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Abstract: This paper focuses on the stabilization problem of a class of fractional-order bidirectional associative memory
neural networks with time delays. Based on feedback control, a sufficient condition is derived to achieve the global
stabilization of systems by using the fractional inequality, the Lyapunov stability theory, and the comparison principle.
In particular, this kind of control scheme is proved to be robust in the presence of external disturbances when the feedback
gains are sufficiently large. In addition, a condition is obtained to achieve the global quasi-stabilization of systems with
some external disturbances, and the corresponding error bound is estimated. Finally, some numerical simulations are
presented to verify the effectiveness of theoretical results.
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1. Introduction
In recent decades, fractional calculus has captured considerable attention in various fields, such as physics,
biology, economics, engineering, and technology. As is well known, fractional-order derivatives can provide
a powerful tool for describing memory and hereditary properties of many materials and dynamical processes
[1]. It has been shown that many physical systems [2–4] exhibit fractional dynamical behavior. Therefore,
fractional-order models would be more appropriate to describe most systems in the real world than classical
integer-order ones.

Neural networks have become an active topic due to their powerful applications in many fields. There
have been all kinds of neural networks, such as Hopfield neural networks, memristor-based neural networks,
bidirectional associative memory neural networks, and recurrent neural networks. For bidirectional associative
memory (BAM) neural networks, it has been revealed that they can offer potential applications in pattern
recognition, signal processing, and combinatorial optimization [5, 6]. A BAM neural network [7] consists of
some associative neurons ordered in two layers, where every neuron in one layer is interconnected with all
neurons in another layer. In particular, there are no interconnections within each layer. In order to describe the
dynamical behavior of neurons in neural networks better, fractional-order neural networks have been introduced
by incorporating fractional calculus into neural networks, and various types of fractional-order neural networks
have been developed. Among these types, fractional-order BAM neural networks have attracted considerable
attention from many researchers due to their potential applications in many fields; see [8–12] and the references
therein.

Generally, the behaviors of a large number of interacting units need to be regulated in many practical
∗Correspondence: yangzhanying8011@163.com
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applications. It is very desirable that the unpredicted ultimate states of systems can be controlled to the
required ones. Since the pioneering work of Ott et al., the stabilization problems of dynamics systems have
received close attention from many researchers. In order to meet the practical requirements, there have been
all kinds of stabilization types, such as global asymptotic stabilization, exponential stabilization, guaranteed
cost stabilization, sampled-data stabilization, and Mittag-Leffler stabilization. Meanwhile, various suitable
stabilization control schemes have been proposed to regulate the behaviors of systems. However, to the best of
the authors’ knowledge, there have been few works on the stabilization control problems of fractional-order BAM
neural networks. For example, Wu et al. [10] considered the global Mittag-Leffler stabilization of fractional-order
BAM neural networks without time delays based on linear feedback control and partial feedback control.

Note that time delay is always unavoidable in practical dynamics systems. In this paper, we will consider
the stabilization problem of fractional-order BAM neural networks with time delays. Based on feedback control,
we derive a sufficient condition to realize the global stabilization of systems by using the fractional inequality,
the Lyapunov stability theory, and the comparison principle. In particular, we also theoretically prove that this
kind of control scheme is robust in the presence of external disturbances when the feedback gains are sufficiently
large. In addition, we obtain a condition that can guarantee the global quasi-stabilization of systems with some
external disturbances, and we give the corresponding estimated error bound, which can be adjusted to meet the
requirement in practical applications. Finally, some numerical simulations are given to verify the effectiveness
of theoretical results.

The rest of this paper is organized as follows. In Section 2, some preliminaries and network models are
introduced. Section 3 focuses on the sufficient conditions that can guarantee the global stabilization of systems.
In Section 4, some numerical simulations are shown to illustrate the effectiveness of the main results. Finally,
some conclusions are drawn in Section 5.

2. Preliminaries and model description
In this section, we introduce some preliminaries and network models. We start by recalling some definitions
and properties associated with the Caputo fractional-order derivative.

Definition 1 [13] The Caputo derivative of fractional order q of a function θ(t) ∈ Cm([t0,+∞),Rn) is defined
by

C
t0D

q
t θ(t) =

1

Γ(m− q)

∫ t

t0

(t− s)m−q−1θ(m)(s)ds,

where t ≥ t0 , q > 0 , and m is a positive integer satisfying m− 1 < q < m .

From this definition, we have the following immediate properties:

(i) C
t0D

q
t (αθ1(t) + βθ2(t)) = αC

t0D
q
t θ1(t) + βC

t0D
q
t θ2(t),

(ii) C
t0D

q
tα = 0,

where θ1, θ2 ∈ Cm([t0,+infinite),Rn) , and α and β are any constants.
Throughout this paper, the parameters q and t0 satisfy 0 < q < 1 and t0 = 0 , respectively. In this case,

C
t0D

q
t is written as Dq

t for the sake of convenience. More precisely,

Dq
t θ(t) =

1

Γ(1− q)

∫ t

0

(t− s)−qθ′(s)ds, 0 < q < 1.
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Proposition 1 [14] Let 0 < q ≤ 1 . For h(t) ∈ C1([0,+∞),R) , the inequality

Dq|h(t+)| ≤ sgn(h(t))Dqh(t)

holds almost everywhere, where h(t+) = lim
τ→t+

h(τ) .

