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Abstract: Speaker diarization aims to determine “who spoke when?” from multispeaker recording environments. In
this paper, we propose to learn a set of high-level feature representations, referred to as feature embeddings, from an
unsupervised deep architecture for speaker diarization. These sets of embeddings are learned through a deep autoencoder
model when trained on mel-frequency cepstral coefficients (MFCCs) of input speech frames. Learned embeddings are then
used in Gaussian mixture model based hierarchical clustering for diarization. The results show that these unsupervised
embeddings are better compared to MFCCs in reducing the diarization error rate. Experiments conducted on the popular
subset of the AMI meeting corpus consisting of 5.4 h of recordings show that the new embeddings decrease the average
diarization error rate by 2.96%. However, for individual recordings, maximum improvement of 8.05% is acquired.

Key words: Diarization error rate, mel-frequency cepstral coefficients, hierarchical clustering, Gaussian mixture model,
autoencoder

1. Introduction
Speaker diarization [1] is the process of partitioning an audio recording into speaker homogeneous regions. It
answers the question of “who spoke when?” in a multispeaker environment. It is usually an unsupervised problem
where the number of speakers and speaker-turn regions are unknown. The process automatically determines
the speaker-specific segments and groups similar ones to form a speaker-specific diary. Its application lies in
multimedia information retrieval, speaker recognition, and audio processing. Use cases of diarization include
the analysis of speakers and their speech in meeting recordings, TV/talk shows, movies, phone conversations,
conferences, or any other multispeaker recordings.

A typical diarization system consists of three main steps. The first one is a preprocessing step that
consists of feature extraction such as mel-frequency cepstral coefficients (MFCCs), followed by a speech activity
detection (SAD) step, which removes the silence and nonspeech regions from the speech, and finally a clustering
and segmentation step, which works iteratively to segment speaker-change regions and collect homogeneous
segments to make speaker-specific clusters. Typically, the hierarchical clustering [2] technique is initialized with
a large number of clusters to iteratively merge similar clusters on the basis of the Bayesian information criterion
(BIC) [3] to reduce the number of clusters to the actual number of speakers.

A noticeable improvement in diarization systems’ performance was witnessed due the use of i-vectors
[4–7], which model overall variability of speakers’ voices and compress the information into low-dimensional
space. With the rise in the use of neural networks and deep learning techniques, i-vector based methods
∗Correspondence: rehan.ahmad@iiu.edu.pk
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were outperformed by d-vector feature embeddings learned by neural networks [8]. Building upon the success
of deep learning architectures, we propose feature embeddings learning based on autoencoders followed by
hierarchical clustering for speaker diarization. In contrast to other deep learning based approaches, our method
is unsupervised and directly matches the unsupervised nature of the speaker diarization system.

1.1. Related work
The earlier work on speaker diarization was started in 1998 [9], and then the series of National Institute of
Standards and Technology (NIST) rich transcription (RT) evaluations were conducted from 2002 onward. In
[10], the authors described agglomerative hierarchical clustering based on the HMM model with BIC measure
to merge similar clusters. Their algorithm was tested on broadcast news. In [11], the authors further improved
their algorithm by proposing an improved BIC measure and a purification module, which keep the clusters
acoustically homogeneous in the clustering process. Furthermore, a beamforming technique was employed to
enhance the signal quality for multiple distant microphones (MDMs). The improved technique was also tested
on meeting recordings. Similarly, speaker diarization for RT’07 evaluation was described in [12], which employs a
technique similar to that of [11] by keeping robustness and ease of portability. In this paper the authors focused
on the improvement of speech activity detection to filter out audible nonspeech samples, which increased the
accuracy of the system.

Recent developments in deep learning techniques created many opportunities in developing models that
extract new sets of features either directly from raw datasets [13] or from hand-crafted features [14–16]. Recent
work in speaker diarization consists of developing methods for the extraction of special features that help in
speaker discrimination more robustly. For that purpose, many researchers have evaluated the feature embeddings
technique using deep learning models such as long short-term memory (LSTM), deep neural networks (DNNs),
and recurrent convolutional neural networks.

