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Abstract: Since the problem of Konigsberg bridge was released in 1735, there have been many applications of
graph theory in mathematics, physics, biology, computer science, and several fields of engineering. In particular, all
communication networks can be modeled by graphs. The vulnerability is a concept that represents the reluctance of a
network to disruptions in communication after a deterioration of some processors or communication links. Furthermore,
the vulnerability values can be computed with many graph theoretical parameters. The rupture degree r(G) of a graph
G = (V,E) is an important graph vulnerability parameter and defined as r(G) = max{ω(G − S) − |S| − m(G − S) :

ω(G− S) ≥ 2, S ⊂ V } , where ω(G− S) and m(G− S) denote the number of connected components and the size of the
largest connected component in the graph G − S , respectively. Recently, it has been proved that finding the rupture
degree problem is NP -complete. In this paper, a heuristic algorithm to determine the rupture degree of a graph has been
developed. Extensive computational experience on 88 randomly generated graphs ranging from 20% to 90% densities
and from 100 to 200 vertices shows that the proposed algorithm is very effective.
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1. Introduction
Networks define a wide range of systems in various science including computer science, mathematics, chemistry,
social sciences, informatics. Furthermore, designing a robust network is important for network designers because
everyone wants a speedy, reliable, and nonstop communication. This situation increases the importance of the
communication links that we have to construct. Graph theory has become one of the most robust mathematical
tools in the analysis of the architecture of a network. The vulnerability is a concept that measures the reliability
and stability of a network. Moreover, the vulnerability value of a communication network is the resistance of
this communication network until certain stations or communication links between these stations are disrupted
and thus communication interrupts occur [1].

A network is simply defined as an undirected connected graph without self-loops or multiple edges. In
the literature, many graph parameters have been defined to measure the robustness of networks. [2, 3]. The
first and the best-known parameter of the vulnerability of a graph is its connectivity number. The vertex (edge)
connectivity is the minimum number of vertices (edges) whose deletion results in a disconnected or trivial graph
[4]. Then toughness [5], integrity [6], scattering number [7], rupture degree [8], etc. have been defined for
measuring the vulnerability of a network. The remainder of this section is devoted to more definitions and
notation that will be used throughout the paper.
∗Correspondence: hakankutucu@karabuk.edu.tr
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Let G = (V,E) be a simple undirected graph with n nodes and m edges. Let v be any vertex in G . The
open neighborhood of v is defined to N(v) = {u ∈ V |uv ∈ E} and closed neighborhood of v is N [v] = N(v)∪{v} .
Furthermore, let S ⊆ V . The open neighborhood of S is the set N(S) =

∪
v∈S N(v) . Furthermore, the closed

neighborhood of S is the set N [S] = N(S) ∪ S . The degree of vertex v , denoted by deg(v) , in G is the
number of the vertex v , that is the size of its open neighborhood. Let u and v be any two vertices of V . The
distance d(u, v) between the vertices u and v in G is the length of a shortest path between them. The largest
distance between any pair of vertices in the graph G is the diameter in G , also denoted by diam(G) . Let v

be any vertex in G . The value of max{deg(v)|v ∈ V (G)} is the maximum degree of G and denoted by ∆(G) .
Furthermore, the value of min{deg(v)|v ∈ V } is the minimum degree of G denoted by δ(G) [9].

The rupture degree r(G) of a graph G is defined as:
r(G) = max{ω(G− S)− |S| −m(G− S) : ω(G− S) ≥ 2, S ⊂ V } ,

where ω(G− S) denotes the number of connected components in the graph G− S and m(G− S) denotes the
size of the largest connected component in the graph G − S . A set S which achieves the maximum value is
called an r -set. The concept of rupture degree was introduced in [8], then this parameter is also considered
as a reasonable parameter for measuring the stability or vulnerability of graphs, see [10–14]. For example,
we consider the graph G with six edges and six vertices in Figure 1, where some alternative r -sets of G are
illustrated by the set of darkened vertices. Clearly, |S| = 3, ω(G − S) = 3 and m(G − S) = 1 ; therefore,
r(G) = −1 .

