered the position of the muscles in
the faces, i.e. the presence of action units, to assign emotional labels and intensity values on a 3-point rating
scale.

At picture selection time, for each emotion and from each model, Ebner et al. chose the two best acted
expressions, in which both referees agreed on the type of facial expression; pronounced expressions were preferred
to subtle ones.

Having 171 subjects, with 2 images per person and 6 expressions, the database stores a total of 171×2×6 =

2.052 faces.
Figure 1 shows a middle-aged woman acting the five emotions plus the neutral face.
Figure 2 displays six actors of FACES who gave consent for publication; all subjects are displaying the

happy emotion. Figure 2 also shows the big somatic difference among the models; other disturbance elements of
the database are illumination, skin color, and wrinkles. Paying attention to the age disturbance element, since
older faces have fewer muscles, the amount of action units in the expressive face is lower. As a result, working
on FER with older faces is particularly difficult for three main reasons: (1) older subjects express emotion in a
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Figure 1. From left to right: (top row) angry, disgusted, and fearful faces; (bottom row) happy, neutral and sad
expressions.

subtle way [12], (2) the expressive face does not have all expected action units, and (3) the feature extraction
stage can confuse wrinkles with action units.

Figure 2. From left to right: the 1st row shows happy faces of young woman, young man, middle-aged woman; the 2nd
row displays the happy expressions of middle-aged man, old woman, and old man.

The first objective of Ebner et al. [11] was to validate their database by enrolling young, middle-aged,
and older humans to rate every image in terms of perceived age and expression. All participants were asked
‘Which facial expression does this person primarily show?’ and ‘How old is this person?’ Faces were presented
in a random order, and each participant rated only one set of the database, i.e. either set A or set B, not
both. Each picture was rated by an average of 11 referees per age group. Results reported in [11] showed that
expression identification is more difficult with older faces, the task becomes easier with middle-aged stimuli,
and the best performance is reached with young faces. Furthermore, happiness was easier to detect than all
other expressions, whereas sadness and disgust were the problematic ones.
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3. Classification
This work uses the sparse coding (SC) method as a classifier; a comparison to the performance of other classifiers
is part of our future work.

The past years have witness an increasing interest in SC algorithms due to their successful applications in
several fields such as image denoising [18, 19], clustering [20], deblurring [21], and face classification [22–28]. SC
is attractive since it attempts to represent the input signal in a high-level fashion, i.e. as a linear combination
of some columns of the dictionary. As a consequence, DL, which is the design of ad hoc dictionaries capable of
extrapolating the inner essence of the data, is one of the main challenges of SC.

In more detail, this paper compares the robustness and running time of the sparse representation-
based classifier (SRC) [29], Fisher discrimination dictionary learning (FDDL) [30], and interclass sparsity-based
discriminative least square regression (ICS_DLSR) [28] for the aging disturbance element.

3.1. Notation

This subsection briefly introduces basic notations that will be used throughout the paper. Let x ∈ RN be the
observed signal, and X = D = [x1, x2, . . . , xT ] ∈ RN×T is the training matrix, called a dictionary, made up of
T training samples belonging to C classes; that is, matrix D is a column matrix that aligns vectorized training
samples; it can also be written as D = [D1, D2, . . . , DC ] , where Di is a submatrix aligning only samples of the
ith class i, ∀i = 1, ..., C . Let S = [s1, s2, . . . , sT ] ∈ RT×T be the corresponding matrix of sparse coefficients and
Xi and Si be, respectively, the submatrices of X and S restricted to the columns of the ith class, ∀i = 1, ..., C .

Let li ∈ RC be the label of training sample xi , having all zero values except for its ith element; the
corresponding zero-one label matrix is L = [l1, l2, . . . , lT ] ∈ RC×T .

For a general vector z ∈ RM , zi is a general element of z ; the l1 norm is calculated as ||z||1 =
∑M

1 |zi| ,

and the l2 norm is calculated as ||z||2 =
√∑M

1 z2i . For a general matrix Z ∈ RM×T , Zi,j is a general element;

Z−1 is the inverse matrix and ZT is its transpose matrix. The l1 , l2,1 , and lF , i.e. Frobenius norms, are

calculated as ||Z||1 =
∑M

i=1

∑T
j=1 |zi,j | , ||Z||2,1 =

∑M
i=1

√∑T
j=1 z

2
i,j , and ||Z||2F =

∑M
i=1

∑T
j=1 z

2
i,j , respectively.

