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Abstract: In this paper, we propose a novel framework for electrical appliances identification using statistical harmonic
features of current signals and the use of the k-NN classifier combined with a voting rule strategy. Harmonic coefficients
are computed over time using short-time Fourier series of the current signals. From these sequences of coefficients, the
mean, standard deviation, skewness, and kurtosis are computed, which provide the statistical harmonic features. This
framework has three novelties: (i) selecting the best combination of statistical measures in the sense of classification
rate (CR); (ii) combining the k-NN classifier with the voting rule method in order to search for the best number of
voting vectors; and (iii) selecting relevant features for the task of appliances identification by using one of the relevant
feature selection algorithms based on mutual information. Results evaluated on the Plaid dataset clearly show that the
mean and standard deviation statistics combination gives the best CR of 92% with 500 features and gives the minimal
computing time compared to the system based on HMM models. Moreover, combining the k-NN classifier with the
voting rule using the above features increases the CR up to 95%. Using this combination, the results also show that an
increase of the training dataset size further improves identification performance results in terms of precision, sensitivity,
and F-score. A feature selection procedure based on joint mutual information strategy shows that using a selected subset
of five features is sufficient, giving similar CR results to those obtained using the total number of features, whatever the
training dataset size.

Key words: Electrical appliance identification, harmonics analysis, short-time Fourier series, statistical features extrac-
tion, k-nearest neighbors, voting rules method, filters features selection, mutual information

1. Introduction
Balancing production and electricity consumption is a daily principal concern of electricity suppliers. Today,
new challenges are the reduction of global electricity production without compromising the electrical needs of
the consumers and guaranteeing a high quality of electrical supplying service. This is a necessity for economic
and environmental reasons and this is now possible thanks to smart grid deployment. Indeed, balance can be
optimized whenever the demand and consumption data over the smart grid network are known. For electricity
suppliers, electricity production optimization may involve electrical shedding, adapted billing for customer uses,
or electricity exchanges with other suppliers. For customers, having access to consumption information gives
the opportunity to optimize electricity consumption and energy bills. In this context, detailed consumption
∗Correspondence: philippe.ravier@univ-orleans.fr
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information can be obtained with nonintrusive load monitoring (NILM) systems. The purpose of a NILM
system is to disaggregate energy consumption at the main, which necessitates electrical appliance identification,
achieved using current features.

The implementation of feature extraction methods from the current measurements for electrical appliance
identification was widely discussed in the literature [1–4]. In [1], the authors applied a hidden Markov model
(HMM)-based identification system where the current signals are represented by sequences of vectors composed
of short-time Fourier series (STFS) coefficients. Also in [2], the authors considered the wavelet cepstral
coefficients (WCCs) as descriptors of electrical appliances and compared their performances with those of
harmonic descriptor STFS using the HMM classifier.

In [3], the authors proposed to apply a parametric model in order to represent each appliance’s current
signal. A single vector composed of 14 parameters was used for appliance clustering and identification using
the K-means algorithm. This compact representation of signals reduces the memory storage and minimizes the
classification execution time. In the literature, several papers also represent signals [5–7] in a compact way
using a statistical feature extraction method. The statistical feature extraction method allows transforming
a harmonic vectors chain of a signal into a single statistical feature vector. Practically, identification results
have to regularly be delivered since meters continuously measure the current signals. Accordingly, statistical
features such as mean, standard deviation, skewness, and kurtosis should be measured on temporal segments
of fixed duration, which leads to converting each signal into a sequence of statistical features vectors. One
possible classification method for current signals consists of classification of each statistical feature vector using
the k-nearest neighbors (k-NN) classifier, then applying the voting rule to the sequence of the class’s indices to
make a decision about the signal class [8].

The method of voting rules originates from the social sciences [9]. This method has become a widely
used technique in various disciplines, namely in engineering disciplines, and especially in pattern recognition
[10–14]. The voting rules procedure is an alternative approach applied to a set of possible statistical vectors.
The motivation is to let them act as individual classifiers and combine these classifiers as competitors for the
final classification [13] using a voting rules procedure. The method is interesting because of its simplicity and
efficiency.

