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Abstract: Blood pressure is the pressure by the blood to the vein wall. High blood pressure, which is called silent death, is
the cause of nearly 13% of mortality all over the world. Blood pressure is not only measured in the medical environment,
but the blood pressure measurement is also a need for people in their daily life. Blood pressure estimation systems
with low error rates have been developed besides the new technologies and algorithms. Blood pressure measurements
are differentiated as invasive blood pressure (IBP) measurement and noninvasive blood pressure (NIBP) measurement
methods. Although IBP measurement provides the most accurate results, it cannot be used in daily life because it
can only be performed by qualified medical staff with specialized medical equipment. NIBP measurement is based on
measuring physiological signals taken from the body and producing results with decision mechanisms. Oscillometric,
pulse transit time (PTT), pulse wave velocity, and feature extraction methods are mentioned in the literature as NIBP.
In the oscillometric method of the sphygmomanometer, an electrocardiogram is used in PTT methods as a result of the
comparison of signals such as electrocardiography, photoplethysmography, ballistocardiography, and seismocardiography.
The increase in the human population and worldwide deaths due to the highly elevated blood pressure makes the need
for precise measurements and technological devices more clear. Today, wearable technologies and sensors have been
frequently used in the health sector. In this review article, the invasive and noninvasive blood pressure methods,
including various biosignals, have been investigated and then compared with each other concerning the measurement of
comfort and robust estimation.

Key words: Electrocardiography, photoplethysmography, biosignals, cuffless blood pressure estimation, wearable mea-
surement systems, machine learning

1. Introduction
Deaths related to cardiovascular diseases which correspond to one-third of total deaths have reached about 17
million all over the world. Across the world, 9.4 million people die due to high blood pressure complications every
year [1]. The pressure of the blood in the veins is called blood pressure. High blood pressure is a significant risk
factor for cardiovascular diseases. High blood pressure can be prevented. Although it can easily be measured,
it is generally neglected. When high blood pressure is missed or untreated, heart surgery or dialysis may be
required [2]. When blood pressure reaches high values and stays at these values for a long time, continuous high
pressure is applied to the vessels. This long-term pressure can lead to damage to the structure of vessels. High
blood pressure cannot be noticed and can damage the blood vessels, the brain, the eyes [3], internal organs, and
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the heart. According to the World Health Organization [1], blood pressure disease is called silent, invisible, and
lethal [4]. Increasing industrialization, adverse weather conditions, and working conditions lead to stress and
stress-related cardiovascular disorders [5]. In every society, blood pressure values of older adults are increasing
day by day. The elderly population is more affected by cardiovascular diseases [6] and die from high blood
pressure. The effects of blood pressure on young people are also observed as in the elderly. There is an increase
in the number of young deaths from high blood pressure in the world. Early diagnosis of high blood pressure
is vital. This reveals the necessity of continuous blood pressure measurement. As the blood moves through the
veins, it exerts oscillatory pressure on the vessel walls with the effect of the pressure of the heart.

This pressure is comprised of the following parts:
Systolic blood pressure (SBP): Maximum pressure in the arterial wall,
Diastolic blood pressure (DBP): Minimum pressure on the arterial wall,
Mean blood pressure (MBP): Mean blood pressure in the artery wall.

Table 1. American Heart Association blood pressure categories [7]

Blood pressure category Systolic mmHg And/or Diastolic mmHg
High value Low value

Normal Less than 120 and Less than 80
High 120–129 and Less than 80
Hypertension Stage 1 130–139 or 80–89
Hypertension Stage 2 140 and above or 90 and above
Hypertensive crisis (urgent medical advice) Higher than 180 and/or Higher than 120

The categories of blood pressure are shown in Table 1. However, the diagnosis of blood pressure should be
made by medical experts. Blood pressure may vary according to some environmental factors such as nutrition,
stress, emotional state, the pace of work, blood pressure medication, age, weight, obesity [8], white coat effect [9],
and similar conditions. Measurements should be made under standard conditions, and long-term measurements
are required for diagnosis. Considering these factors affecting blood pressure measurement will help physicians
to diagnose and provide appropriate treatment for the right category of blood pressure diseases.

The methods for cuffless blood pressure measurement have been developed in the literature, and the
designed blood pressure measurement instruments have been classified with different protocols. Blood pres-
sure measurement devices have been classified according to British Hypertension Society (BHS) [10], American
National Standard for Medical Instrumentation ANSI/AAMI SP10: 2002 [11], and European Society of Hyper-
tension (EHS) [12] protocols. Table 2 shows the BHS blood pressure measurement instrument classification.

Table 2. BHS classification criteria.

≤5 mmHg ≤10 mmHg ≤15 mmHg
Class Cumulative surface reading
A 60% 80% 95%
B 50% 75% 90%
C 40% 60% 85%
D Worse than C
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2. Measurement methods for blood pressure

2.1. Invasive blood pressure measurement

William Harvey (1628) discovered that the heart runs like a water pump, and the blood circulates in the veins
[13]. After Harvey’s circulatory discovery, the first experimental study on blood pressure was performed by
Stephen Hales on animals in 1733 [14, 15]. Hales’ animal experiments were invasive [16]; measurements were
made with a manometer placed on the vein.

Figure 1. Philips™ monitor for invasive blood pressure (IBP) and noninvasive blood pressure (NIBP) monitoring. [17]

Figure 1 also shows noninvasive and invasive blood pressure measurement methods. In the invasive
procedure, a catheter is inserted into the artery with surgical intervention. There is no intervention in the
noninvasive method. Invasive blood pressure measurements have been performed by using an arterial catheter
insertion method [18]. With the help of a catheter, blood pressure in arteries is transformed into electronic
signals. Medical personnel is needed to insert the catheter into the vessel and perform calibration of the device.
Measurements are taken in a sterile environment as the catheter is inserted into the vessel. Due to the need for
medical experience, technical staff, and sterile environment [19], daily use of the invasive method is not possible.

Poiseuille measured the intravenous blood pressure in 1828 by using the mercury manometer [20]. Carl
Ludwig developed the kymograph by drawing on Poiseuille’s invention in 1847 [21]. Nowadays, transducers are
used to measure blood pressure in the arteries, and the blood pressure information with the transducer can be
converted into electrical signals and monitored on monitors [22, 23].

2.2. Noninvasive blood pressure measurement

In 1855 [24], Karl von Vierordt attempted to measure blood pressure without surgical intervention for the first
time and made a design. His design could not be used due to some problems. In 1860 [25], Marey improved
Karl von Vierordt’s design and made it usable. Vierordt’s instrument had measurement errors. Basch [26]
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took more accurate measurements using a device that was attached to a wrist cuff and could be filled with
water, for the first time in 1881. In 1896, Riva-Rocci measured the blood pressure with a manometer with an
air fillable cuff that he connected to the arm. In 1905, Korotkov [27, 28] listened to the sounds with the help
of a stethoscope placed behind the air-filled cuff attached to the arm. In Korotkov’s method, when the cuff
compresses the arm, the blood flow stops in the artery, and when the air pressure in the shaft begins to be
lowered, the sound is heard from the stethoscope. In a specific value, the sound is lost. This sound is called
Korotkoff sounds. In the literature, the point that the sound starts to be heard is called systolic blood pressure,
and the point that the sound is lost is called diastolic blood pressure. Korotkov’s system is still in use today.
In Table 3, noninvasive blood pressure measurement methods were compared. Although occlusive techniques
provide more precise measurement results, they are not suitable for long-term blood pressure measurements.

Table 3. Comparison of noninvasive blood pressure measurement methods.

Occlusive

Method Continuity Supervision Occlusive Accuracy Periodicity
Auscultation No Yes Yes Good Discontinuous
Oscillometric No No Yes Good Discontinuous
Tonometric Yes Yes Limited Pure Continuous
Volume-Clamp Yes No Yes Improvement Semicontinuous

Nonocclusive PWV-PTT Yes No No Improvement Continuous

2.2.1. Noninvasive blood pressure measurement using occlusive methods

Controlled blood pressure measurement with a cuff, a stethoscope, and a barometer: The artery passing through
the arm is compressed by the air-inflating cuff, the air is inserted into the cuff, and the blood flow is stopped
[29, 30]. While the pressure in the shaft is being reduced, the sound of blood turbulence (Korotkoff sound) is
listened using a stethoscope. The starting point of the sound gives systolic blood pressure, and the endpoint
gives the diastolic blood pressure. It is a controlled system. A person is needed for the measurement. In
each measurement, systolic and diastolic blood pressure values are measured. Time is needed between the
measurements to restore the vessels. Measurement results may vary according to the hearing threshold level of
the person performing the measuring.

Oscillometric measuring: Using the new technologies and techniques in signal processing, errors stemming
from the person who makes measurements in the Korotkov’s system have been eliminated. Noncontrolled
systems have been developed by locating a pressure sensor in an automatic inflatable cuff which transforms the
pressure data in the artery into electrical signals. The measurement devices called oscillometric measurement
systems allow people to perform blood pressure measurements by themselves [30–33]. Some decision-making
mechanisms are used for converting electrical signals to blood pressure information. In the literature, there are
some artificial machine learning models for the estimation of oscillometric blood pressure.