Finally, α , β , and γ are regularization parameters, i.e. small positive values, used to balance the effects
of terms of the cost function.

3.2. Sparse representation-based classifier (SRC)

SRC was first introduced in 2009 by Wright et al. [29]. Theoretically, SRC is based on compressive sensing
theory [31–33].

Practically, SRC represents the input test image, x , as a linear combination of the training set, and,
among all solutions, it considers the sparsest one, s . That is, every training sample is vectorized and aligned
to form a column matrix, called a dictionary, D ; training samples belonging to the same class are near each
other; and, having C emotions, the dictionary is logically divided into C classes. Figure 3 gives the graphical
representation of the SRC.

In the original SRC algorithm, classification requires the solution of the following equation:

argmins||x−Ds||2 + γ||s||1, (1)
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Figure 3. Graphical representation of SRC.

where x ∈ RN is the vectorized test sample, D ∈ RN×T is the dictionary, and s ∈ RT is the coefficient vector,
the sparse representation of x calculated using l1 minimization.

Having the sparse coefficient s , the SRC algorithm uses Eq. (2) to calculate the distance between every
class and the test sample x :

residualclassi ||x−Dsi||2, (2)

where si is the coefficient vector restricted for classi ; that is, it has all zero entries except for the coefficients of
classi . In other words, the nonzero elements of the sparsest solution, s , select the corresponding column and
allow for the calculation of the classes’ error. Previous studies on SRC were presented in [34, 35].

Finally, the test sample is assigned to the class having minimum residual.

3.3. Fisher discrimination dictionary learning (FDDL)

FDDL was introduced in 2014 by Yang et al. [30]. It is based on the hypothesis that classification performance
can be improved with the construction of a Fisher dictionary capable of increasing the interclass variation while
decreasing the intraclass scatter. The cost function of FDDL is:

argminD,S

C∑
i=1

[
||Xi −DSi||2F + ||Xi −DiS

i
i ||2F +

C∑
j=1,j ̸=i

||DjS
j
i ||

]

+α||S||1 + β
[
tr
(
SCW (S)− SCB(S)

)
+ γ||S||2F

]
,

(3)

where Sj
i is the representation coefficient of Xi over Dj , tr() represents the trace of the matrix, and SCW (S)

and SCB(S) are, respectively, the within-class and between-class scatter matrices. The intuition of Eq. (3) is
as follows:

• The term ||Xi −DSi||2F requires a dictionary D capable of representing class Xi , ∀i = 1, ..., C well.

• Since Di is the submatrix of D associated to the ith class, it is expected to represent Si well; this
constraint is express by the term ||Xi −DiS

i
i ||2F .

• Following the same logic, atoms of the submatrix Dj must not be able to represent samples of class i ;

that is, Sj
i should have mostly zero coefficients, as expressed by the term

∑C
j=1,j ̸=i ||DjS

j
i || .
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• The Fisher criterion is used to make dictionary D more discriminative; that is, the addend tr
(
SCW (S)−

SCB(S)
)

is used to increase the within scatter and to reduce the between scatter matrices, and the

addition of the term γ||S||2F is necessary to archive convexity.

Overall, since Eq. (3) is not convex, the objective function is iteratively implemented in two steps: fixing
D to update S, and fixing S to update D.

As formalized in Eqs. (4) and (5), classification is performed by mapping the test sample into a high
dimension, with sparse representation, and assigning it to the nearby class, i.e. the class producing the minimum
residual:

argminsi ||xt −Disi||22 + γ||si||1, (4)

residualclassi ||xt −Disi||2. (5)

3.4. Interclass sparsity-based discriminative least square regression (ICS_DLSR)

The ICS_DLSR algorithm was introduced in 2018 by Wen et al. [28]. ICS_DLSR improves the standard least
square regression (StLR) technique by adding to the cost function an error matrix, E , and a discriminative
addend with the aim of stepping away from the zero-one label matrix and imposing a similar sparsity structure
to samples of the same class.