The present work consists of identifying electrical appliances from their signatures (electric currents).
It is clear that such an identification system requires two main phases, one for learning and the other for
testing. Many models and mathematical methods can be developed for the identification system, such as
HMM [15], support vector machines (SVMs) [16], artificial neural networks (ANNs) [17], and k-NN [18]. These
models require information extracted from the current signals that are considered as relevant descriptors of the
appliance. In this work, we propose to extract a vector of statistical features of harmonics representing the
complete signal and to investigate the best combination of statistical measures. We also study the best number
of statistical vectors in the voting rule procedure.

However, classification problems often have a large number of features, but not all of them are useful for
classification. Irrelevant and redundant features may even reduce the classification accuracy. Therefore, feature
selection, also known as variable selection or attribute selection, is proposed as a data preprocessing step to
reduce or eliminate irrelevant and redundant features [19]. In this context, the application of a feature selection
technique is essential.

Feature selection procedures can globally be grouped into two approaches that are either dependent on
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the classifiers (wrapper methods) or independent of the classifiers (filter methods) [20]. Wrapper methods look
for the space of the features subset using classification accuracy as a measure of utility for a candidate subset.
It has the disadvantage of considerable computing expense since a classification system has to be built for each
subset trial. In contrast, filter methods [21] define a heuristic scoring criterion that serves as an indirect measure
of classification accuracy and evaluate the statistics of the data independently of any classifier [21, 22]. Thus, a
filter feature selection algorithm searches for the optimal feature subset in the search space based on a certain
evaluation criterion, which is independent of any learning/classification algorithm.

Several filter methods are present in the literature [19, 22–24]; among them, the mutual information
(MI)-based methods are the most used. In this work, we have applied a filter selection algorithm with the
joint mutual information (JMI) criterion, which uses MI estimation as a relevance measure of the features. We
selected the JMI strategy because of its good trade-off in terms of accuracy, stability, and flexibility with small
data samples [23].

2. State-of-the-art appliance identification and feature extraction methods
The purpose of NILM systems is to monitor and control domestic and industrial energy consumption, using
only one meter at the input of the network supply. The general framework of NILM starts from measurements
made on the input of total electricity consumption to finally break it down into individual contributions of each
appliance.

Hart introduced the first work on NILM methods in 1989 [25, 26]. He was the first to analyze the variations
of the total power to identify electrical appliances, but the method does not allow identifying some appliances
(multistate appliances as washing machines). The basic works of Hart launched several research works: Sultanem
[27] used current variations and active and reactive power as relevant parameters for identification. HMM was
first used in [28]. In order to identify the structural nature of electrical appliances, the authors of [29] used
current harmonics. Leeb proposed the first works that gave interest to the transient part of the current inrush in
1993 [30]. He investigated the form of active and reactive power transients. Many other works followed [31–39]
with the state of the art presented in [40].
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Figure 1. Flowchart of the identification system proposed in [2].

Generally, several classification methods have been proposed in appliance identification systems with
the aim of performance improvement, either in terms of complexity or in terms of accuracy. The electrical

2982



GHAZALI et al./Turk J Elec Eng & Comp Sci

 
KNN 

classifier 
Identified 

class 

KNN modeling of 

11 Appliances 

Training dataset of 

signals and labels 

STFS 

features 

extraction 

Statistical 

STFS features 

extraction 

Features selection 

using JMI strategy 

Extraction of 
selected 

statistical 

STFS features 

Voting 
rule 

(decision) 

Testing dataset of 

signals and labels 

STFS 
features 

extraction 

Figure 2. Flowchart of the identification system based on k-NN classifier combined with voting rules method. Blocks
with red characters highlight novelties added with respect to Figure 1.

appliances classification methods can be grouped into two categories. In the first category, a features extraction
stage converts each signal in a sequence of features vectors. Next, a classifier identifies the class of this sequence.
In [1] and [2], the authors used STFS features extraction methods for electrical appliance identification based
on the HMM classifier. A flowchart of the system proposed in [2] is illustrated in Figure 1. The second category
uses and classifies a single feature vector (instead of a sequence of feature vectors) that represents the complete
signal. The single feature vector is used in the input of a suitable classifier like SVM [16], ANN [41], or k-NN [42].
This second category can reduce complexity in terms of computation cost and memory space without decreasing
the accuracy. In this work, we chose the second category using statistical features applied on STFS features
(harmonics) in order to extract one feature vector and to classify it using the k-NN classifier for appliance
identification from the current signal. Practically, though, the electric current is continuously delivered by
meters and the feature vectors are delivered online. This means that the statistical features are estimated only
after a fixed duration period. Then, considering a sequence of such consecutive periods, each signal is converted
into a sequence of statistical features vectors that are classified into a sequence of the class’s indices. Hence, the
voting rule is proposed to be applied on this sequence using a k-NN classifier to make a global decision about
the signal class.