Figure 1. Some r-sets of G .

Moreover, Li et al. [15] showed that the finding rupture degree problem is NP-complete. However, it is
possible to determine the rupture degree of large classes of graphs. For more results on rupture degree, we refer
the readers to see [16–21]. Furthermore, Li gave an algorithm whose complexity is O(n2) for isolating rupture
degree in Trees of order n [22]. In a similar study, Berberler and Berberler [23] gave a polynomial time heuristic
algorithm for computing the integrity of any given graph G .

A variation of vulnerability measures, based on different heuristics, are proposed to quantify the hardness
of networks in [23]. In the present study, a heuristic algorithm is developed for computing the rupture degree
in graphs by incorporating the concept of the rupture degree and heuristic algorithm. The remainder of the
paper is arranged as follows: We first give a few basic theorems related to rupture degree in Section 2. Then,
a novel heuristic algorithm is proposed and discussed in an exhaustive schema to compute the rupture degree
of graphs in Section 3 and computational experiments are implemented in Section 4. Finally, in Section 5, we
present our conclusions.
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2. Preliminary results for the rupture degree in graphs

In this section, we give some well-known results for the rupture degree in graphs:

Theorem 1 [8] For any graph G , 3− n ≤ r(G) ≤ n− 3 and r(G) ≤ 2δ(G)− 1 .

Theorem 2 [8] For the path Pn of order n, r(Pn) =

{
−1 , if n is even;
0 , if n is odd.

Theorem 3 [8] For the cycle Cn of order n, r(Cn) =

{
−1 , if n is even;
−2 , if n is odd.

Theorem 4 [8] For the complete graph Kn of order n, r(Kn) = 1− n .

Theorem 5 [8] For the star graph K1,n−1 of order n ≥ 3 , r(K1,n−1) = n− 3 .

Theorem 6 [8] For the complete bipartite graph Km,n , where 1 ≤ n ≤ m , r(Km,n) = m− n− 1 .

Theorem 7 [8] Let G1 and G2 be two graphs of order n1 and n2 , respectively. Then, r(G1 + G2) =

max{r(G1)− n2, r(G2)− n1} .

3. A heuristic algorithm to find the rupture degree in graphs

In this section, we propose a heuristic algorithm whose pseudocode is presented in Algorithm 1 to find the
rupture degree of an arbitrary graph G and runs in polynomial time. The algorithm works as follows:

The set S is initially empty. In order to preserve the original graph, we make a copy of the graph as G′ .
We work on the underlying graph G′ in the while loop of lines 5–15. The vertices whose degrees are greater than
one in G′ are most likely vertices to be included in S . The name of the set of such vertices is Possible_S . The
while loop terminates if Possible_S is empty and in each iteration of the while loop, Possible_S is updated
according to the underlying graph G′ . For each vertex in the set Possible_S , a value is computed by the
formula in line 12. The vertex with the maximum value is added into S and deleted in G′ together with its all
incident edges. We compute the rupture degree after the while loop terminates. In case we may add one more
vertex into S , we delete each vertex in S one by one and compute the rupture degree as rupture2 . If rupture2

is greater than the previous rupture degree, then we update the degree and delete the vertex in S . Finally, the
algorithm return the estimated rupture degree of G . The key point of the algorithm is the formula in line 12.
It determines which vertex (with the highest value in the formula) may be included in the r−set. While the
degree of neighbors of a vertex is effective in the denominator, the degree of the vertex itself is important in the
numerator.