In [8], Wang et al. proposed the extraction of d-vectors [17] from the LSTM model for speaker diarization
purposes. The model uses log-mel-filterbank frames as an input and uses the output frames of the LSTM
architecture as a d-vector. It then applies diarization based on a spectral clustering algorithm. However,
they applied diarization on speech frames that do not contain overlapping speech regions, which simplifies the
diarization process. Moreover, LSTM was trained for the speaker verification task and the trained network
was used to extract feature embeddings. Recently a fully supervised speaker diarization system was proposed
by Zhang et al. [18] that utilizes an unbounded interleaved-state recurrent neural network (UIS-RNN) for
diarization. Their system extracts speaker embedding (d-vectors) from the LSTM model and each speaker
is modeled by a parameter-sharing RNN. The RNN model is further integrated with a distance-dependent
Chinese restaurant process (ddCRP) to find the number of speakers in an audio recording. Cyrta [19] proposed
a recurrent convolutional neural network (RCNN) to extract feature embeddings from magnitude spectrograms
rather than from MFCC features. The RCNN based architecture was also trained for speaker classification
tasks. Similarly, Romero et al. [20] proposed a DNN based feature embeddings technique. They replaced
the conventional i-vector based feature with newly learned embeddings from the DNN architecture. The DNN
architecture was specially designed based on network-in-network architecture (NIN). It was trained to jointly
learn the discriminative embeddings and a scoring metric to measure the likelihood of segments generated from
the same or different speakers. To train the architecture, training data were created by making pairs of the same
and different speakers. Rouvier et al. [21] also proposed feature embeddings taken from the hidden layers of a
DNN. The DNN architecture was trained to recognize speakers among 1000 speakers from a training set. This
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trained architecture was then used to extract the new features. The i-vector based features were replaced by
newly learned features for diarization. Sell et al. [22] described some experiences and lessons learned from the
DIHARD diarization challenge. They described several key aspects of state-of-the-art diarization methods, such
as feature extraction, feature embeddings (i-vector vs. x-vector), speech activity detection, and training data.
Furthermore, the authors described their effective diarization system with wideband data, variational-Bayesian
refinement, and single x-vector.

The above discussion shows that neural network based feature embeddings, known as d-vector embed-
dings, have improved speaker diarization performance as compared to i-vector based features. However, d-
vectorbased embeddings were extracted from networks trained on speaker verification or classification tasks in
supervised settings. Moreover, the pretrained networks used are trained on large datasets, which limits their use
for relatively smaller datasets. We propose an unsupervised feature learning from a deep learning architecture,
which closely resembles the original unsupervised speaker diarization pipeline.

1.2. Our contribution
Unlike the above discussed approaches, which used deep architecture with supervised training to get the feature
embeddings, we propose a completely unsupervised technique to learn a new set of features from a deep network
architecture. Our architecture is based on deep autoencoders, which consist of encoder and decoder parts. In
our approach, the speech frames are converted into MFCC frames and five consecutive frames are grouped
together to train the deep autoencoder such that the input and output are the same at training time. After
the architecture has been trained, we use the encoder output as a new feature embedding for the diarization
process. Moreover, we do not exclude the speakers’ overlapping regions in the audio frames as was done in
[8]. This makes the diarization process more difficult and usually increases the diarization error rate (DER).
Furthermore, we have used a freely available subset of the AMI corpus consisting of a total of 5.4 h of recording.
We compare our method with the Gaussian mixture model (GMM) based hierarchical diarization technique,
which uses MFCC based speech features. Our method shows clear improvement over the baseline method in
terms of DER.

The rest of the paper is organized as follows: Section 2 describes the methodology, which covers the
preprocessing step, the baseline method for the diarization, and the proposed feature embedding technique. In
Section 3 we describe the experimentation, which consists of a detailed description of the proposed architecture
and its parameter settings. Moreover, this section also describes the evaluation metric for the diarization and
the dataset used to test baseline and proposed methods. In Section 4, we present the results and a discussion.
Finally, conclusions are drawn in Section 5.

2. Methodology

2.1. Conventional pipeline for speaker diarization

The conventional algorithm for speaker diarization consists of three steps. The first one is a preprocessing step
that consists of extraction of MFCC features [23] by overlapping windows of speech samples. Typically, 13 or
more MFCCs are used. The second step is speech activity detection (SAD) [12], which applies either an energy
based measure to classify the speech and silence or a trained model based approach to classify speech/nonspeech
audible sounds and silence. The SAD block eventually outputs the speech-only frames for further diarization.
Accuracy of the subsequent segmentation and clustering step highly depends on the performance of SAD. The
third step is the segmentation and clustering algorithm, which consists of a GMM/HMM based model with the
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BIC [3] as a measure for matching similar clusters. An agglomerative hierarchical clustering based technique
is used, which initializes a large number of GMM/HMM clusters, typically more than the number of available
speakers, and trains those clusters on initially partitioned speech segments. Then it merges similar clusters based
on the BIC metric and retrains the clusters based on resegmentation. The process of merging and retraining
works iteratively until it is left with an optimal number of clusters. The final number of clusters eventually
presents the number of speakers and their segments. Figure 1 shows the steps of a typical speaker diarization
system.