3. Proposed method

In this work, we propose to use statistical harmonics vectors (mean, standard deviation, skewness, and kurtosis)
of electric current and to evaluate these descriptors on k-NN classifiers combined with the voting rules method.

The first contribution of this paper is the use of statistical features as a new descriptor for appliance
identification. Statistical features have the ability of catching dynamic behaviors in a very compact way. This
use requires a new schema of the identification system. The second contribution is thus the proposal of a new
scheme based on the combination of the k-NN classifier with the voting rule procedure (Figure 2). In order to
search for the most relevant features among a large set of possible ones, we finally apply a filter feature selection
algorithm based on the JMI strategy. This feature selection procedure is a third contribution.

3.1. Harmonic analysis

The universal method of harmonic analysis is that of the Fourier transform (FT). In the discrete case, the vector
of the current signal s [n] of length L can be analyzed using the discrete Fourier transform (DFT):
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S [k] =

L−1∑
n=0

s [n] exp
(
−j2πkn

L

)
, k = 0, . . . , L− 1. (1)

Our approach for vectors chain extraction is primarily based on the division of each electrical current signal in
overlapped windows by a half period and then computation of the discrete Fourier series (DFS) in each window.
The DFS decomposition is [1, 43]:

s [n] =

N−1∑
k=0

Ck exp
(
j2πkn

N

)
, (2)

where N is the period of s [n] in samples and Ck are the Fourier series coefficients expressed as:

Ck =
1

N

N−1∑
n=0

s [n] exp
(
−j2πkn

N

)
. (3)

The obtained coefficients are called STFS coefficients. They can be stacked in an STFS coefficient vector
(calculated on a window), which is called an observation. Thus, each electric current signal is represented by a
vector sequence, which can be put into a harmonic matrix MH(P,R) representing the complete signal, where
P is the harmonic number (its optimal value will be discussed later) and R is the number of windows related
to the duration of the input current signal.

3.2. Statistical features
The originality of our approach lies in the computation of the statistical features, which are vectors, computed
from the harmonic matrix obtained by the application of the STFS on the set of windows of the electric current
signal. Computation of the statistical features is achieved on the lines of the harmonic matrix resulting in
statistical vectors with length equal to P (number of harmonics). We selected statistical measures up to the
fourth order computed on the absolute values of the matrix:

• the mean
µ = E [MH] (4)

is estimated as

µ(p) =
1

R

R∑
r=1

MH(p,R), p = 1, . . . , P ; (5)

• the standard deviation
σ =

√
E [(MH − µ)2] (6)

is estimated as

σ(p) =

√√√√ 1

R

R∑
r=1

(MH(p,R)− µ(p))2; (7)

• the skewness

Sk = E

[(
MH − µ

σ

)3
]

(8)
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is estimated as

Sk =

1
R

(∑R
r=1(MH(p,R)− µ(p))3

)
(σ(p))

3 ; and (9)

• the kurtosis

Ku = E

[(
MH − µ

σ

)4
]

(10)

is estimated as

Ku =

1
R

(∑R
r=1(MH(p,R)− µ(p))4

)
(σ(p))

4 . (11)

Finally, each appliance electric current is represented by a single vector V = [V (1) . . . V (P )] , which is
the concatenation of P individual vectors V (p) , each one being composed of four temporal statistical values
characterizing the harmonic of order p :

V (p) = [µ(p) σ(p) Sk(p) Ku(p)] . (12)

For example, a pure resistive load powered by a pure sine wave should theoretically produce a collection of zero
V (p) vectors except V (1) where the first component is the current magnitude, the other ones being zero.