In more detail, Eqs. (6) and (8) show the cost functions of StLR and ICS_DLSR. Focusing on StLR
first:

argminQ||L−QX||2F + α||Q||2F , (6)

where X ∈ RN×T is the training matrix, L is the label matrix, and Q ∈ RC×N is the transformation matrix.
Eq. (6) can be easily solved as Q = LXT (XXT + γI)−1 , and the predicted label of sample x ∈ RN is given by
the position of the maximum coefficient of vector Qx . In formula form:

argmaxi(Qx)i,∀i = 1, ..., C, (7)

where (Qx)i is the ith element of vector Qx .
Eq. (8) shows the cost function of ICS_DLSR:

argminQ,E ||L+ E −QX||2F + α||Q||2F + β

C∑
i=1

||QXi||2,1 + γ||E||2,1, (8)

where E ∈ RC×T is the error matrix added to have a target matrix, L+E , appropriate for classification. The
third addend of the cost function,

∑C
i=1 ||QXi||2,1 , imposes the same sparsity structure to all samples belonging

to the same class.
Finally, the k-nearest neighbor algorithm is used for classification.
The following section presents the experimental setup and Section 5 compares the performance of the

three algorithms.

2436



BATTINI SÖNMEZ/Turk J Elec Eng & Comp Sci

4. Experimental setup on FACES

We run two different experiments for mixed-age and within-age groups. In the first experiment, all faces
belonging to one emotion and acted by young (Y), middle-aged (M), and old (O) actors are assigned to the
same class, whereas in the second experiment we worked on FER separately within each age group.

In both cases, we worked with the original stimuli of group A of the FACES database for a total of 1.026;
considering the neutral face with the six emotions, we have a six-class problem. We used the 10-fold cross-
validation technique, and the given performance is the average over 10 trials; every run employs methodically
separated train and test samples. To make a fair comparison among the three algorithms, every trial uses the
same (train, test) division of samples. The author is willing to share the used code upon request.

During the preprocessing step, Intraface free software [36] was used to automatically locate FLs, which
were necessary to align the original images and to extract blocks out of them.

In the mixed-age experiment, we worked with the entire face as well as with some parts of it; that is,
while the first variation of the experiment uses the raw pixels of aligned and cut faces, the second one uses
only the pixels of the blocks of the two eyes and the mouth. Those blocks have been claimed to be the most
discriminative patches of the faces and therefore the most successful for FER [37, 38]. Figure 4 shows an original
image, the cut face, and the two blocks of the eyes and the mouth.

Figure 4. (Left) Original face with face landmarks; (center) the cut face of size 128 × 140 = 17920 pixels; (right) the
block of the two eyes, and the one of the mouth; size (2 eyes) + size (mouth) = 56 × 136 + 40 × 80 = 7616 + 3200 =
10816 pixels.

5. Results and comparison with previous works

Table 1 shows the average performance and running time of the three classifiers in the mixed-age experiment:
the 1st row stores results obtained when working with the cut face, while the 2nd row highlights the benefits
of working in a block-based fashion. Results of Table 1 attest to the superior performance of the ICS_DLSR
algorithm, considering both performance and running time; they also confirm our hypothesis that FER must be
tackled in a block-based fashion. That is, the use of discriminative blocks of the face has the double advantage
of increasing the performance as well as decreasing the running time of all algorithms.

All trials were run with an Intel CORE i7-3630QM CPU @ 2.40 GHz 2.40 GHz computer.

Table 1. Mixed-age experiment: average performance and running time of the three classifiers.

Perf (%)/time (min per trial) SRC FDDL ICS_DLSR
Face 86/5 82/165 87/23
2 eyes + mouth 89/3 87/100 92/5
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Table 2 gives the confusion matrix of ICS_DLSR for the mixed-age experiment with blocks; row labels,
the true class and column the predicted one. Emotions are as follows: anger (A), disgust (D), fear (F), happiness
(H), sadness (S), and neutral (N).

Table 2. Confusion matrix of ICS_DLSR using the two blocks of eyes and mouth (rows for ground truth, columns for
predicted expression).