Preprocessing

Feature Extraction e.g. MFCC,

Spectrogram

Speech samples

Speech Activity Detection

Separates the silence and non-

speech audible sounds

Segmentation & Clustering

Segments the speech frames and

makes clusters of similar segments.

Segmentation and clustering work

iteratively.

Speech only Features

Features

Figure 1. Steps for speaker diarization system.

2.2. Preprocessing

In the preprocessing step the audio recording is converted into the 19-dimensional MFCC features [23] and
normalized by zero mean and unit variance. We use window lengths of 30 ms and hop-lengths of 10 ms in
feature extraction. From the available annotations, we apply optimal SAD by setting nonspeech audio samples
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to zero and apply an energy based SAD classifier. For this purpose, we train a support vector machine (SVM)
classifier with the top 10% energy frames as speech and lowest 10% energy frames as nonspeech. The trained
SVM is then used to classify the rest of the speech frames. This process significantly deceases the SAD error.
Furthermore, after excluding the nonspeech MFCC frames, these basic features are used for diarization in the
baseline method and used for feature embeddings in the proposed method.

2.3. State of the art
The baseline method for our comparison is the GMM based speaker diarization system discussed in [24]. We
apply this method on mixed-headset audio recordings using MFCC features and compare it with our proposed
feature embeddings. This method uses the GMM for segmentation and clustering with the agglomerative
hierarchical clustering (AHC) technique, which iteratively merges similar clusters until the optimal number of
clusters is obtained. The process initially partitions the whole audio recording into K segments and trains each
cluster (GMM) on one segment. K is chosen to be much larger than the assumed number of speakers in the
audio recording. A good guess for the initial number of clusters/segments for the audio recording of about 30
min is experimentally determined [9] as K = 16. Following are the diarization steps:

1. Partition the audio recording into K segments and train one GMM with each audio segment using the
expectation-maximization (EM) algorithm.

2. Find the likelihood of each MFCC feature with each GMM. Then find the majority vote in 1.5 s of segment
length and resegment the audio recording.

3. Retrain the GMMs with new segments using the same EM algorithm.

4. Find the BIC score of each GMM and then merge those GMMs that are most similar to each other.
For this purpose, at each iteration, a new GMM is created and trained on the combined audio segments
of those two GMMs that are to be matched, and then the difference in BIC scores of the new GMM
and the merging candidate GMM is calculated. The improvement in BIC score merges the two GMMs
permanently. The algorithm then goes to Step 2, such that it iteratively resegments the audio recording
on the basis of majority votes and then merges the similar GMM clusters. GMM clusters are reduced
iteratively until no two GMMs are the same. The algorithm then stops and presents the final number of
clusters and segments. Finally, the diarization error rate is computed.

The applied BIC in diarization is defined as:

BIC = −log(p(D|θ)) + L ∗ 2 ∗ log(N), (1)

where p(D|θ) represents the likelihood of data D given the GMM model θ , L is the number of parameters
of the model, and N represents the total number of speech frames in data D . The difference in BIC scores
represented by ∆BIC for the combined GMM and the individuals is defined as follows:

∆BIC = log(p(Dm|θm))− log(p(Da|θa))− log(p(Db|θb)), (2)

where Da and Db are speech segments trained by GMM models θa and θb . Dm represents the combined data
segments consisting of Da and Db , and θm represents the GMM model trained on Dm .
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2.4. Feature embedding technique

In the proposed feature embedding method, we employ a deep autoencoder based unsupervised method to learn
the new features from the basic features. Speaker diarization being an unsupervised problem, we propose the
autoencoder based deep architecture to learn the features from unlabeled datasets. The autoencoder architecture
has two parts: a feature encoding part, which is known as the encoder, and a feature decoding part, which is
known as the decoder. A typical single-hidden-layer autoencoder can be represented as follows:

h = a(Wx + b), (3)

where x is an input vector for the autoencoder, W and b respectively represent the weight matrix and the bias
of the encoder, a is a nonlinear activation function, and h represents the output of the encoder. The encoder
output h is then fed into the decoder, which reconstructs the input to generate the output represented by x̂
as follows:

x̂ = a(W ‘h + b‘), (4)

where W ‘ and b‘ represents the weight matrix and bias of the decoder, respectively, to reconstruct the original
input. These equations can be extended for any large number of encoder and decoder layers. The proposed
architecture consists of symmetric layers at the encoder and decoder sides.