Tonometric measurement: Some pressure is applied on the wrist or arm [34–42]. Blood is not entirely
stopped as it is in oscillometric and Korotkov’s measurement systems. Pressure sensors measure blood pressure
by applying a certain pressure to the measuring point. Since it does not cut the blood flow entirely in the arm,
it does not cause any physical problems. Placing the pressure sensor directly on the artery is essential. These
measurement systems have some calibration problems.

Volume-Clamp measurement: In the Penáz [43] technique, the pressure is applied to the fingertip using
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a cuff placed at the fingertip. With the photoplethysmography (PPG) sensor placed under the cuff, the volume
of the blood is measured and indicated as pressure information [44–52]. Calibration problems cannot be
standardized due to its high systolic value, and it has some physical effects on the veins for long periods of
use.

2.2.2. Noninvasive blood pressure measurement using nonocclusive methods

Blood flows in the vessels as a wave. When the heart is contracted, it pumps the blood into the vessel. As a result
of this pumping, blood applies pressure on vessel walls. When the heart moves into the relaxation position, the
pressure on the vessel walls decreases. The high-pressure point on the vessel wall applied by the blood is called
the systolic blood pressure, and the minimum pressure point is called diastolic pressure. This fluctuation in
blood pressure excretes through the artery. Moens–Korteweg [53, 54] has discovered that there is a connection
between blood pressure and the way the blood travels in the vessel. In the system, two points are taken, and the
time between two measurements is calculated. These measurements include electrocardiography (ECG) [55, 56],
PPG, phonocardiography (PCG) [57–59], ballistocardiography (BCG) [60–63], seismocardiography (SCG) [64–
66], impedance cardiography (ICG) [67–70], use of electrical impedance tomography (EIT) [71], and ultrasonic
audio signals [72–76]. Figure 2a shows the normal and high blood pressure of the blood in the vessel. Figure 2b
shows the pulse wave velocity (PWV) waveforms formed by the blood in the arteries of the body.

Figure 2. a) Blood pressure in the vein, b) pulse veins and PWV signals [77].

The R point of the ECG signal is taken as the reference point where the pressure starts at the blood
pressure measurements. Other biological signals (ICG, PCG, SCG, IET, BCG, etc.) are taken from the second
point through which the blood pressure wave passes through the artery. The time between the maximum
point of the ECG signal (R peak-reference point) and the maximum point of the PPG signal gives the systolic
blood pressure. The time between the maximum point of the ECG signal (R peak-reference point) and the
minimum point of the PPG signal gives the diastolic blood pressure. The time between the maximum point
of the reference ECG signal and the minimum point of the second signal gives the diastolic blood pressure. In
Figure 3, Poiseuille’s law illustrates that the blood flow depends on the diameter of the vessel, the pressure
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gradient, viscosity, and length of the vessel.

Figure 3. Poiseuille’s law.

The relationship between blood pressure and blood flow with Moens–Korteweg is given below in Eq. (1):

PWV =

√
Ein× h

2ρ× d
. (1)

In the PWV calculations, E is the arterial invasion, h is the arterial wall thickness, and d is the vessel
diameter at the ρ density of the blood. All of these variables can vary from person to person. It is difficult to
take accurate measurements at blood pressure measured with the Moens–Korteweg formula as it is in obstructive
methods. PWV changes depending on age, weight, diseases, cardiovascular system disorders, and alcohol and
drug use. It is seen that the measurement systems made with PWV are not linear. Based on the features above,
the system changes over time. The studies after Moens–Korteweg discovered the similarity between PWV and
blood pressure (BP), and have focused on PWV or PTT-BP regression analysis [78], artificial neural networks
[79, 80], and deep neural networks [82]. Blood pressure measurement is performed by using the ultrasonic
measurement method. However, since the system is complex and not mobilized, it is not suitable for home
use outside the healthcare facilities. Since the occlusive vein technique is not used, PWV-PTT is often used
[82? –85] in clocks, wristbands, wearable health technologies [86] and driver’s blood pressure control devices
[87, 88]. Because occlusive techniques need a waiting time for the second measurement after the first (a single
measurement–single value system), they cannot be used in the cases that require continuous blood measurement.
Since the biological signal measurement is performed continuously in PWV-PTT systems, it provides continuous
blood pressure information [89, 90]. Figure 4 shows the pulse transit time (PTT) signals that are obtained with
biological signals taken at different points of the body. PTT increases as the distance between the measuring
points of the biological signals increases.

Figure 5 shows the historical development of blood pressure measurement. Invasive methods are still used
today with advanced technologies. Noninvasive methods are still developing in the dimensions of portability,
usability, and accurate measurement results.

3. Noninvasive blood pressure measurement system from biosignals
In blood pressure measurement, studies have recently been focusing on noninvasive methods. The most
important factors are the necessity of the surgical environment. Since there are several variables in PWV-
PTT measurements, the error rate of measurements changes from measurement to measurement; the systems
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Figure 4. Pulse transit time (PTT) obtained from different points,

Figure 5. Historical development of blood pressure measurement.

are not linear, and the measurement accuracy is affected negatively. Some of the biological signals such as
ECG and PPG, which are directly related to the blood pressure value, can be extracted, and the regression and
the machine learning methods, including PWV-PTT, estimate the blood pressure. Figure 6 illustrates a blood
pressure measurement block diagram in which occlusive methods are not used. The blood pressure measurement
system consists of biological signal reception, pretreatment, segmentation, feature extraction, and training.
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Figure 6. Blood pressure measurement block diagram.

3.1. Acquisition of biosignals

Electrocardiogram ECG: The ECG signal is a graphical recording of the heart’s electrical activation with
electrodes. The electrical activation of the heart taken from the body surface with electrodes gives information
about the heart cycle. The heart cycle is the circulation of blood through the heart and pumped to the artery.
In the blood pressure measurement, electrical activity is constituted by contraction of the heart ventricles. This
activity is represented by R wave in the ECG signal. The positions of the electrodes used to obtain the ECG
signals are important. The positions of the electrode locations are called leads: I, II, III, aVR, aVL, V1, V2,
etc. The signal types of the field derivations are also distinctive. In ECG-PPG blood pressure measurements,
the R point in the ECG signal is determined as the starting point of PWV. Different ECG leads are used in
the studies. In machine learning methods, not only PWV but also different features of ECG signal are used.
AgCl jelly [91–93] and dry electrodes are used to detect ECG signals [94, 95]. Textile electrodes are also used
in continuous blood pressure measurement methods [96, 97]. Due to their elasticity, the textile electrodes can
minimize the noise caused by motion.

Photoplethysmography (PPG): The light source is directed to the body surface, and the photoreceptor
detects the reflected light. Hemoglobin (Hb) and oxygen-loaded hemoglobin in the blood absorbs an amount of
light emitted from the light source depending on the amount of HbO2 . The difference in wavelengths results
in different rates of absorption [98–102]. The photoreceptor is placed in two different positions, next to the
light source or opposite the light source. In both positions, the light emitted from the source is retained by
the hemoglobin in the blood and oscillates depending on the amount of hemoglobin. The light signal emitted
by photoreceptor is converted into an electrical signal, and PPG information is obtained. Figure 7 shows the
positions of the photoreceptor. PPG signals are impaired by factors such as body movements, daylight, and
breathing. In order to prevent this impairment, the top of the sensor photoreceptor is covered, or a light source
in infrared wavelength is used. The impairments of breathing and body movement are balanced automatically
by changing the voltage of the light source.

3.2. Preprocessing

In the biological signals taken from the body using noninvasive methods, noise and artifacts are mixed depending
on the measurement environment and process. With the electronic filtering method, noises can be decreased
but cannot be fully eliminated. Digital filters can purify the signals from the noise and artifacts. Infinite
impulse response [103], finite impulse response, wavelet [104], Kalman [105], and similar filters are used for
filtering. Shifts may occur in the soles of ECG and PPG signals due to respiration and body movement.
Wavelet decomposition [106] and the median filter [107, 108] are used as base correction algorithms. As the
ECG and PPG signals are measured, sampling frequency equalization is performed if the sampling frequencies
are different. Figure 8 shows the preprocessing block diagram for biosignals.
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Figure 7. Photoreceptor position and Hb, HbO2 wavelengths [77].

Figure 8. The flowchart of the generally used preprocessing steps for biosignals.

3.3. Segmentation
The biological signals which are cleaned by preprocessing are measured continuously. These signals need to be
separated at specific points to show their features. In studies conducted, the R peak of the ECG signal has
been taken as a reference point or segmented to cover the PQRST complex. The PPG signal has also been
segmented after the minimum point of the signal.

3.4. Feature extraction
Although PWV-PTT has frequently been used in blood pressure information estimations, it is not sufficient
alone. By extracting morphological, derivative, frequency, and time domain features [109–114] from the
biological signals taken from the body, higher accuracy rates in blood pressure measurements are obtained.
Some of the features are shown in Table 4. Although increasing the number of features increases the accuracy
of the measurements, it may slow down the system as the number of entries in the measurement system will
increase. The effect of the features on the accuracy of the blood pressure information could be chosen, providing
that the maximum efficiency is obtained with various feature selection methods.