Perf (%) A D F H S N
A 92 3 0 0 2 3
D 4 90 0 0 6 0
F 0 0 98 0 0 2
H 0 0 0 99 0,5 0,5
S 5 5 0 0 84 6
N 2 0 2 0 5 91

Analyzing the results of Table 2, it is interesting to note that the happy face is the most successful
one, with a recognition rate of 99%; also, fearful faces are easily acknowledged, reaching 98% . Finally, the
recognition rates of angry, disgusted, sad, and neutral) expressions are respectively 92%, 90%, 84%, and 91%.

In the psychological field, Ebner et al. [11] ran a mixed-age emotion recognition experiment. Their
performance results are reported in the 1st row of Table 3, while the 2nd row summarizes the results of the
ICS_DLSR algorithm. A comparison between the accuracy of ICS_DLSR with that of [11] highlights that the
artificial system has a higher recognition rate for all expressions.

Table 3. Mixed-age experiment: comparison of recognition rates.

Perf (%) A D F H S N AvScore
Ebner et al. [11] 81 68 81 96 73 87 81
ICS_DLSR [28] 92 90 98 99 84 91 92

Finally, the performance of the ICS_DLSR algorithm in the block-based within-age experiment is (85,
89, 96)% when using blocks out of (old, middle-aged, young) actors, corresponding to an overall accuracy of
90%.

Since the two computational models previously built on FACES in [13] and [14] utilized manually labeled
FLs, a fair comparison with them is not possible. However, all computational studies run the mixed-age and
within-age experiments and they use the 10-fold cross-validation technique.

The author of [13] applied a three-scale and six-orientation Gabor filter bank to the FLs; classification was
done with a support vector machine. When using the original stimuli, their mixed-age group performance was
64%, whereas the within-age group experiment had a hit rate of 98%. Analyzing those results, it is interesting
to note that their artificial system is very sensitive to the mixture of faces with different ages. That is, the
computational model proposed in [13] works quite well in the within-age experiment, where both train and test
stimuli have similar patterns, but it fails in the mixed-age experiment, where faces of (young, middle-aged, old)
actors are assigned to the same class. On the contrary, the sparse representation (SR)-based artificial system is
less affected by the age disturbance element; that is, in the mixed-age experiment ICS_DLSR reaches the best
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performance of 92%, which is 11 percentage points higher than [11] and 28 percentage points better than [13].
Nevertheless, we believe that there is still room for improvement, and future work aims to couple the SR-based
classifier with features that can capture the essence of subtle expressions.

The author of [14] combined active shape model, active appearance model, and local binary pattern
features with the support vector machine. The results proved that aging strongly affects the appearance of
expressions since the presence of wrinkles together with the reduction of facial muscles changes the structure
of the face, and young people show more exaggerated expressions than older individuals. Classification results
are very high in both the mixed-age and within-age experiments. It would be interesting to check the same
algorithms with automatically located FLs and this is part of our future work.

6. Performance of sparse classifiers on FER

This section compares the performance of the sparse classifiers strictly on FER, without the aging disturbance
element. That is, the three sparse classifiers are used to challenge the leave-one-subject-out (LOSO) experiment
of the Extended Cohn Kanade (CK+) dataset [5].

CK+ is a collection of videos with expressive faces acted by 123 middle-aged subjects; each video starts
with a neutral face and ends with a peak expression. Faces in the CK+ database mimic the 6 basic emotions
plus contempt; in more detail, the acronyms and frequency of every expression are as follows: anger (A, 45),
contempt (C, 18), disgust (D, 59), fear (F, 25), happiness (H, 69), sadness (Sa, 28), and surprise (Su, 83). The
CK+ database provides FLs associated with every picture. Having 123 subjects, the LOSO experiment results
in 123 trials; at every run all expressive faces of one subject are used for testing and all remaining pictures for
training; it is an ‘open system’ experimental setup where images of the same subject are not in the training and
testing groups at the same time.

Figure 5 shows a face of CK+ acting the surprise emotion; the red dots are the given facial landmarks.
The face has been already aligned, and FLs will be used again to extract the discriminative blocks of eyes and
mouth, as shown in Figure 6.

Figure 5. Original face of CK+ acting the surprise emo-
tion; the red dots are the facial landmarks.