We illustrate how the proposed algorithm works on the following graph shown in Figure 2a step by step:
In the first iteration of the while loop, Possible_S = {a, b, c, d, e, f} and the values of the vertices in Possible_S

according to the formula in line 12 are [0.33, 0.22, 0.33, 0.53, 0.55, 0.16] . The maximum value belongs to the
vertex e . Thus, vertex e is added to S . Then we delete e and all its incident edges in the graph. The
resulting graph is shown in Figure 2b. In the second iteration of the while loop, Possible_S = {a, b, c, d} and
the values of the vertices in Possible_S according to the formula in line 13 are [0.42, 0.22, 0.42, 0.55] . The
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Algorithm 1: Heuristic Algorithm to Find the Rupture Degree
Input: An undirected connected simple graph G = (V,E)
Output: Rupture degree of G

1 begin
2 S = ∅ ;
3 V ′ = V ;
4 G′ = G ;
5 while True do
6 for each vertex i ∈ V ′ do
7 degree[i]=the degree of vertex i ∈ G′ ;

8 Possible_S =The set of vertices with degree[] > 1 ;
9 if Possible_S is empty then

10 break;

11 for each vertex i ∈ Possible_S do

12 value[i] =
(degree[i])

3(∑
(i,j)∈G′

degree[j]

)2 ;

13 v = a vertex with the maximum value[v] ;
14 S = S ∪ {v} ;
15 V ′ = V ′ \ {v} ; //delete v and all its incident edges in G′

16 rupture = w(G \ S)− |S| −m(G \ S) ;
17 for each vertex i ∈ S do
18 S = S \ {i} ;
19 rupture2 = w(G \ S)− |S| −m(G \ S) ;
20 if rupture2 > rupture then
21 rupture = rupture2 ;
22 else
23 S = S ∪ {i} ;

24 Return rupture ;

maximum value belongs to the vertex d . Thus, S = {e, d} . Then we delete d and all its incident edges in
the underlying graph. The resulting graph is shown in Figure 2c. In the third iteration of the while loop,
Possible_S = {a, b, c} and the values of the vertices in Possible_S according to the formula in line 12 are
[0.5, 0.5, 0.5] . The maximum value is the same for all vertices. We can choose one of them arbitrarily. Let us
choose the vertex a . Thus, S = {e, d, a} . Then we delete a and all its incident edges in the underlying graph.
The resulting graph is shown in Figure 2d. In the fourth iteration of the while loop, Possible_S = ∅ . This
terminates the loop with S = {e, d, a} . In line 16, we evaluate the rupture degree of the given graph in Figure
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(a) A given graph (b) !e graph G ʹa"er the first iteration

(c) !e graph G ʹa"er the 2nd iteration (d) !e graph G ʹ a"er the 3rd iteration

Figure 2. An example of how the proposed algorithm works.

2a for the set S . As can be seen in Figure 2d, the number of connected components after deleting S is three,
that is, w(G \ S) = 3 and the size of the largest connected component is two, that is, m(G \ S) = 2 . The
rupture degree r(G) = 3− 3− 2 = −2 . Lastly, we check whether some vertices in S are really necessary to be
in S . Therefore, we delete each vertex one by one in S and evaluate the rupture degree. If the latter rupture
degree is greater than the previous one, then we update the rupture degree as the latter one. Otherwise, we
add again the deleted vertex into S . In this example, the set S = {e, d, a} is the r -set.

3.1. Running time analysis of the proposed algorithm

The while loop in line 5 works until there is no vertex whose degree is greater than one in the underlying graph
G′ . At each iteration of the loop, we delete one vertex and all its incident edges in G′ . In the worst case,
if the graph is a complete graph, then the while loop works |V | − 2 times which runs in O(|V |) time. The
inner for loop in line 6 runs in O(|V |) time. The other inner loop in line 11 runs in O(|V |) time. After the
while loop terminates, we calculate the rupture degree of the given graph for the set S using the formula in
line 16. w(G \S) and m(G \S) are the number of connected components and the size of the largest connected
component in G\S , respectively. We use depth-first search (DFS) procedure to find the connected components.
The DFS algorithm has the worst case running time O(|V | + |E|) [24]. The last for loop in line 17 runs in
O(|V |) time. In conclusion, the running time of Algorithm 1 is O(|V |2) + |E||V |) .