Table 4. Feature extraction from biosignals .
Morphological features Frequency domain features Derivative features Time domain features
Maximum Max frequency 1st derivative maximum point Distortion
Minimum Minimum frequency 2nd derivative maximum Point Openness
Average Main frequency 1st derivative minimum point Pulse factor
Dicrotic notch Standard deviation frequency 2nd derivative minimum Point Kurtosis
Min–max clearance Time attributes of the derivative Mod
Min–max width Median
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3.4.1. Prediction algorithms used for predicting blood pressure using biosignals

Thanks to current technological developments and new algorithms, estimations with high accuracy can be
possible. In machine learning methods, it is provided to produce output values for different inputs by training
the corresponding output values of certain input values. Models such as random forest [115, 116], regression
tree [117], support vector machines [118], K-nearest neighbors, and deep learning [119] are used in the analysis
of blood pressure measurements. There is a standard of IEEE on wearable blood pressure gauges [120]. The
systems using a machine learning method in blood pressure measurement are still currently researched.

4. Selected works in the blood pressure measurement from biosignals

There are oscillometric, PWV-PTT, and feature extraction-based approaches in the noninvasive measurement
of blood pressure. In the oscillometric method, the blood vessel is occluded and then opened gently; the pressure
applied by the blood to the vessel is taken by using sensors. Feature extraction is to use different features such
as the heart rate (HR) which characterizes blood pressure information from biological signals and the PWV
which is the spreading speed of blood in the vessel, to measure blood pressure in different models. Machine
learning methods have been frequently used in the health sector. In this study, machine learning methods that
use oscillometric and biological signals have been compared.

4.1. Machine learning methods used in occlusive blood pressure measurement

The pressure of the blood is measured by detecting the pressure applied by blood to the vessel walls and
converting them to electrical signals [121–123]. Different from the method in which the stethoscope and
barometer are used, the intravenous pressure is provided to produce results with decision mechanism. The
blood pressure is converted to the electric signals by the pressure sensors attached on the cuff oscillates. This
oscillation starts at a certain pressure point and disappears after a certain point. The point at which the
oscillation starts gives the systolic blood pressure and the point where it ends gives the diastolic blood pressure.
In the measurement of oscillometric blood pressure, the blood pressure points are determined by taking the
envelope of the oscillation of the electrical signal generated at the output of the pressure sensor. The signal,
which makes oscillometric oscillation, is sent to decision making mechanisms by subtracting the features such as
the envelope, baseline and upper envelope, slope of the envelope, and surface of the envelope. Since the change
in blood pressure has a nonlinear structure, it is difficult to define it with mathematical models. Instead,
artificial neural networks or machine learning models are used. Table 5 shows the oscillometric blood pressure
measurement methods, machine-learning model, and their features.

The most critical problem in the measurement of blood pressure with the oscillometric method is to stop
the blood flow in the arteries. When the blood flow is stopped, the measurement can be taken once. In order
to measure for the second time, the vessel must come back to the normal position, and the blood flow must
return to normal. Another disadvantage is the feeling of discomfort in the place where the cuff exerts pressure.

4.2. Machine learning methods used in nonocclusive blood pressure measurement

PWV-PTT method is frequently encountered in the literature, but the measurements do not give the desired
results. Since the blood pressure is in the nonlinear structure, PWV-PTT is not enough in itself. As the features
derived from biological signals such as ECG, PPG, and SCG are trained with the machine learning methods,
the accuracy of the blood pressure measurements becomes higher. As shown in Table 6, the blood pressure
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Table 5. Machine learning methods used in blood pressure measurement by occlusion
Models Features Envelope Type Reference
Neural network Morphological, derivative Baseline-upper envelope [124]
PCA-FFNN PCA Baseline-upper envelope [125]
Adaptive-neuro-fuzzy inference (ANFIS) PCA Baseline-upper envelope [126]
FFNN (feedforward NN) Morphologic features Baseline-upper envelope [127]
FFNNs Morphologic features, time Baseline-upper envelope [128]
NN/ANFIS Morphological Baseline-upper envelope [129]
DBN-DN Morphological Baseline-upper envelope [130]
CNN - Time-freq. images [131]
Deep Boltzmann Regression Gaussian fitting, morphology, age.. Baseline-upper envelope [132]
ANN Morphological features Envelope [133, 135]
Gaussian mixture model Morphological, time Baseline-upper envelope [134]

is measured by using the Random forest, support vector regression, decision tree AdaBoost, artificial neural
network, neural network long short-term memory (LSTM), and similar machine learning methods.

Table 6. Machine learning methods used in nonocclusive blood pressure measurement.
Method Features Biological signal Calibration Reference

Regression

PTT (Pulse transit time)

ECG,PPG Necessary [136]
ECG, PPG, ICG Necessary [137]
PPG, APG Necessary [138]
PPG, PCG, ECG Necessary [139]
PPG, dPIR Necessary [140]
PPG, PCG, FSR Necessary [141]

PWV (Pulse wave velocity)
ECG,PPG Necessary [142]
PPG, PPG Necessary [143]

PAT (Pulse arrival time) ECG,PPG Necessary [90]
PPTT (Peripheral pulse transit time) ECG,PPG Necessary [144]
MSTT(Mean slope transit time) PPG Necessary [145]

Convolution NPMA(N point moving avarage) PPG NECESSARY [146]
Data mining PTT (Pulse transit time) PPG, ECG, 1.st Dppg, 2.st Dppg NO [147, 159]

Artificial neural network

Time, width PPG NO [148–150]
Time PPG NO [151]
Window PPG NO [152]
Time, frequency PPG NO [153]
Time BMI, PPG, age, sex Made [154]
Multitaper method (MTM) PPG NO [155]
TIME ABP NO [156]

LSTMN ( Long short-term memory networks)
Time features PPG, ECG NO [82]
Window PPG NO [157, 160–162]

PWV-PTT and PAT are used in regression analysis. PWV-PTT, time, and frequency domain features
are used to measure blood pressure with artificial neural networks. By using at least two of the PWV-PTT
biological signals, the path taken by the signals in the arteries is calculated, and the blood pressure is measured.
Some artificial neural network studies have been used in the training of the neural network in physiological
variables as well as biological signals. The neural networks in which the LSTM model is used, sorting training is
performed as the features in the history of the signal is learned. In this way, the system will give the forgetting
reflex to the sudden refractions, and the accuracy of the model will be raised. Regression analysis requires
calibration in blood pressure measurement. The need for calibration is because blood pressure has nonlinear
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structure, and many variables change the blood pressure measurement. There is no need for calibration in
artificial neural networks because the network is trained by the features extracted from biological signals beside
the nonlinear variables such as PWV-PTT. When regression analysis is performed in PWV-PTT and biological
signals, although the accuracy of blood pressure measurements is high, the related studies are still in the research
phase.

5. Comparison of invasive and noninvasive blood pressure measurement methods

Blood pressure measurement is divided into two categories of invasive and noninvasive methods, both of which
are still used today. The invasive methods are used in hospitals, and the noninvasive methods are used to
measure blood pressure daily at home, office, and medical settings. Although invasive blood pressure measure-
ment methods give the most accurate results, the negative aspects of the system are the necessity of taking
measurements with medical equipment and personnel supervision. Nowadays, blood pressure measurement is
performed in the hospital environment under the supervision of specialists. In the invasive procedure, a catheter
is inserted into the artery, and a pressure sensor measures the blood pressure. The blood pressure information
transferred to the pressure sensor via the catheter is converted to electrical signals. The signals from the pres-
sure sensor are transferred to the measuring device, and the blood pressure information is displayed. Blood
pressure information can be monitored continuously in the patient monitor and other imaging devices in the
invasive method. Since the catheter is inserted through surgical operation, a sterile environment must be pro-
vided. However, the risk of infection always exists. Invasive blood pressure measurement may lead to traumas
in people who have cardiovascular problems and who have impaired biomechanical cardiovascular parameters.
Subcutaneous and skin bleeding may also occur in invasive blood pressure measurements. People with impaired
biomechanical cardiovascular parameters may experience rapid blood loss due to nonstop bleeding and pressure
in the arteries. Noninvasive blood pressure measurement models are divided into two categories: oscillometric
and nonobstructive systems (PWV-PTT and biological signal feature-based). In systems obstructing the vessel,
the artery in the arm or wrist is compressed with a cuff, and the blood flow is stopped. When the pressure
of the cuff is lowered gradually, the blood forms turbulence in the arteries. These sounds are listened using a
stethoscope, and the point where the sound begins shows the SBP and the point where the sound ends shows
the DBP. These systems using stethoscope and pressure gauge are controlled systems. A controller is needed
to take the measurement. Today, people can measure their blood pressure on their own. A pressure sensor is
inserted into a cuff connected to the arm or wrist, and the pressure of the cuff is increased and slowly reduced.
The oscillating signal is generated in the pressure sensor. It is called oscillometric because the pressure sensor
inside the cuff has oscillation. The envelope of the oscillation signals, which are converted into electrical signals
by the pressure sensor, is determined.