Figure 2 shows the proposed architecture of the deep autoencoder. For such an unsupervised feature
learning technique, we trained the architecture on the input data X with the same output labels X . The encoder
part of the architecture provides the new set of features after the architecture has been trained. Shrinkage
architecture [25] has been proposed to learn the low-dimensional features. To learn such low-dimensional
features, initially we grouped five consecutive MFCC frames to create the input dimension of 19 × 5 = 95,
and then we trained the architecture. The motivation is that speaker change usually does not occur in five
successive frames and each speaker segment contains many successive MFCC frames.
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Figure 2. Proposed architecture of deep autoencoder.

The 95-dimensional basic features are converted into 19-dimensional features using the proposed archi-
tecture. These 19-dimensional features are further used in the diarization process. The advantage of using
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shrinkage architecture [26] is that it reduces the model size, training time, and test time and does not com-
promise the accuracy of the system. Furthermore, this architecture also serves as a nonlinear PCA [27] for
dimensionality reduction.

After we extract the new features from the encoder part of the trained architecture, we apply the
unsupervised diarization process. This diarization process is the same as discussed in Section 2.3, which is
based on segmentation and clustering using GMMs.

3. Experimental setup

The baseline method applies the GMM based segmentation and clustering on MFCC features. An agglomerative
hierarchical clustering technique based on GMM is used with initially 16 clusters and 5 Gaussian mixtures in
each cluster. The clusters are merged together based on the BIC and eventually it estimates the optimal number
of clusters. For majority vote segmentation, the segment length of 1.5 s is considered. On AMI corpus recordings
it was evaluated that segment lengths of 1.5 s show better results as compared to 2.5 s (which was suggested in
the literature).

In the proposed architecture input and output are of 95 dimensions. The deep autoencoder is trained
with a small batch size of 32 frames, 100 epochs, and Adadelta optimization. As labels of the architecture are
the same as the training data, normalized to zero mean and unit variance, we used mean squared error (MSE)
as an objective function. This objective function is more suitable and provides better convergence compared to
the binary cross-entropy. It is represented as follows:

MSE = 1/N
∑
i

(yi − ŷi)
2, (5)

where yi represents the input speech frame and ŷi represents the reconstructed speech frame by the autoencoder
model. N represents the total number of speech frames. The MFCC features were normalized to zero mean
and unit variance before applying feature embeddings, and so as to learn the new features more robustly we
used the hyperbolic tangent (tanh) as an activation function in our deep model. After the model is trained,
the encoder part is used to extract the 19-dimensional features as a representation of 95-dimensional input.
The output of encoder is further normalized by zero mean and unit variance and then the same GMM based
segmentation and clustering is applied as discussed for the baseline method. As 5 MFCC frames have already
been grouped, we adjust the segment length in GMM training so that total segment length remains 1.5 s. For
example, in the baseline method, taking 150 frames having hop lengths of 10 ms makes 1.5-s segments, and
then in the proposed method as one feature is already a combination of 5 frames we used 150/5 = 30 frames as
a segment to make a length of 1.5 s.

3.1. Network architecture
The proposed feature embedding technique applies deep autoencoders with 13 hidden layers. The architecture
is designed such that it shrinks at each layer. The input layer with 95 dimensions to the first hidden layer
reduces the nodes by 20 and then each successive hidden layer has ten fewer nodes than the previous one, until
it reaches the encoder output with 19 nodes. The architecture of encoder layers with number of nodes in each
layer is represented as follows:

(input) 95 → 75 → 65 → 55 → 45 → 35 → 25 → 19 (encoder out). (6)
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Due to the symmetric architecture of the encoder and decoder, decoder layers have the same number of nodes
at each layer as the encoder. The decoder architecture tries to reconstruct the encoded information from the
encoder part. Nodes of the decoding layer are represented as follows:

19 (encoder out) → 25 → 35 → 45 → 55 → 65 → 75 → 95 (out). (7)

After the architecture has been trained, the encoder part provides the low-dimensional and newly learned
features. To train the architecture, 5 MFCC frames were grouped together, thus making an input vector of 95
dimensions. This grouping was based on the assumption that speaker change does not usually occur frequently
in five successive frames. It was experimentally determined that the group of 5 frames performs better than
groups of 7 or more.