3.3. k-NN combined with voting rule method
The voting method is one of the most effective techniques in pattern recognition, where the final classification
decision is the majority decision reached among a set of several concurrent systems [44, 45]. In [44], the authors
gave an overview and comparison of voting methods for pattern recognition. The voting method is also applied
in electrical appliance identification using a fusion of several classifiers [45]. Unlike applying voting rules between
several classifiers, as done in [45], we propose in our framework to apply voting rules for a single k-NN classifier,
between different numbers of statistical vectors, for the same observation duration. The purpose is to improve
the classification rate of the identification system by the choice of number of statistical vectors that contribute
to the vote. Theoretically increasing the number of vectors gives better results in the voting sense, but at
the same time, the constraint of statistical data will decrease the results. A compromise therefore has to be
found between the number of vectors and the statistical data. Section 4.3 explains the optimal number of
statistical vectors in the sense of classification rate (CR). Figure 2 shows our identification system scheme and
the combination synopsis of the k-NN classifier with the voting rule method.

3.4. Feature selection
Feature selection is an important step in pattern recognition, especially in the case of high dimensions. It has the
aim of identifying the relevant features subset that keeps maximum information and minimum redundancy to
explain the class variable, from the global space of features. Feature selection has the advantages of reducing the
computing time and space memory and probably improves the accuracy by avoiding the curse of dimensionality.
In this work, we use the mutual information as a measure of features relevance. For understanding this concept,
we present in the following a brief review of two basic elements of information theory, which are entropy and
mutual information [46].
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3.4.1. Entropy and mutual information

The entropy H(X) is a measure of the average information amount contained in the random variable X [47].
It can be defined as a measure of the uncertainty of variable X . Let X be a discrete random variable and p(x)

its probability function. The entropy of X is defined by [47]:

H(X) = −
∑
x∈X

p(x) log2 (p(x)) . (13)

In the continuous case, the entropy h is defined by:

h(X) = −
∫ +∞

−∞
fx(x) log2 (fx(x)) dx, (14)

where fx(x) is the probability density function (pdf) of the random variable X .
The entropy definition can be extended to joint entropy that takes more than one variable [47]. In the

case of two discrete random variables X,Y with joint probability function p(x, y) , the joint entropy H(X,Y )

is defined as:
H(X,Y ) = −

∑
x∈X

∑
y∈Y

p(x, y) log2 (p(x, y)) . (15)

In the continuous case, the joint entropy is given as:

h(X,Y ) = −
∫ ∫ +∞

−∞
fxy(x, y) log2 (fxy(x, y)) dx dy, (16)

where fxy(x, y) is the joint pdf of the random variables X,Y .
Another important element in information theory is the mutual information I(X;Y ) , which is the

reduction in uncertainty about one random variable due to the knowledge of the other [47]. It can be interpreted
as a measure of the shared information between two random variables X,Y . The mutual information between
two random variables X and Y is defined by:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
(

p(x, y)

p(x)p(y)

)
. (17)

In the continuous case, the mutual information I is defined by:

I(X,Y ) =

∫ ∫ +∞

−∞
fxy(x, y) log2

(
fxy(x, y)

fx(x)fy(y)

)
dx dy, (18)

where fxy(x, y) is the joint distribution of X,Y and fx(x) and fy(y) are the marginal distributions.
Practically, the histogram approaches have been mostly used for pdf estimation from data for their

simplicity and low complexity [22]. However, the mutual information suffers practically from the bias estimation
caused by the insufficient representation of the pdf by the histogram approach, and by the small number of
samples. Furthermore, the finite number of samples can induce a large bias of MI estimation in high dimensions.
In [22], the authors proposed new formulas of bin number of histograms in order to reduce the bias and the
mean square error (MSE) of MI and entropy estimation.
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3.4.2. Feature selection based on joint mutual information strategy

Theoretically, feature selection aims to select from an initial set of n features, F = {Y1, Y2, . . . , Yn} , a subset
of k relevant features S = YP1

, YP2
, . . . , YPk

that produces the maximal mutual information with the following
class variables:

S = arg max
S∈F

I(C;S). (19)

This can be performed using the forward ‘greedy’ algorithm, which selects at each iteration j one feature YPj

that verifies the following equation:

YPj = arg max
Yi∈F−Sj−1

I(C;Sj−1, Yi), (20)

where Sj−1 = YP1
, YP2

, . . . , YPj−1
. Because of the chaining rule I(C;Sj−1, Yi) = I(C;Yi) + I(C;Sj−1\Yi) that

can be developed in I(C;Sj−1, Yi) = I(C;Yi) + I(C;Sj−1)− I3(C;Sj−1;Yi) , Eq. (20) can be reduced to:

YPj = arg max
Yi∈F−Sj−1

[I(C;Yi)− I3(C;Sj−1;Yi)] , (21)

where I3(C;Yi;Sj−1) represents the redundancy between the feature Yi and Sj−1 .
Practically, I(C;Sj−1, Yi) or I3(C;Sj−1;Yi) cannot be accurately estimated with increasing numbers of

features. Hence, several heuristic strategies have been proposed like MIM, CMIM, MIFS, MRMR, CMI, JMI,
DISR, CIFE, TMI, and ICAP [7]. In this work, we used the JMI strategy [48], which considers MI between
three variables instead of multivariate MI of Eq. (21):

YPj
= arg max

Yi∈F−Sj−1

[
I(C;Yi)−

1

j − 1

j−1∑
k=1

I3(C;Yi;YPk
)

]
, (22)

where the I3 terms are estimated using I3(C;Yi;YPk
) = I(Yi;YPk

)− I(Yi;YPk
\C) .

4. Experiences and results
In this section, we present the different experiments that we carried out to evaluate the performance of our
algorithm for statistical harmonics features extracted from the electric currents of the Plaid dataset [49]. A
k-NN classifier was also used. We tested the following:

1. The application of all possible combinations of the statistical parameters in order to extract the optimal
combination, using the k-NN classifier with 15 possible combinations as given in Table 1. Performance
results are established based on the identification results evaluated using the classification rate (CR)
defined as:

CR(%) =
T −M

T
× 100, (23)

where T is the total number of tested waveforms (each one representing an appliance) given to the input
of the classifier and M is the number of misclassified tested waveforms.

2. The voting rule method, with our k-NN classifier applied on the optimal combination of the statistical
parameters obtained in Test 1. In the Plaid dataset, the sampling frequency is Fs=30 kHz. In our
experimental phases, the [0:15 kHz] frequency band practically gives 250 harmonics, knowing the 60-Hz
power line frequency.
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3. The dataset distribution configuration organization effect, using other performance evaluation metrics
(sensitivity, precision, F-score, and confusion matrix).

4. The dimension reduction, because the number of parameters (harmonics) is very large, probably causing
the effect of the curse of dimensionality. In order to overcome this problem, we apply the forward greedy
algorithm combined with the JMI strategy to select the relevant features and reduce the dimensions.

Table 1. The best combination for statistical features using k-NN classifier is MEAN µ and STD σ .

Feature CR at 50 CR at 250
number harmonics in harmonics in

µ 250 86.96 84.73
σ 250 84.35 83.79
Sk 250 75.79 72.62
Ku 250 67.59 67.78
µ,σ 500 93.10 92.36
µ,Sk 500 75.79 72.62
µ,Ku 500 67.59 67.78
σ,Sk 500 75.79 72.62
σ,Ku 500 67.59 67.78
Sk,Ku 500 68.52 68.34
µ,Sk,Ku 750 68.52 68.34
µ,σ,Ku 750 67.59 67.78
σ,Sk,Ku 750 68.52 69.34
µ,σ,Sk 750 75.79 72.62
µ,σ,Sk,Ku 1000 68.52 68.34

4.1. Presentation of the Plaid dataset
Our analysis is based on the Plaid dataset [49] composed of 1074 recordings of currents and voltages of 11 types
of electrical appliances from a variety of 56 manufacturers. The recordings are made at a frequency of 30 kHz.
Table 2 presents a summary of the Plaid dataset and the different types and numbers of appliances.

4.2. Best combination of statistical features
The purpose is to select the most relevant combination among the four types of statistical features (mean,
standard deviation, skewness, kurtosis) using the k-NN classifier (taking k by default equal to 1). The statistical
parameters are computed on the complete signal. This leads to converting each signal into a single vector.
Therefore, k-NN classification has been performed without application of the voting rule. Table 1 shows 15
possible combinations of statistical features and their CR (%) with 50 and 250 harmonics numbers, respectively.

It is clear from Table 1 that the best combination is that of the mean and the standard deviation, which
gives the highest classification rates of up to 93.10% for 50 harmonics and 92.36% for 250 harmonics. The
combination of the mean with standard deviation is therefore the optimal experimental one in the sense of
classification rate. These statistic features are thus chosen in the following study.

Furthermore, the application of the HMM models of 7 states, each one being associated to a GMM model
of 3 Gaussians, on the harmonic vector chain [2] gives a classification rate of 93.30% at 250 harmonics, but with

2988



GHAZALI et al./Turk J Elec Eng & Comp Sci

Table 2. Summary of the appliances found in the Plaid dataset.