The features of the obtained envelope are subtracted, and the blood SBP and DBP values are measured.
The studies in the literature are based on finding the features that describe the obtained envelope best and
to have highly accurate blood pressure measurements by using machine-learning methods. Although the
measurements are highly accurate, because the cuff stops the blood flow in the arteries, it causes negative
consequences for people who have problems in the cardiovascular system. The most significant disadvantage is
that the measurements cannot be made continuously. In one measurement, only one SBP and DBP value can
be taken. There must be some time for the second measurement. The squeezing by the cuff on the arm creates
a discomfort. The arm is compressed to absolute pressure, and the cuff stops the blood flow in the artery.
The nerves moving from the arm to the hand are also squeezed between the vessels and muscles. In long-term
compressions, neural conduction is impaired, and it may cause neural tube defects when used frequently.

3270



ŞENTÜRK et al./Turk J Elec Eng & Comp Sci

In the measurement systems that do not obstruct the vessel, the blood pressure is measured by subtracting
some features from the biological signals (ECG, PPG, SCG, etc.) as well as PWV-PTT. Some systems only use
PWV-PTT, as well as systems using feature extraction from biological signals. PWV-PTT has been started to
be used after it was found that blood pressure in the blood vessel is related to the movement of the blood in
the vessel. As the blood emerges from the heart and proceeds through the vein, it applies different amounts
of pressure to the vessel walls. Moens–Korteweg showed that blood pressure depends on the density of the
blood, the vessel diameter, the vessel thickness and the elasticity of the vessel. PWV-PTT is the measurement
of blood pressure which uses the measurements taken from two points in the arteries. Measurements are made
using signal pairs such as ECG-PPG, ECG-SCG, ECG-ICG, and PPG-PPG. The features extracted from the
biological signals are also used in blood pressure measurement. They are used in the regression analysis as
well. The biological signaling characteristics trained in artificial neural networks provide high accuracy in blood
pressure measurement. The main problem of the nonobstructive systems is that the blood pressure has a
nonlinear structure and PWV-PTT changes from person to person. The blood pressure measurements that do
not block the vessels are still being studied. The studies have not reached any international standard yet.

The blood pressure measurement systems that do not block the vascular access have begun to be used
in wearable technologies. Wearable technologies come to the forefront in the performance measurements of
athletes, in space surveys, and follow-up of patients suffering from tension. Their continuous measurement
capabilities and being wearable and transportable make the blood pressure measurement systems that do not
block the vessel useful. Since the vessel is not blocked, no discomfort can be mentioned.

6. Discussion and future directions
In the measurement of blood pressure, in invasive systems, improving the pressure sensor connected to the
catheter, improving the measurement technologies, and the designs of displays are being investigated. Instead
of manual systems, more automatic systems have been used. Another research area is the autonomous systems,
which make the calibration themselves. In noninvasive systems, although the techniques that obstruct the
vascular pathway are not being able to make continuous measurements and their negative comfort effects,
they are more suitable for home use since they provide more accurate results. The unsupervised systems
have been improved and become widespread. Showing blood pressure values on display, audible warning
systems, unsupervised blood pressure measurement has increased the home use of obstructive systems. When
the envelope of the oscillometric signal is better characterized and more accurate measurements are taken, trust
in oscillometric systems will increase. In nonobstructive systems, improving the sensors used in the measurement
of biological signals, the designs of the electronic and the digital filters used, the performances of the trained
networks will affect the accuracy of blood pressure measurement. Being continuous, wearable, and portable
make the nonobstructive systems more preferable. Table 7 presents the performance measures of machine
learning methods used in nonocclusive blood pressure measurement. Table 8 shows the performance measures
of machine learning methods used in occlusive blood pressure measurement.

As can be seen from Table 7, amongst the machine learning methods used in SBP and DBP nonocclusive
blood pressure estimation, the performance of LSTM network [155] is high. In Table 8, convolutional neural
network [131] and deep Boltzmann regression [132] provide good results for predicting SBP and DBP with
machine learning methods used as occlusive blood pressure measurement.

The BHS and ANSI standards for blood pressure measurement devices are established. Blood pressure
measurement devices were grouped as A, B, C, D classes in BHS. If a device is in group A, it means that the
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Table 7. The performance measures of machine learning methods used in nonocclusive blood pressure measurement.

Measured criterion
Systolic blood Diastolic blood

ReferencePressure (SBP) Pressure (DBP)
Mean error ±

0.07(±1.46) –0.14(±1.72) [135](Standard deviation)
Mean ± (STD) –2.6256(±6.7459) –0.7901(±6.1777) [136]
Mean ± (STD) 2.13(±5.32) N/A [138]
Mean ± (STD) 0.12(±6.15) 1.03(±5.15) [139]
Mean ± (STD) 3.22(±8.02) 3.13(±4.82) [140]
Mean ± (STD) 7.47(±11.08) 3.56(±4.53) [141]
Mean ± (STD) 8.7(±3.2) 4.4(±1.6) [142]
Mean Error 6.71 4.54 [144]
Mean ± (STD) –0.91(±3.84) –0.36(±3.36) [145]
Mean ± (STD) –1.148(±5.79) –1.194(±5.29) [147]
Mean ± (STD) 6.86(±8.96) 6.34(±8.45) [148]
Mean ± (STD) 2.32(±3.7) 1.89(±2.8) [149]
Mean ± (STD) 4.5(±6.13) 3.4(±3.37) [150]
Mean ± (STD) 3.8(±3.46) 2.21(±2.09) [151]
Root mean square error 0.784 0.489 [152]
Mean ± (STD) 2.91(±3.76) 2.76(±1.94) [155]
Root mean square error 2.751 1.604 [156]
Root mean square error 52.906 32.558 [157]
Root mean square error 3.63 1.48 [158]

Table 8. The performance measures of machine learning methods used in occlusive blood pressure measurement.

Measured criterion
Systolic blood Diastolic blood

ReferencePressure (SBP) Pressure (DBP)
Standard deviation (STD) 5.08 6.09 [124]
Standard deviation (STD) 5.98 7.02 [125]
Standard deviation (STD) 10.258 7.7 [126]
Standard deviation (STD) 9.9 7.34 [127]
Standard deviation (STD) 4.88 10.02 [128]
Standard deviation (STD) 5.81 5.78 [129]
Standard deviation (STD) 6.35 5.28 [130]
Standard deviation (STD) 3.7 3.2 [131]
Standard deviation (STD) 1.6 1.1 [132]
Standard deviation (STD) 13.1 7.3 [134]

device makes sensitive and accurate measurements. According to ANSI, a blood pressure measurement device
should have a maximum ±5 mmHg error in the measurements. The blood pressure measuring devices designed
should be evaluated according to their continuous measurement, wearability, portability, speed, and comfort

3272



ŞENTÜRK et al./Turk J Elec Eng & Comp Sci

features. Nowadays, blood pressure can be measured via mobile phones, watches, wristbands, T-shorts, hats,
headgears, dresses, and belts. In the future, dissemination of blood pressure measurement will help to decrease
the deaths due to hypertension.

References

[1] World Health Organization. A Global brief on Hypertension. World Health Day 2013.

[2] Mills KT, Bundy JD, Kelly TN. Global disparities of hypertension prevalence and control: a systematic analysis of
population-based studies from 90 countries. Circulation 2016; 134(6): 441-450.

[3] Bhargava M, Ikram MK, Wong TY. How does hypertension affect your eyes? Journal of Human Hypertension 2012;
26: 71-83.

[4] World Health Organization. World Health Statistics 2015.

[5] Houlihan SJ, Simpson SH, Cave AJ. Hypertension treatment and control rates. Canadian Family Physician 2009;
55: 735-741.

[6] Jackson CF, Wenger NK. Cardiovascular disease in the elderly. Revista Espanola de Cardiologia 2011; 64(8): 697-
712.

[7] American Heart Association. Healthy, and unhealthy blood pressure ranges, 2019.

[8] Hall ME, Wang Z, do Carmo J, Kamimura D, Hall JE. Obesity and metabolic syndrome hypertension. In: Berbari
A, Mancia G (editors). Disorders of Blood Pressure Regulation. Updates in Hypertension and Cardiovascular
Protection. Switzerland: Springer, Cham 2018; pp. 705-722.

[9] Cengiz K. Beyaz önlük ( white coat) hipertansiyonu. Offical Journal of the Turkish Nephrology Association 2000;
2: 75-78 (in Turkish).

[10] O’Brien E, Petrie J, Littler W. The British hypertension society protocol for the evaluation of blood pressure
measuring devices. Journal of Hypertension 1993; 11: 43-63.

[11] Assocation for the Advancement of Medical Intrumentation. Manual, electronic or automated sphygmomanometers.
Arlington, VA, USA. American National Standard ANSI/AAMI SP10: 2002.