3.2. Computing environment

Our computing environment is based on Ubuntu Linux 17.10. The Librosa [28] package is used to extract the
MFCC features in our Anaconda Python environment. Deep autoencoder architecture is designed in Keras,
together with the Tensorflow [29] backend. To evaluate the diarization we compute the diarization error rate
using the pyannote.metric [30] package. It includes computing four types of errors and aggregating them. These
are speaker error, false alarm, confusion, and missed speech.

3.3. Evaluation metric
The diarization error rate (DER) [31] is used as an evaluation metric. It consists of computing speaker error,
false alarm, missed speech, and confusion. It is defined as follows:

DER = Espeaker + EFalseAlarm + Emissed + Econfusion. (8)

The speaker error Espeaker consists of segments assigned to the incorrect speaker. False alarm EFalseAlarm

is defined as segments incorrectly assigned as speech and missed speech Emissed comprises the segments that
have not been detected. Finally, confusion Econfusion consists of overlapping speech assignments. Overlapping
speech segments are also included in the computation of DER because this is usually part of audio recordings
and plays a critical role in the performance of diarization systems.

3.4. Dataset
To evaluate our proposed method, we have used a popular subset of recordings from 12 meetings (5.4 h) from
the publicly available AMI meeting corpus [32]. This corpus is available with a range of varying recording
equipment, e.g., close talk microphones, lapels, and far-field and near-field microphone arrays. To compare
our proposed method with the state of the art, we have used mixed-headset recording, which contains audio
recordings in wav format. The selected subset of each audio recording contains four speakers. In this corpus,
each meeting is recorded in four different sessions and independent recordings are provided. Each meeting has
sessions of 15–35 min where each recording file has a meeting ID with small lettering that shows the session of
that recording. For example, meeting IS1000a shows meeting ID ‘IS1000’ with ‘a’ being the recording of the
first session and so on. The manual annotations of each session are also provided to check the validity of the
diarization. Our method applies diarization on each recording independently and evaluates it in terms of DER.

3145



AHMAD and ZUBAIR/Turk J Elec Eng & Comp Sci

Table 1. Average diarization error rate (%) of baseline method. The right-most column provides the average of each
audio recording by running the algorithm 10 times. The last row presents the overall average of all the audio recordings.

Diarization error rate (DER) (%)
Meeting Run Run Run Run Run Run Run Run Run Run Average
ID 1 2 3 4 5 6 7 8 9 10
IS1000a 36.85 42.21 41.72 42.19 42.35 41.93 42.09 42.17 46.95 42.33 42.079
IS1001a 41.62 41.48 41.9 42.61 42.07 41.76 42.00 42.74 42.52 42.74 42.144
IS1001b 48.88 48.34 48.71 48.7 47.57 48.67 48.16 47.6 48.71 47.67 48.301
IS1001c 52.3 53.08 53.68 52.08 52.99 53.89 53.11 52.4 52.27 53.09 52.889
IS1003b 50.44 51.14 50.27 50.73 50.54 50.17 48.64 50.71 51.15 63.02 51.681
IS1003d 68.38 68.81 68.61 67.5 69.00 67.87 69.04 68.83 68.57 67.82 68.443
IS1006b 59.74 49.74 50.04 66.32 49.63 42.63 49.61 59.48 49.76 49.55 52.65
IS1006d 66.02 66.95 66.89 67.07 66.90 66.67 66.96 67.13 67.03 66.87 66.849
IS1008a 11.87 20.25 20.38 20.53 11.89 11.87 11.96 12.20 20.34 20.43 16.172
IS1008b 12.08 12.02 12.73 11.85 11.91 11.74 12.54 11.79 11.87 12.22 12.075
IS1008c 41.16 40.46 39.81 40.91 39.64 41.19 40.52 40.71 39.98 41.52 40.59
IS1008d 38.23 37.61 26.21 38.00 37.55 38.1 37.85 37.63 26.23 37.62 35.503
Average DER for all the audio recordings 44.1146

Table 2. Average diarization error rate (%) of proposed feature embedding method. The right-most column provides
the average of each audio recording by running the algorithm 10 times. The last row presents the overall average of all
the audio recordings.