N Appliance type Number of instances
1 Compact fluorescent lamp 175
2 Vacuum cleaner 38
3 Hair-dryer 156
4 Microwave 139
5 Air conditioner 66
6 Laptop 172
7 Fridge 38
8 Incandescent light bulb 114
9 Fan 115
10 Washing machine 26
11 Heater 35

Total 1074

a long computing time of about 59 s (without considering the feature extraction time). On the other hand, the
k-NN classifier (with the statistical features µ ,σ ) gives a classification rate of 92.36% with a calculation time of
0.41 s, using a computer with an Intel Core i3 processor and 6 GB of RAM memory using MATLAB language.
This result shows that the proposed approach presents a comparable CR to that of the HMM approach but
gives the minimal calculation time.

Further, Table 1 also shows that in most combinations, the use of only 50 harmonics gives better CR
results than the use of 250 harmonics. This is probably caused by the curse of dimensionality. In fact, the
optimal combination of 500 statistical features needs a dimensionality reduction. This can be performed using
a feature selection algorithm, which will be the subject of Section 4.6.

4.3. The optimal number of statistical vectors for voting rule method

In this experiment, we applied our identification algorithm to the combination of the statistical features (mean,
standard deviation) using 250 harmonics, for a period of 1 s, so 60 harmonic vectors in windows are recovered by
a half, which gives 120 harmonic vectors. By dividing the 1-s duration into consecutive segments, the number
of statistical vectors can vary from 1 to 60, as shown in Table 3.

For example, three statistical vectors consider three k-NN classifiers, one for each segment, and the voting
rule makes its decision based on the most frequent decision result given by the classifiers. Table 3 shows the CR
obtained with 250 harmonics, with different numbers of statistical vectors. The table also shows the elapsed
time [seconds] for each statistical vector for 250 harmonics.

From Table 3, it can be seen that 8, 12, and 15 statistical vectors (which are also the numbers of classifiers)
participating in the vote give the best CR of 94.97% for all numbers using 250 harmonics. This also respectively
corresponds to statistical vectors being computed on R = 15, 10, and 8 windows. Moreover, the results show
that the computational time when using 8 statistical vectors gives the shortest running time (2.03 s) compared
with 2.83 s for 12 statistical vectors and 3.39 s for 15 statistical vectors (same hardware configuration as in
Section 4.2).
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From these results, we conclude that the optimal number of statistical vectors that participate in the
vote is eight. This means that the statistical vectors evaluated in 15 time windows practically give the optimal
classification rate at 250 harmonics (94.97%) and the short time running of 2.03 s. Tables 1 and 3 clearly show
that the large number of harmonics (250) probably causes the effect of the dimensionality curse. We propose
in the next section to study the effect of the training and testing datasets on identification performance.

Table 3. The best number of statistical vectors given by the voting rule method, using 250 harmonics.

Number of Elapsed
statistical CR (%) time
vectors [seconds]
1 92.36 0.47
2 94.41 0.80
3 94.78 0.98
4 94.22 1.20
6 94.22 1.68
8 94.97 2.03
10 94.78 2.46
12 94.97 2.83
15 94.97 3.39
20 94.78 4.46
30 94.59 6.50
40 94.78 9.04
60 94.78 11.79

4.4. Dataset size effect on identification performance

In order to study the effect of dataset distribution, Table 4 shows the effect of the different dataset distribution
configurations on the CR, taking 8 statistical vectors (optimal choice in Table 3).

Table 4. Effect of the dataset distribution on the CR results.

Training/Testing 50%/50% 60%/40% 80%/20%
CR (%) 94.97 97.20 97.20

Table 4 shows that increasing the training dataset size improves the identification performance results.
This can be justified by a higher amount of information that is added for describing the different classes when
using large data samples.