4. Computational Tests

Since there are no benchmark instances to compute the rupture degree of graphs, we use the problem instances
generated by Berberler and Berberler to find the integrity of graphs [23]. The test instances are available at
http://kisi.deu.edu.tr/murat.berberler/integrity/.

In Table 1, |V | is the number of vertices of graph G , R(G) is the rupture degree found by the heuristic
algorithm in G , OptR is the actual rupture degree of G , Error is the absolute gap, which is the magnitude
of the difference between the actual rupture degree and the rupture degree obtained by the algorithm, t(s) is
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Table 2. Computational experiments on medium-size graphs.

20% 30% 40% 50%
|V | R(G) t(s) R(G) t(s) R(G) t(s) R(G) t(s)
100 –60 0.619 –75 0.461 –78 0.339 –84 0.332
110 –71 0.489 –83 0.376 –90 0.295 –93 0.286
120 –83 0.560 –92 0.440 –96 0.384 –104 0.308
130 –86 0.677 –99 0.499 –109 0.420 –113 0.318
140 –97 0.724 –109 0.618 –117 0.427 –124 0.399
150 –112 0.685 –118 0.597 –127 0.478 –133 0.386
160 –117 0.796 –129 0.638 –138 0.514 –143 0.419
170 –124 0.908 –140 0.676 –147 0.518 –151 0.509
180 –133 0.987 –149 0.736 –155 0.660 –162 0.520
190 –146 1.062 –158 0.798 –166 0.665 –172 0.534
200 –155 1.115 –168 0.847 –176 0.716 –182 0.577

Table 3. Computational experiments on medium-size graphs.

60% 70% 80% 90%
|V | R(G) t(s) R(G) t(s) R(G) t(s) R(G) t(s)
100 –86 0.258 –89 0.196 –92 0.181 –93 0.147
110 –98 0.217 –101 0.188 –101 0.179 –103 0.142
120 –107 0.231 –110 0.212 –111 0.206 –113 0.147
130 –118 0.265 –119 0.254 –122 0.328 –125 0.162
140 –127 0.341 –129 0.247 –131 0.216 –133 0.185
150 –137 0.352 –137 0.297 –141 0.259 –144 0.223
160 –145 0.389 –149 0.320 –151 0.290 –153 0.248
170 –155 0.413 –159 0.364 –162 0.306 –163 0.265
180 –164 0.473 –167 0.371 –171 0.331 –173 0.295
190 –175 0.500 –179 0.409 –180 0.392 –183 0.316
200 –185 0.477 –190 0.395 –191 0.380 –193 0.309

the CPU time in seconds and 25%, 50%, 75%, and 95% indicate the edge density of G . We found the actual
rupture degree of small-size graphs of up to 32 vertices by brute force technique.

The proposed algorithm was implemented in MATLAB and tested on i7-5600U machine with a 2.60 GHz
processor and 8GB RAM. As it can be seen in Table 1, the proposed algorithm almost found the optimal (actual)
rupture degree of the graphs. We also tested the proposed algorithm on the medium-size graphs with more than
100 vertices. Since we do not know the actual rupture degree of the graphs with more than 100 vertices, we give
the rupture degrees obtained by the algorithm and the CPU time in Tables 2 and 3. Furthermore, we tested
the algorithm on several specific classes of graphs such as complete graphs, comets, cycles, and path graphs.
We obtained the same rupture degree as given in the theorems.
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5. Conclusion
In this paper, we considered the rupture degree in graphs that are usually thought to measure the vulnerability
of graphs. We proposed a polynomial time heuristic algorithm to find the rupture degree of graphs. We then
analyzed the running time of our algorithm and presented the computational experiments on graphs with up to
200 vertices. The results show that the proposed heuristic algorithm efficiently computes the rupture degree of
a given graph. Developing several heuristics for computing the other graph parameters such as the edge rupture
degree, the weak rupture degree, and the neighbor rupture degree of graphs are the subjects of future work.
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