Diarization error rate (DER) (%)
Meeting Run Run Run Run Run Run Run Run Run Run Average
ID 1 2 3 4 5 6 7 8 9 10
IS1000a 36.75 39.26 38.08 33.82 37.4 36.8 41.07 36.46 42.39 38.27 38.03
IS1001a 41.33 42.62 40.29 40.32 43.16 41.35 42.8 44.2 40.71 43.72 42.05
IS1001b 47.81 48.36 48.04 47.69 47.58 48.04 48.19 48.43 47.31 48.3 47.975
IS1001c 55.22 52.44 53.46 52.92 55.02 53.71 54.07 52.97 55.05 54.65 53.951
IS1003b 49.37 27.13 50.56 50.4 38.23 50.97 50.38 50.85 29.11 49.68 44.668
IS1003d 58.99 59.54 60.71 59.06 60.58 69.06 69.5 69.52 60.2 59.79 62.695
IS1006b 66.21 42.59 32.96 57.77 44.95 32.18 43.77 50.44 42.2 32.88 44.595
IS1006d 66.95 66.89 65.25 65.41 66.84 66.8 65.78 65.79 66.77 6.57 66.305
IS1008a 11.41 11.06 11.45 12.61 13.43 11.55 10.97 19.96 13.93 11.71 12.808
IS1008b 17.46 12.43 13.19 16.41 13.74 16.27 16.45 13.87 13.03 13.03 14.588
IS1008c 40.79 40.26 41.17 25.27 25.93 40.85 40.61 41.41 40.31 40.85 37.745
IS1008d 37.91 25.91 27.05 26.42 25.83 25.93 38.04 25.33 26.45 25.57 28.444
Average DER for all the audio recordings 41.1545
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Table 3. Average diarization error rate (%) of proposed feature embedding method. The right-most column provides
the average of each audio recording by running the algorithm 10 times. The last row presents the overall average of all
the audio recordings.

Comparison table of DER (%)

Meeting ID Average results Average results Difference
of baseline of FE method (improvement)

IS1000a 42.079 38.03 4.049
IS1001a 42.144 42.05 0.094
IS1001b 48.301 47.975 0.326
IS1001c 52.889 53.951 –1.062
IS1003b 51.681 44.668 7.013
IS1003d 68.443 62.695 5.748
IS1006b 52.65 44.595 8.055
IS1006d 66.849 66.305 0.544
IS1008a 16.172 12.808 3.364
IS1008b 12.075 14.588 –2.513
IS1008c 40.59 37.745 2.845
IS1008d 35.503 28.444 7.059
Average DER 44.1146 41.1545 -
Average improvement (%) 2.96 -

4. Results
Table 1 shows the computed DER for the baseline method (https://github.com/egonina/pycasp) on mixed-
headset audio recordings. Due to random initialization in the GMM based method, which usually ends up at
different local minima, we run the experiment on each audio recording 10 times and compute the average DER.
The right-most column represents the average DER of each audio recording. Finally, overall average DER for
all the audio recordings is computed, which is represented in the last row. It shows that on this subset of 12
audio recordings (5.4 h) the average DER of the baseline method is 44.11%.

Similarly, Table 2 shows the DER of the proposed feature embeddings (FE) method. The proposed
method’s overall average DER is 41.15%, which gives improvement of 2.96% as compared to the baseline
method. Table 3 provides a comparison of average DER for each audio recording and presents improvement
in the DER for each audio recording. The maximum improvement among the individual recordings has been
observed for IS1006b, which is 8.05%. Overall, it has been observed that there is reduction of DER for all the
recordings except two, and overall improvement is very significant.

5. Conclusion
In this paper we proposed a method for unsupervised feature embeddings extraction for speaker diarization. For
this purpose, we made a deep architecture of an autoencoder, where the output of the encoder was selected as
feature embeddings. The experiments showed that those feature embeddings improved the DER of the speaker
diarization system as compared to conventional MFCC features. In particular, acquired features significantly
improved the accuracy by reducing the average DER to 2.9% for collective datasets with maximum improvement
gained up to 8.05% for one of the tested audio recordings.
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