[12] O’Brien E, Pickering T, Asmar R, Myers M. Working group on pressure monitoring of the European Society of
Hypertension international protocol for validation of blood pressure mesuring devices in adults. Blood Pressure
Monitoring 2002; 7(1): 3-17.

[13] Alison S. The Harvey experiments. British Medical Journal; London 2018; 360: k346. doi: 10.1136/bmj.k346

[14] Akbar S, Makati D, Ahmad M, Suleiman H. Exploring the utility of pulse wave analysis in patients with uncontrolled
brachial blood pressures in the routine outpatient setting. Journal of Nephrology Research 2018; 4: 146-152.

[15] Eknoyan G. Stephen Hales: the contributions of an enlightenment physiologist to the study of the kidney in health
and disease. Giants in Nephrology 2016; 33: 1-7.

[16] Hall WD. Stephen Hales: theologian, botanist, physiologist, discoverer of hemodynamics. Clinical Cardiology. 1987;
10: 487-489.

[17] Romagnoli S, Ricci Z, Quattrone D. Accuracy of invasive arterial pressure monitoring in cardiovascular patients:
an observational study. Critical Care, 2014; 18: 644.

[18] Weems JJ, Chamberland ME. Candida parapsilosis fungemia associated with parenteral nutrition and contaminated
blood pressure transducers. Journal Of Clinical Microbiology, 1987; 25(6): 1029-1032.

[19] Rader F, Victor RG. The slow evolution of blood pressure monitoring but wait, not so fast! JACC: Basic to
Translational Science 2017; 2(6): 643-645.

[20] Kuhtz-Buschbecka JP, Schaeferb J. Mechanosensitivity: From Aristotle’s sense of touch to cardiac mechano-electric
coupling. Progress in Biophysics and Molecular Biology 2017; 130: 126-131.

3273



ŞENTÜRK et al./Turk J Elec Eng & Comp Sci

[21] Rook WH, Turner JD. Analysis of damping characteristics of arterial catheter blood pressure monitoring in a large
intensive care unit. Southern African Journal of Critical Care 2017; 33: 8-10.

[22] Lowe GD, Willshire RJ. Method and apparatus for hemodynamic monitoring using combined blood flow and blood
pressure measurement. United States Patent Patent No: US 9649037B2.

[23] Muntner P, Carey RM, Jamerson K. Rationale for ambulatory and home blood pressure monitoring thresholds in
the 2017 American college of cardiology/American heart association guideline. Hypertension. 2019; 73: 33-38.

[24] Kai K, Baker PD. Perioperative noninvasive blood pressure monitoring. Anesthesia & Analgesia 2018; 127: 408-411.

[25] Filler G, Sharma AP. Methodology of Casual Blood Pressure Measurement. In: Flynn J, Ingelfinger J, Redwine K.
(eds) Pediatric Hypertension, Switzerland: Springer, Cham 2017; pp. 1-17.

[26] Celler BG, Le P. Improving the quality and accuracy of non-invasive blood pressure measurement by visual
inspection and automated signal processing of the Korotkoff sounds. Institute of Physics and Engineering in Medicine
2017; 38(6): 1006-1022.

[27] Feenstra RK, Allaart CP. Accuracy of oscillometric blood pressure measurement in atrial fibrillation. Blood Pressure
Monitoring 2018; 23(2): 59-63.

[28] Duncombe SL, Voss C. Oscillometric and auscultatory blood pressuremeasurement methods in children: a systematic
review and meta-analysis. Journal of Hypertension 2017; 35: 213-224.

[29] Stergiou GS, Palatini P. Blood pressure monitoring: theory and practice. European Society of Hypertension Working
Group on Blood Pressure Monitoring and Cardiovascular Variability Teaching Course Proceedings. Blood Pressure
Monitoring 2018; 23: 1-8.

[30] Rotch AL, Dean JO, Kendrach MG. Blood pressure monitoring with home monitors versus mercury sphygmo-
manometer. Annals of Pharmacotherapy 2011; 35(7-8): 817-822.

[31] Raja P, Jalali A. Accuracy of oscillometric blood pressure algorithms in healthy adults and in adults with cardio-
vascular risk factors. Blood Pressure Monitoring 2019; 24: 33-37.

[32] Šelmytė–Besusparė A, Barysienė J. Auscultatory versus oscillometric blood pressure measurement in patients with
atrial fibrillation and arterial hypertension. BMC Cardiovascular Disorder 2017; 17: 87. doi: 10.1186/s12872-017-
0521-6

[33] Sun J, Chen H. Continuous blood pressure monitoring via non-invasive radial artery applanation tonometry and
invasive arterial catheter demonstrates good agreement in patients undergoing colon carcinoma surgery. Journal of
Clinical Monitoring Computing 2017; 31: 1189-1195.

[34] Harju J, Vehkaoja A. Comparison of non-invasive blood pressure monitoring using modified arterial applanation
tonometry with intra-arterial measurement. Journal of Clinical Monitoring and Computing 2018; 32: 13-22.

[35] Trinkmann F, Benck U. Comparison of non-invasive central blood pressure measurements using applanation tonom-
etry and automated oscillometric radial pulse wave analysis. European Heart Journal 2017; 38. doi: 10.1093/eur-
heartj/ehx493.P5454

[36] Jain P, Muthiah K. Invasive validation of the SphygmoCor XCEL oscillometric-tonometric blood pressure system
in patients with heartware HVAD. American Heart Association 2018;138:A11004.

[37] Kanno YOY, Takenaka T. Estimated aortic blood pressure based on radial artery tonometry underestimates directly
measured aortic blood pressure in patients with advancing chronic kidney disease staging and increasing arterial
stiffness. International Society of Nephrology 2017; 91: 757.

[38] Greiwe G, Hoffmann S. Comparison of blood pressure monitoring by applanation tonometry and invasively assessed
blood pressure in cardiological patients. Journal of Clinical Monitoring and Computing 2018; 32: 817-823.

[39] Wenbo GU. Method and device for tonometric blood pressure measurement. United States Patent, US9931076 B2.

3274



ŞENTÜRK et al./Turk J Elec Eng & Comp Sci

[40] Scalise L, Cosoli G. The measurement of blood pressure without contact: An LDV-based technique. In: IEEE 2017
MeMeA International Symposium on Medical Measurements and Applications; Rochester, MN, USA; 2017. pp.
245-250.

[41] Mehrotra S, Mikhelson I, Sahakian AV. Tonometry Based Blood Pressure Measurements Using a Two-Dimensional
Force Sensor Array. United States Patent Application Publication, US 2017 / 0367596 A1.

[42] Penáz J. Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiological
Research 1992; 41(1): 5-10.

[43] Schramm P, Tzanova I, Gööck T. Noninvasive hemodynamic measurements during neurosurgical procedures in
sitting position. Journal of Neurosurgical Anesthesiology 2017; 29: 251-257.

[44] Meidert AS, Nold JS. The impact of continuous non-invasive arterial blood pressure monitoring on blood pressure
stability during general anaesthesia in orthopaedic patients. European Journal of Anaesthesiology 2017; 34: 716-722.

[45] Kakuta N, Tsutsumi YM, Murakami C. Effectiveness of using non-invasive continuous arterial pressure monitoring
with ClearSight in hemodynamic monitoring during living renal transplantation in a recipient: a case report. The
Journal of Medical Investigation 2018; 65: 139-141.

[46] Nicklas JY, Beckmann D, Killat J. Continuous noninvasive arterial blood pressure monitoring using the vascular
unloading technology during complex gastrointestinal endoscopy: a prospective observational study. Journal of
Clinical Monitoring and Computing 2019; 33: 25-30.

[47] Michard F, Liu N, Kurz A. The future of intraoperative blood pressure management. Journal of Clinical Monitoring
and Computing 2018; 32: 1–4.

[48] Nitzan M, Slotki I, Shavit L. More accurate systolic blood pressure measurement is required for improved hyper-
tension management: a perspective. Medical Devices 2017; 10: 157-163.

[49] Wagner JY, Körner A, Schulte-Uentrop L. A comparison of volume clamp method-based continuous noninvasive
cardiac output (CNCO) measurement versus intermittent pulmonary artery thermodilution in postoperative car-
diothoracic surgery patients. Journale of Clincal Monitoring and Computing 2018; 32: 235-244.

[50] Michard F, Sessler DI, Saugel B. Non-invasive arterial pressure monitoring revisited. Intensive Care Medicine 2018;
44: 2213-2215.

[51] Berkelmans GFN, Kuipers S, Westerhof BE. Comparing volume-clamp method and intra-arterial blood pressure
measurements in patients with atrial fibrillation admitted to the intensive or medium care unit. Journal of Clinical
Monitoring and Computing 2018; 32: 439-446.

[52] Westerhof N, Stergiopulos N, Noble MIM. Wave travel and pulse wave velocity: An aid for clinical research and
graduate education. Snapshots of Hemodynamics. Switzerland: 2019, pp. 165-173.