4.5. Performance evaluation
The classification rate (CR), also called the recognition rate or mean accuracy, gives a global view of the
performance for our system. For deeper evaluations, we use other evaluation metrics, like sensitivity, precision,
f-score, and confusion matrix, frequently used in the literature [41, 50–52], taking the case of 8 vectors (best
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voting rule case). These metrics give the performance for each electrical appliance, so we can consider them as
local evaluation criteria [38, 41, 50]:

• sensitivity S is defined as

S =
TP

TP + FN
∗ 100,

• precision P is defined as

P =
TP

TP + FP
∗ 100, and

• F-score Fs is defined as

Fs =
2 ∗ S ∗ P
S + P

,

where TP is the number of true positives, i.e. the positive samples correctly classified; FP is the number
of false positives, i.e. the negative samples incorrectly classified; FN is the number of false negatives, i.e.
the positive samples incorrectly classified; and TN is the number of true negatives, i.e. the negative samples
correctly classified. The metric F-score is a weighted average of precision and sensitivity [41]. These metrics can
be obtained from the confusion matrix, which is an useful tool for deeply evaluating the efficiency of supervised
classification systems. The columns of this matrix represent the sensitivity of each appliance and the rows
represent the precision of each electrical appliance [41]. The main diagonal gives for each class the correct
classification number. The nonzero off-diagonal values are incorrect classification numbers [50].

Table 5 shows the results obtained for the different metrics (sensitivity S , precision P , and F-score Fs)
of each electrical appliance type and for different dataset distributions. Results obtained show the detailed
performance of our framework, for each electrical appliance. For example, microwave and fridge were classified
with 100% values for the three metrics and for all dataset distribution configurations, demonstrating an excellent
identification performance. The other appliances also show very acceptable performance, almost all above 90%,
except vacuum cleaner with remarkably weak results falling to 56% for F-score. Furthermore, Table 5 shows
that an increase of the training dataset size improves identification performance results in terms of precision,
sensitivity, and F-score.

Table 6 shows the confusion matrix taking a 50%–50% training and testing dataset distribution config-
uration. It can be observed that the vacuum cleaner’s electrical signature may be confused with many other
appliances, suggesting that the descriptors are not relevant enough for a correct discrimination.

We propose in the next section to apply one of the dimensionality reduction methods to reduce the
number of harmonics by selecting the most relevant ones for the identification system.

4.6. Feature selection results
This part is devoted to the selection of the most relevant features explaining the classes or types of electrical
appliances among the 500 statistical harmonics features, with 8 statistical vectors per second using voting rules
method. The features are the 250 µ(p) mean values followed by the 250 σ(p) standard deviation values. The
critical point in the histogram-based MI estimation procedure is the discretization phase, or more precisely the
choice of bins number. In the literature, several formulas exist for this choice, like the formula proposed by
Sturges, Scott, Freedman-Diaconis, or Shimazaki. In our simulation, we used the Sturges formula for calculating
the number of bins in the discretization phase.
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Table 5. Sensitivity S , precision P , and F-score Fs of each electrical appliance type and for different dataset
distributions.

Training % / Testing %
(NBRTrai / NBRTest)

50/50
(537/537)

60/40
(645/429)

80/20
(859/215)

N Appliance type S P Fs S P Fs S P Fs

1 Compact
fluorescent lamp

95.45 97.67 96.55 100 97.22 98.59 100 100 100

2 Vacuum
cleaner

50.00 63.63 56.00 60 81.81 69.23 62.50 83.33 71.42

3 Hair-dryer 97.56 96.38 96.96 100 93.93 96.87 100.00 93.93 96.87
4 Microwave 100 100 100 98.21 100 99.09 100 100 100
5 Air conditioner 87.87 100 93.54 96.15 100 98.03 92.30 100 96.00
6 Laptop 97.67 95.45 96.55 97.10 100 98.52 100 100 100
7 Fridge 100 100 100 100 100 100 100 100 100

8 Incandescent
light bulb

94.73 90.00 92.30 100 97.87 98.92 100 95.83 97.87

9 Fan 94.82 94.82 94.82 100 97.87 98.92 100 95.83 97.87

10 Washing
Machine

92.30 100 96.00 100 100 100 100 100 100

11 Heater 94.11 76.19 84.21 85.71 85.71 85.71 71.42 83.33 76.92
Overall 91.32 92.19 91.54 94.28 95.85 94.90 93.29 95.66 94.27

Table 6. Confusion matrix obtained with 50% training dataset and 50% testing dataset distribution. For each active
appliance type (number N of the top line) the matrix gives the number of correctly identified appliances and the
incorrectly identified ones that are assigned to another appliance type number in the training dataset. The value in bold
is the global CR. Dots stand for zero values.