Figure 6. The block of the eyes of size 40 × 90 = 3600
pixels, and the block of the mouth of size 40 × 75 = 3000
pixels; the raw pixels of those blocks are the input to all
classifiers.
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Table 4 shows the average performance and running time of the three classifiers in the LOSO experiment;
as in Section 4, the inputs to all experiments are raw pixels belonging to the blocks of the two eyes and the
mouth.

Table 4. LOSO experiment: average performance and running time of the three classifiers.

Perf (%)/time (min per trial) SRC FDDL ICS_DLSR
2 eyes + mouth 90/0.01 89/4 91/1

Results of Table 4 confirm the superior performance of the ICS_DLSR algorithm, considering both
accuracy and running time.

In 2017, Lopes et al. [39] introduced a new technique for data augmentation based on a combination of
translations, rotations, and skewing for increasing the dataset; for each original image of CK+, 70 additional
synthetic pictures were generated. The authors of [39] used the FLs given with the CK+ database to determine
the location of the center of the eyes of every image; they ran a variation of the LOSO experiment, and they
did not consider the contempt expression. For all those reasons, performance comparison is possible but not
totally correct.

In 2018, Yang et al. [40] tested a new geometric-based FER system on the LOSO experiment of CK+.
The authors identified geometric features in two shape-deformation settings, one characterizing a face’s shape
changes in a neutral-to-peak sequence (NP method) and the other quantifying the within-category and between-
category differences in facial shape (PE method). Best results were obtained using features extracted from both
NP and PE methods. Since both methods require very accurate FLs, Yang et al. manually traced them on
each image of every sequence.

Table 5 compares the performance of ICS_DLSR against the best accuracy obtained by Lopes et al. [39]
and Yang et al. [40].

Table 5. LOSO experiment: comparison of recognition rates.

Perf (%) A C D F H Sa Su AvScore
ICS_DLSR [28] 78 89 91 76 97 79 98 90
Lopes et al. [39] 79 – 94 73 99 73 95 90
Yang et al. [40] 93 72 98 92 100 93 98 95

Analyzing the results of Table 5, it is possible to infer that ICS_DLSR performs better than CNN with
augmented data proposed by [39], especially considering that Lopes et al. did not work with the contempt
expression and ran a 6-class problem instead of the 7-class one. On the other hand, the accuracy reached by
the geometric-based FER [40] is higher than ICS_DLSR but the use of manually labeled FLs done by Yang et
al. make this comparison not logically correct.

Finally, looking at the recognition rate of every single expression, it is interesting to note that both
methods, from [40] and [28], reached the top accuracy with happy and surprised faces; it is also interesting to
note that the geometric-based FER system performs very well with all expressions except contempt.
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7. Conclusions and future work
An automatic FER must be able to detect the correct expression of every person, regardless of the age of the
actors. Previous psychological studies showed that elderly people express emotions with less intensity, in a
subtle way; moreover, from a computational point of view, the presence of wrinkles in older faces may mislead
the feature extraction stage, and the reduction of muscles decreases the intensity of action units. As a result,
aging is a challenging disruption element in the construction of an automatic FER system. This study creates
a fully automatic FER system with automatically located FLs and it compares both accuracy and running
time of newly released DL algorithms. Using the FACES database it attests to the superior performance of
ICS_DLSR, being robust against the age disturbance element. When working with the most discriminative
blocks of the faces, the hit-rate of the proposed system is 92% in the mixed-age experiment, and (85, 89, 96)%,
respectively, for (old, middle-aged, young) actors in the within-age experiment. Moreover, our experimental
results confirmed the hypothesis that FER must be tackled in a block-based fashion, and, finally, the within-age
experiment showed that the main problem of the proposed computational model is with the faces of older actors.
A second set of experiments on the CK+ database compared the performance of DL algorithms strictly on FER,
without the aging disturbance element. Future work includes: (1) making ICS_DLSR more sensitive to subtle
expressions and increasing its capability to distinguish between wrinkles and action units; (2) comparing the
performance of DL algorithms against deep learning methods; (3) conducting a deeper study on psychology and
behavioral science so as to be able to discuss the effect of shape, texture, and appearance-based methods; (4)
cross-validating happy and neutral subjects from the CAL/PAL and FACES datasets with the aim of double-
checking the robustness of DL algorithms on FER with age; and (5) repeating the experiments of [14] using
automatically located FLs.
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