[53] Ma Y, Choi J, Hourlier-Fargette A, Xue Y, Chung HU, Lee JY. Relation between blood pressure and pulse wave
velocity for human arteries. Proceedings of the National Academy of Sciences of the USA 2018; 115: 11144-11149.

[54] McCombie D, Zhang G. System for calibrating a blood pressure measurement based on vascular transit of a pulse
wave. United States Patent, US10004409 B2.

[55] Hulpke-Wette M, Göhler A, Hofmann E, Küchler G. Cuff-less blood pressure measurement using the pulse transit
time - a comparison to cuff-based oscillometric 24 hour blood pressure measurement in children. Journal of
Hypertension 2018; 36: 73.

[56] Narasimhan R. Cuffless Blood Pressure Measurement Using Handheld Device. United States Patent Application
Publication, US 2018 / 0035949 A1.

[57] Golberg M, Ruiz-Rivas J, Polani S, Beiderman Y, Zalevsky Z. Large-scale clinical validation of noncontact and
continuous extraction of blood pressure via multipoint defocused photonic imaging. Applied Optics 2018; 57: 45-51.

[58] Ogawa K, Koyama S, Ishizawa H. Simultaneous measurement of heart sound, pulse wave and respiration with
single fiber bragg grating sensor. In: IEEE 2018 MeMeA International Symposium on Medical Measurements and
Applications Rome, Italy; 2018. pp. 1-5.

3275



ŞENTÜRK et al./Turk J Elec Eng & Comp Sci

[59] Kim CS, Carek AM, Inan OT, Mukkamala R, Hahn JO. Ballistocardiogram-based approach to cuffless blood
pressure monitoring: proof of concept and potential challenges. IEEE Transactions on Biomedical Engineering
2018; 65: 2384-2391.

[60] Su BY, Enayati M, Ho KC, Skubic M. Monitoring the relative blood pressure using a hydraulic bed sensor system.
IEEE Transactions on Biomedical Engineering 2019; 66: 740-748.

[61] Rajala S, Ahmaniemi T, Lindholm H, Müller K, Taipalus T. A chair based ballistocardiogram time interval
measurement with cardiovascular provocations. In: 2018 EMBC 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society; Honolulu, Hawaii; 2018. pp. 5685-5688.

[62] Yousefian P, Shin S, Mousavi A. Data mining investigation of the association between a limb ballistocardiogram
and blood pressure. Physiological Measurement 2018;39: 075009.

[63] Yee SY, Peters C, Rocznik T, Henrici F, Laermer F. Blood Pressure and Cardiac Monitoring System and Method
Thereof. United States Patent Application Publication, US 2018 / 0192888 A1.

[64] Lee J, Sohn JJ, Park J, Yang SM, Lee S, Kim HC. Novel blood pressure and pulse pressure estimation based on
pulse transit time and stroke volume approximation. Biomedical Engineering OnLine 2018; 17: 81.

[65] Peng Y-J, Prabhakar NR. Measurement of sensory nerve activity from the carotid body. Hypoxia 2018; 1742:
115-124.

[66] Liu J, Yan BP, Zhang Y-T, Ding X-R, Su P, Zhao N. Multi-wavelength photoplethysmography enabling continuous
blood pressure measurement with compact wearable electronics. IEEE Transactions on Biomedical Engineering
2019; 66(6): 1514-1525.

[67] Wang Y, Liu Z, Ma S. Cuff-less blood pressure measurement from dual-channel photoplethysmographic signals via
peripheral pulse transit time with singular spectrum analysis. Physiological Measurement 2018; 39(2): 025010.

[68] Berzigotti A, Bosch J. Hepatic Venous Pressure Measurement and Other Diagnostic Hepatic Hemodynamic Tech-
niques. In: Berzigotti A, Bosch J (editors). Diagnostic Methods for Cirrhosis and Portal Hypertension. Cham,
Switzerland: Springer, 2018, pp. 33-48.

[69] Liu SH, Zhu ZY, Lai SH, Huang TS. Using the photoplethysmography technique to improve the accuracy of LVET
measurement in the ICG technique. In: Pan JS, Ito A, Tsai PW, Jain L (editors). Recent Advances in Intelligent
Information Hiding and Multimedia Signal Processing. IIH-MSP 2018. Smart Innovation, Systems and Technologies,
vol 110. Springer, Cham Switzerland, 2018, pp. 183-190.

[70] Liu SH, Wang JJ, Su CH, Cheng DC. Improvement of left ventricular ejection time measurement in the impedance
cardiography combined with the reflection photoplethysmography. Sensors 2018; 18(9): 3036.

[71] Wang C, Li X, Hu H. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature
Biomedical Engineering 2018; 2: 687-695.

[72] Masunishi K, Fukuzawa H, Fuji Y, Yuzawa A, Okamoto K. Pressure sensor, microphone, ultrasonic sensor, blood
pressure sensor, and touch panel. United States Patent, US 9952112 B2.

[73] Verster A, Tung N, Ong WK, Sieu B. Development of an ultrasonic tourniquet system for surgical applications.
In: 2014 CMBEC37 Canadian Medical and Biological Engineering Society. Vancouver, British Columbia, Canada;
2014. pp. 1-4.

[74] Szaluś-Jordanow O, Czopowicz M, Moroz A. Comparison of oscillometric, Doppler and invasive blood pressure
measurement in anesthetized goats. PLOS ONE May 2018; 13(5): e0197332.

[75] France L, Vermillion M, Garrett CM. Comparison of direct and indirect methods of measuring arterial blood pressure
in healthy male Rhesus Macaques (Macaca mulatta). Journal of the American Association for Laboratory Animal
Science 2018; 57: 64-69.

[76] Kao YH, Paul C, Wey CL. Towards maximizing the sensing accuracy of an cuffless, optical blood pressure sensor
using a high-order front-end fitler. Microsystem Technologies 2018; 24: 4621-4630.

3276



ŞENTÜRK et al./Turk J Elec Eng & Comp Sci

[77] Schönle PC. A Power efficient spectrophotometry & PPG integrated circuit for mobile medical instruments. PhD
Zürich, Switzerland, 2017.

[78] Tu TY, Paul C, Chao P. Continuous blood pressure measurement based on a neural network scheme applied with
a cuffless sensor. Microsystem Technologies 2018; 24: 4539-4549.

[79] Şentürk Ü, Yücedağ İ, Polat K. Cuff-less continuous blood pressure estimation from Electrocardiogram(ECG) and
Photoplethysmography (PPG) signals with artificial neural network. In: IEEE 2018 SIU 26th Signal Processing and
Communications Applications Conference; İzmir, Turkey; 2018. pp. 1-4.

[80] Lo PWF, Li TXC, Wang J, Cheng J, Meng QHM. Continuous systolic and diastolic blood pressure estimation
utilizing Long Short-Term Memory Network. In: IEEE 2017 EMBC 39th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society; Jeju Island, Korea; 2017. pp. 1853-1856.

[81] Nabeel PM, Karthik S, Joseph J, Sivaprakasam M. Arterial blood pressure estimation from local pulse wave velocity
using dual-element photoplethysmograph probe. IEEE Transactions on Instrumentation and Measurement 2018; 67:
1399-1408.

[82] Pflugradt M, Geissdoerfer K, Goernig M, Orglmeister R. A fast multimodal ectopic beat detection method applied
for blood pressure estimation based on pulse wave velocity measurements in wearable sensors. Sensors 2017; 17:
158.

[83] Nathan V, Thomas SS, Jafari R. Smart watches for physiological monitoring: a case study on blood pressure
measurement. In: Nadin M (editors) Anticipation and Medicine. Cham, Switzerland: Springer, 2016, pp. 231-252.

[84] Morris D, Saponas TS, Villar N. Wearable sensing band. United States Patent, US9848 825 B2.

[85] Zhang Q, Zhou D, Zeng X. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm
electrocardiogram and photoplethysmogram signals. BioMedical Engineering OnLine 2017; 16(1): 23.

[86] Banet M, Dhillon M, McCombie D. Body-worn system for measuring continuous non-invasive blood pres-
sure(cNIBP). United States Patent, US9668656B2.

[87] Arakawa T, Sakakibara N, Kondo S. Development Of non-invasive steering-type blood pressure sensor for driver
state detection. International Journal of Innovative Computing 2018; 14: 1301–1310.

[88] Arakawa T. Recent research and developing trends of wearable sensors for detecting blood pressure. Sensors 2018;
18: 2772.

[89] Axelrod BW, Siemons AH. Blood pressure measurement device wearable by a patient. United States Patent
Application Publication, US 2018 / 0289271 A1.

[90] Tang Z, Tamura T, Sekine M, Huang M. A chair–based Unobtrusive cuffless blood pressure monitoring system
based on pulse arrival time. IEEE Journal of Biomedical and Health Informatics 2017; 21: 1194–1205.

[91] Tallgrena P, Vanhataloab S, Kailaa K, Voipio J. Evaluation of commercially available electrodes and gels for
recording of slow EEG potentials. Clinical Neurophysiology 2005; 116: 799-806.

[92] Chi YM, Jung T P, Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: Methodological review.
Biomedical Engineering 2010; 3: 106-119.