N 1 2 3 4 5 6 7 8 9 10 11 P (%)
1 84 · · · · 2 · · · · · 97.67
2 · 7 · · · · · 3 · · 1 63.64
3 · 2 80 · 1 · · · · · · 96.39
4 · · · 70 · · · · · · · 100
5 · · · · 29 · · · · · · 100
6 4 · · · · 84 · · · · · 95.45
7 · · · · · · 19 · · · · 100
8 · 2 · · 1 · · 54 3 · · 90.00
9 · 1 · · 1 · · · 55 1 · 94.83
10 · · · · · · · · · 12 · 100
11 · 2 2 · 1 · · · · · 16 76.19
S (%) 95.45 50.00 97.56 100 87.88 97.67 100 94.74 94.83 92.31 94.12 94.97

Figure 3 clearly illustrates the effectiveness of feature selection and its contribution to the reduction of
dimensionality. It can be seen that 10 relevant features are sufficient and even better by giving a higher CR
rate than the CR obtained with the total number of 500 features.
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The CR results for the 10 first selected features are reported in Table 7. These simulation results indicate
that only 5 features are sufficient in order to exactly reach the same CR compared to 250 harmonics, whatever
the dataset distribution (with a CR of 94.97% reached in the 50%/50% case and a higher CR of 97.20% in
the 60%/40% and 80%/20% cases, as previously discussed). This shows that a high dimensionality reduction
may be achieved without any performance loss. The curse of dimensionality is also observed in Table 7 and
Figure 3 since a higher CR superior to the final value of CR can be reached, whatever the training dataset
size. From Figure 3, the curve corresponding to training dataset size of 50% presents the peaking phenomenon,
which explains the curse of dimensionality caused probably by the limited number of dataset samples. This
phenomenon does not exist in other curves, justified probably by increasing the sample number. Furthermore,
the results demonstrate that the mean features of the first odd orders (harmonic) are predominantly the relevant
features for this task. Moreover, results show that the dataset size has no effect on the first eight selected features
set and has a slight effect on their order, as well as a weak effect on the corresponding accuracies. For training
datasets with size larger than 60%, the selected features roughly follow the same order. For the 50% case, high
harmonic orders are selected from the ninth feature, probably due to the weak training dataset size, which first
gives less information about the classes and second causes a poor estimation of MI [22].

             50%/50%        

.            60%/40%              

.             80%/20%                    

0           50          100        150         200        250         300       350         400        450        500

JMI

C
R

 %

100

90

85

80

75

95

Figure 3. CR (%) for the JMI strategy of feature selection with the three dataset distribution configurations.

From these results, we can conclude that using the feature selection method has effectively and advanta-
geously contributed to reducing the number of features.

5. Conclusions
In this paper, a novel framework for electrical appliance identification is proposed. Our first key ideas are the
use of statistical features of harmonics and the application of the k-NN classifier combined with the voting
rule method. Feature extraction from current signals has been performed on STFS coefficient statistics (mean,
standard deviation, skewness, and kurtosis). The first results evaluated on the Plaid dataset demonstrate that
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Table 7. The classification rate CR (%) of the 10 first selected features and for 500 features (NBR is the number of
selected features) as a function of the training/testing dataset distribution.

NBR CR (%) at
50%/50%

CR (%) at
60%/40%

CR (%) at
80%/20%

1 75.23 77.62 78.60
2 94.22 95.10 97.20
3 94.97 95.10 96.74
4 95.53 96.96 96.74
5 94.97 97.20 97.20
6 94.97 97.20 97.20
7 95.15 97.20 97.20
8 95.71 97.20 97.20
9 95.71 97.20 97.20
10 95.71 97.20 97.20
500 94.71 97.20 97.20

the combination of the mean and standard deviation features provided the optimal performance results in terms
of classification rate. These results have been improved with 2.6% gain by the application of the voting rule
with the choice of an optimal number of voting vectors.

In order to reduce the high dimensionality, we have also applied feature selection algorithms based on
the mutual information JMI strategy. The application of the JMI strategy showed that the feature selection
procedure was effective for reducing the number of features while outperforming the CR values.

Our results also showed the robustness of the proposed system with respect to different dataset training
and testing distributions in terms of several performance evaluation metrics.

One possible issue is the relevance of this novel framework to the case of larger datasets. Moreover, other
statistics such as entropy measures may be used for statistical feature estimation. The statistics may also be
applied on other features like wavelet coefficients.
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