[93] Griss P, Tolvanen-Laakso HK, Meriläinen P, Stemme G. Characterization of micromachined spiked biopotential
electrodes. IEEE Transactions On Biomedical Engineering 2002; 49: 597-604.

[94] Meziane N, Webster JG, Attari M, Nimunkar AJ. Dry electrodes for electrocardiography. Physiological Measurement
2013; 34(9): 47-69.

[95] Diker A, Cömert Z, Avcı E. A diagnostic model for identification of myocardial infarction from electrocardiography
signals. Journal of Science and Technology 2017; 7(2): 132-139.

[96] Pola T, Vanhalai J. Textile electrodes in ECG measurement. In: 3rd International Conference on Intelligent Sensors
Sensor Networks and Information; Melbourne, Australia; 2007. pp. 635-639.

3277



ŞENTÜRK et al./Turk J Elec Eng & Comp Sci

[97] Marozas V, Petrenas A, Daukantas S, Lukosevicius A. A comparison of conductive textile-based and silver/silver
chloride gel electrodes in exercise electrocardiogram recordings. Journal of Electrocardiology 2011; 44: 189-194.

[98] Roggan A, Friebel M, Dörschel K, Hahn A, Müller G. Optical properties of circulating human blood in the
wavelength range 400–2500 nm. Journal Of Biomedical Optics 1999; 4: 36-46.

[99] Wood BR, McNaughton D. Raman excitation wavelength investigation of single red blood cells in vivo. Journal Of
Raman Spectroscopy 2002; 33: 517-523.

[100] Foroughian F, Bauder CJ, Fathy AE, Theilmann PT. The wavelength selection for calibrating non-contact detection
of blood oxygen saturation using imaging photoplethysmography. In: 2018 USNC-URSI NRSM United States
National Committee of URSI National Radio Science Meeting; Colorado, USA; 2018. pp. 1-2.

[101] Kao YH, Chao P, Hung Y, Wey CL. A new reflective PPG LED-PD sensor module for cuffless blood pressure
measurement at wrist artery. In: 2017 IEEE Sensors; Glasgow, UK; 2017. pp. 1-3.

[102] Moço AV, Stuijk S, de Haan G. New insights into the origin of remote PPG signals in visible light and infrared.
Scientific Reports 2018; 8(1): 8501.

[103] Chu CT, Ho CC, Chang CH, Ho MC. Non-invasive optical heart rate monitor base on one chip integration
microcontroller solution. In: 2017 ISNE 6th International Symposium on Next Generation Electronics; Keelung,
Taiwan; 2017. pp. 1-4.

[104] Kalantar G, Mukhopadhyay SK, Marefat F, Mohseni P, Mohammadi A. Wake-Bpat: Wavelet-based adaptive
kalman filtering for blood pressure estimation via fusion of pulse arrival times. In: IEEE 2018 ICASSP International
Conference on Acoustics, Speech and Signal Processing; Calgary, Alberta, Canada; 2018. pp. 945-949.

[105] Zhang Q, Chen X, Fang Z. Cuff-less blood pressure measurement using pulse arrival time and a Kalman fitler.
Journal of Micromechanics and Microengineering 2017; 27: 1-5.

[106] Saleem S, Vucina D, Sarafis Z. Wavelet decomposition analysis is a clinically relevant strategy to evaluate cere-
brovascular buffering of blood pressure after spinal cord injury. American Journal Physiology Heart Circulation
Physiology 2018; 314: 1108-1114.

[107] Abderahman HN, Dajani HR, Bolic M, Groza VZ. An integrated blood pressure measurement system for suppres-
sion of motion artifacts. Computer Methods and Programs in Biomedicine 2017; 145: 1-10.

[108] Mills E, O’Brien TK, Fortin J, Maier K. Device and method for the continuous non-invasive measurement of blood
pressure. United States Patent, US9615756B2.

[109] Allen J, Murray A. Age-related changes in peripheral pulse timing characteristics at the ears, fingers and toes.
Journal of Human Hypertension 2002; 16: 711–717.

[110] Cömert Z, Kocamaz AF. Open-access software for analysis of fetal heart rate signals. Biomedical Signal Processing
and Control 2018; 45: 98-108.

[111] Diker A, Cömert Z, Avci E, Velappan S. Intelligent system based on Genetic Algorithm and support vector
machine for detection of myocardial infarction from ECG signals. In: IEEE 2018 SIU 26th Signal Processing
and Communications Applications; İzmir, Turkey; 2018; pp. 1-4.

[112] Lee S, Park CH, Chang JH. Improved gaussian mixture regression based on pseudo feature generation using
bootstrap in blood pressure estimation. IEEE Transactions on Industrial Informatics 2016; 12: 2269-2280.

[113] Miao F, Fu N, Zhang YT, Ding XR. A novel continuous blood pressure estimation approach based on data mining
techniques. IEEE Journal Of Biomedical And Health Informatics 2017; 21: 1730-1740.

[114] Cömert Z, Kocamaz AF, Subha V. Prosnostic model based on imagebased time frequency features and genetic
algorithm for fetal hypoxia assessment. Computers in Biology and Medicine 2018; 99: 85-97.

[115] Sanuki H, Fukui R, Inajima T, Warisawa S. Cuff-less calibration-free blood pressure estimation under ambulatory
environment using pulse wave velocity and photoplethysmogram signals. In: 2017 BIOSTEC 10th International
Joint Conference on Biomedical Engineering Systems and Technologies; Porto, Portugal; 2017. pp. 42-48.

3278



ŞENTÜRK et al./Turk J Elec Eng & Comp Sci

[116] Yoshioka M, Bounyong S. Regression-forests-based estimation of blood pressure using the pulse transit time
obtained by facial photoplethysmogram. In: 2017 IJCNN International Joint Conference on Neural Networks;
Anchorage, Alaska; 2017. pp. 3248-3253.

[117] Januário LH, Ramos ACB, Souza PO. Relationship between upper arm muscle index and upper arm dimensions in
blood pressure measurement in symmetrical upper arms: Statistical and classification and regression tree analysis.
In: Rocha Á, Adeli H, Reis L, Costanzo S (editors) Trends and Advances in Information Systems and Technologies.
WorldCIST’18 2018. Advances in Intelligent Systems and Computing. Switzerland: Springer, Cham 2018, pp. 1178-
1187.

[118] Kachuee M, Kiani MM, Mohammadzade H, Shabany M. Cuffless blood pressure estimation algorithms for contin-
uous health-care monitoring. IEEE Transactions on Biomedical Engineering 2017; 64: 859–869.

[119] Radha M, de Groot K, Rajaniz N, Wong CCP. Estimating blood pressure trends and the nocturnal dip from
photoplethysmography. Physiological measurement 2019; 40: 025006.

[120] IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices, IEEE Std. 1708-2014, 2014.

[121] Liu J, Cheng HM, Chen CH, Sung SH. Patient-specific oscillometric blood pressure measurement. IEEE Transac-
tions on Biomedical Engineering 2016; 63: 1220-1228.

[122] Hung CH, Bai YW, Tsai RY. Design of blood pressure measurement with a health management system for the
aged. IEEE Transactions on Consumer Electronics 2012; 58: 619-625.

[123] Tanaka S, Gao S, Nogawa M, Yamakoshi KI. Noninvasive measurement of instantaneous, radial artery blood
pressure. IEEE Engineering in Medicine and Biology Magazine 2005; 24: 32-37.

[124] Colak S, Isik C. Blood pressure estimation using neural networks. In: IEEE 2004 CIMSA lntenational Conference
an Computational lntelligence for Measurement Systems and Applications; Boston, MA, USA; 2004. pp. 21-25.

[125] Forouzanfar M, Dajani HR, Groza VZ, Bolic M. Oscillometric blood pressure estimation using principal component
analysis and neuraln networks. In: IEEE 2009 TIC-STH Toronto International Conference Science and Technology
for Humanity; Toronto, Canada; 2009. pp. 981-986.

[126] Forouzanfar M, Dajani HR, Groza VZ, Bolic M. Adaptive neuro-fuzzy inference system for oscillometric blood
pressure estimation. In: IEEE 2010 International Workshop on Medical Measurements and Applications; Bari,
Italy; 2010. pp. 125-129.

[127] Forouzanfar M, Dajani HR, Groza VZ, Bolic M. Comparison of feed-forward neural network training algorithms
for oscillometric blood pressure estimation. In: 4th International Workshop on Soft Computing Applications; Arad,
Romenia; 2010. pp. 119-123.

[128] Forouzanfar M, Dajani HR, Groza VZ, Bolic M. Feature-based neural network approach for oscillometric blood
pressure estimation. IEEE Transactions on Instrumentation and Measurement 2011; 60: 2786-2796.

[129] Forouzanfar M, Dajani HR, Groza VZ, Bolic M. Model-based oscillometric blood pressure estimation. In: IEEE
2014 MeMeA International Symposium on Medical Measurements and Applications; Lisbon, Portugal; 2014. pp.
1-6.

[130] Lee S, Chang JH. Oscillometric blood pressure estimation based on deep learning. IEEE Transactions On Industrial
Informatics 2017; 13: 461-472.

[131] Pan F, He P, Liu C, Li T, Murray A et al. Variation of the Korotkoff stethoscope sounds during blood pressure
measurement: Analysis using a convolutional neural network. IEEE Journal Of Biomedical And Health Informatics
2017; 21: 1593-1598.

[132] Lee S, Chang JH. Deep Boltzmann regression with mimic features for oscillometric blood pressure estimation.
IEEE Sensors Journal 2017; 17: 5982-5993.

[133] Anisimov AA, Skorobogatova AI, Sutyagina AD. Implementation of neural networks for blood pressure measure-
ment. In: IEEE 2018 EIConRus Conference of Russian Young Researchers in Electrical and Electronic Engineering;
Moscow and St. Petersburg, Russia; 2018. pp. 1190-1194.

3279



ŞENTÜRK et al./Turk J Elec Eng & Comp Sci

[134] Lee S, Rajan S, Jeon G, Chang JH, Dajani HR et al. Oscillometric blood pressure estimation by combining
nonparametric bootstrap with Gaussian mixture model. Computers in Biologyand Medicine 2017; 85: 112–124.

[135] Narus S, Egbert T, Lee TK, Lu J, Westenskow D. Noninvasive blood pressure monitoring from the supraorbital
artery using an artificial neural network oscillometric algorithm. Journal of Clinical Monitoring and Computing
1995; 11: 289-297.

[136] Lee CM, Zhang YT. Cuffless and noninvasive estimation of blood pressure based on a wavelet transform approach.
In: IEEE 2003 EMBS Asian-Pacific Conference on Biomedical Engineering; Kyoto, Japan; 2003. pp. 148-149.

[137] Sola J, Proenca M, Ferrario D, Porchet JA. Noninvasive and nonocclusive blood pressure estimation via a chest
sensor. IEEE Transactions on Biomedical Engineering 2013; 60: 3505-3513.

[138] Atomi K, Kawanaka H, Bhuiyan S, Oguri K. Cuffless blood pressure estimation based on data-oriented continuous
health monitoring system. Hindawi Computational and Mathematical Methods in Medicine 2017; 2017: 10. doi:
10.1155/2017/1803485

[139] Esmaili A, Kachuee M, Shabany M. Nonlinear cuffless blood pressure estimation of healthy subjects using pulse
transit time and arrival time. IEEE Transactions on Instrumentation and Measurement 2017; 66: 3299-3308.

[140] Lin WH, Wang H, Samuel OW, Li G. Using a new ppg indicator to increase the accuracy of ptt-based continuous
cuffless blood pressure estimation. In: IEEE 2017 EMBC 2017 39th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society; Jeju Island, Korea; 2017. pp. 738-741.

[141] Dastjerdi AE, Kachuee M, Shabany M. Non-invasive blood pressure estimation using phonocardiogram. In: IEEE
2017 ISCAS International Symposium on Circuits and Systems; Maryland, USA; 2017. pp. 1-4.

[142] Yoon YZ, Kang JM, Kwon Y, Park S. Cuff-less blood pressure estimation using pulse waveform analysis and pulse
arrival time. IEEE Journal of Biomedical and Health Informatics 2018; 22: 1068-1074.

[143] Almahouzi A, Alnaser T, Tiraei S, Athavale Y, Krishnan S. An integrated biosignals wearable system for low-
cost blood pressure monitoring. In: IEEE 2017 IHTC Canada International Humanitarian Technology Conference,
Toronto, Canada; 2017. pp. 16-20.

[144] Li Y, Chen X, Zhang Y, Deng N. Noninvasive continuous blood pressure estimation with peripheral pulse transit
time. In: IEEE 2016 BioCAS Biomedical Circuits and Systems Conference; Shanghai, China; 2016. pp. 66-69.

[145] Chen Y, Cheng S, Wang T, Ma T. Novel blood pressure estimation method using single photoplethysmography
feature. In: IEEE 2017 EMBC 39th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society; Jeju Islan, Korea; 2017. pp. 1712-1715.

[146] Xiao H, Butlin M, Qasem A. N-point moving average: a special generalized transfer function method for estimation
of central aortic blood pressure. IEEE Transactions on Biomedical Engineering 2018; 65: 1226-1234.

[147] Miao F, Fu N, Ting Y. Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
IEEE Journal of Biomedical and Health Informatics 2017; 21: 1730-1740.

[148] Kachuee M, Kiani MM, Mohammadzade H, Shabany M. Cuff-less high-accuracy calibration-free blood pressure
estimation using pulse transit time. In: IEEE 2015 ISCAS International Symposium on Circuits and Systems;
Lisbon, Portugal; 2015. pp. 1006-1009.

[149] Pan J, Zhang Y. Improved blood pressure estimation using photoplethysmography based on ensemble method. In:
ISPAN-FCST-ISCC 14th International Symposium on Pervasive Systems, Algorithms and Networks & 2017 11th
International Conference on Frontier of Computer Science and Technology & 2017 Third International Symposium
of Creative Computing; Exeter, UK; 2017. pp. 105-111.

[150] Xu J, Jiang J, Zhou H, Yan Z. A novel blood pressure estimation method combing pulse wave transit time model
and neural network model. In: IEEE 2017 EMBC 39th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society; Jeju Island, Korea; 2017. pp. 2130-2133.

[151] Kurylyak Y, Lamonaca F, Grimaldi D. A neural network-based method for continuous blood pressure estimation
from a ppg signal. In: IEEE 2013 I2MTC International Instrumentation and Measurement Technology Conference;
Minneapolis, MN, USA; 2013. pp. 208-283.

3280



ŞENTÜRK et al./Turk J Elec Eng & Comp Sci

[152] Sideris C, Kalantarian H, Nemati E, Sarrafzadeh M. Building continuous arterial blood pressure prediction models
using recurrent networks. In: IEEE 2016 SMARTCOMP International Conference on Smart Computing; Washing-
ton DC, USA; 2016. pp. 1-5.

[153] Xiao H, Butlin M, Tanb I, Qasem A, Avolio AP. Estimation of pulse transit time from radial pressure waveform
alone by artificial neural network. IEEE Journal of Biomedical and Health Informatics 2018; 22: 1140-1147.

[154] Pytel K, Nawarycz T, Drygas W. Anthropometric predictors and artificial neural networks in the diagnosis of
hypertension. In: 2015 FedCSIS Federated Conference on Computer Science and Information Systems; Lodz, Poland;
2015. pp. 287-290.

[155] Wang L, Zhou W, Xing Y, Zhou X. A novel neural-network model for blood pressure estimation using photo-
plethesmography without electrocardiogram. Journal of Healthcare Engineering 2018; 2018: 1-9.

[156] Lo FPW, Li CXT, Wang J. Continuous systolic and diastolic blood pressure estimation utilizing long short-term
memory network. In: IEEE 2017 EMBC 39th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society; Jaju Island, Korea; 2017. pp. 1853-1856.

[157] Li X, Wu S, Wang L. Blood pressure prediction via recurrent models with contextual layer. In: 2017 26th
International Conference on World Wide Web; Perth, Australia; 2017. pp. 685-693.

[158] Şentürk Ü, Yücedağ İ, Polat K. Repetitive neural network (RNN) based blood pressure estimation using PPG and
ECG signals. In: IEEE 2018 ISMSIT 2nd International Conference on Multidisciplinary Studies and Innovative
Technologies; Ankara, Türkiye; 2018. pp. 1-4.

[159] Liu M, Po LM, Fu H. Cuffless blood pressure estimation based on photoplethysmography signal and its second
derivative. International Journal of Computer Theory and Engineering 2017; 9: 202-206.

[160] Xuab Z, Liuc J, Chenab X, Wangc Y, Zhao Z. Continuous blood pressure estimation based on multiple parameters
from eletrocardiogram and photoplethysmogram by back-propagation neural network. Computers in Industry 2017;
89: 50-59.

[161] Schönle PC. Power efficient spectrophotometry & PPG integrated circuit for mobile medical instruments. PhD,
Eidgenössische Technische Hochschule, Zürich, Switzerland, 2017.

[162] Tanveer S, Hasan K. Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using
waveform based ANN-LSTM network. Biomedical Signal Processing and Control 2019; 51: 382-392.

3281


	Introduction
	Measurement methods for blood pressure
	Invasive blood pressure measurement
	Noninvasive blood pressure measurement
	Noninvasive blood pressure measurement using occlusive methods
	Noninvasive blood pressure measurement using nonocclusive methods


	Noninvasive blood pressure measurement system from biosignals
	Acquisition of biosignals
	Preprocessing
	Segmentation
	Feature extraction
	Prediction algorithms used for predicting blood pressure using biosignals


	Selected works in the blood pressure measurement from biosignals
	Machine learning methods used in occlusive blood pressure measurement
	Machine learning methods used in nonocclusive blood pressure measurement

	Comparison of invasive and noninvasive blood pressure measurement methods 
	Discussion and future directions