Proposition 2 [15] Let V (t) ∈ R1 be a continuous differentiable and nonnegative function. For 0 < q < 1 ,
suppose that V (t) satisfies {

Dq
tV (t) = −aV (t) + bV (t− τ),

V (t) = φ(t) ≥ 0, t ∈ [−τ, 0],

where t ∈ [0,∞) . If a > b > 0 , then lim
t→∞

V (t) = 0 .

Proposition 3 [16] Let 0 < q ≤ 1 . Consider the following two fractional-order systems with time delay:

{
Dq

tx(t) = f1(t, x(t)) + g1(t, x(t− τ)),

x(t) = h(t), t ∈ [−τ, 0],

and {
Dq

t y(t) = f2(t, y(t)) + g2(t, y(t− τ)),

y(t) = h(t), t ∈ [−τ, 0],

where f1(t, x(t)) and f2(t, y(t)) are Lipschitz continuous in [0,+∞) × G (G ⊂ R) , and g1(t, x(t − τ)) and
g2(t, y(t− τ)) are Lipschitz continuous in [−τ,+∞)×G (G ⊂ R) . If

f1(t, x(t)) ≤ f2(t, x(t)), g1(t, x(t− τ)) ≤ g2(t, x(t− τ)), ∀t ∈ [0,+∞),

then
x(t) ≤ y(t), ∀t ∈ [0,+∞).

Proposition 4 [16] Let 0 < q < 1 . For a fractional-order system with delay, Dq
tx(t) = Ax(t) + Bx(t − τ) ,

if all eigenvalues of A + B satisfy |arg(λ)| > π
2 and the characteristic equation det(∆(s)) = 0 has no purely

imaginary roots, then the zero solution of this system is Lyapunov asymptotically stable.

Based on this proposition, we easily get the following result, which is crucial for our main results. For the
convenience of readers, we give some key points.

Lemma 1 Let 0 < q < 1 . For a fractional-order system with delay:

Dq
tx(t) = −ax(t) + bx(t− τ) + ρ, (1)

where a, b, ρ > 0 , and if asin(qπ/2) > b , then the solution x∗ = ρ
a−b of the system of Eq. (1) is Lyapunov

asymptotically stable.
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Proof Let x̃(t) = x(t)− x∗ . The fractional-order system of Eq. (1) is rewritten as:

Dq
t x̃(t) = −ax̃(t) + bx̃(t− τ). (2)

Taking the Laplace transformation of Eq. (2), we can get

(sq + a− be−sτ )X(s) = sq−1X(0) + be−sτ (

∫ 0

−τ

e−stx̃(t)dt), (3)

where X(s) denotes the Laplace transformation of x̃(t) . Furthermore, this gives the characteristic equation
det(∆(s)) = sq + a − be−sτ = 0 . Based on the proof of contradiction, we can derive that this equation has no
pure imaginary root.

Suppose that the equation sq + a − be−sτ = 0 has a pure imaginary root s . Let s = ωi , where ω

is a real nonzero number. Notice that s can be written as s = ωi = |ω|(cos(π2 ) + i sin(±π
2 )) . Substituting

s = |ω|(cos(π2 ) + i sin(±π
2 )) into the equation sq + a− be−sτ = 0 , we can derive

|ω|2q + 2a cos(qπ
2
)|ω|q + a2 − b2 = 0. (4)

Let |ω|q be the variable of the above equation. In view of b < a sin( qπ2 ) , we get the discriminant ∆ =

4(b2 − a2sin2( qπ2 )) < 0 , which implies that Eq. (4) has no real solutions. This is in contradiction with ω being
a real number. Hence, the equation det∆(s) = 0 has no pure imaginary roots.

On the other hand, it is obvious that every eigenvalue of the matrix (−a + b)I satisfies |arg(λ)| > π
2

due to b < a sin( qπ2 ) < a . Based on Proposition 4, the zero solution of the system of Eq. (2) is globally
asymptotically stable, i.e. x̃(t) → 0 (t → +∞) . Hence, the solution x∗ of the system of Eq. (1) is Lyapunov
asymptotically stable. 2

In the following, we focus on a class of fractional-order bidirectional associative memory neural networks
with time delays, which can be expressed as:

Dq
txi(t) = −cixi(t) +

n2∑
j=1

aij(t)f1j(yj(t)) +

n2∑
j=1

bij(t)g1j(yj(t− τ)) + Ii(t),

Dq
t yj(t) = −djyj(t) +

n1∑
i=1

pji(t)f2i(xi(t)) +

n1∑
i=1

qji(t)g2j(xi(t− τ)) + Jj(t),

(5)

where 0 < q < 1 , i = 1, 2, · · ·, n1 and j = 1, 2, · · ·, n2 . xi(t), yj(t) ∈ R denote the states of a neural unit at time
t . The constant ci > 0 is the self-regulating parameter. The constant τ > 0 stands for the time delay. aij(t)
and bij(t) are the time-varying connections at times t and t− τ , respectively. f1j and g1j are the activation
functions such that f1j(0) = 0 and g1j(0) = 0 . Ii(t) corresponds to the time-varying external inputs. For dj ,
pji(t) , qji(t) , f2i , g2i , and Jj(t) , they have the same assumptions as those in the first equation of Eq. (5),
respectively.

Assume that the system of Eq. (5) satisfies the following initial conditions:

xi(t) = φi(t), yj(t) = ψj(t), t ∈ [−τ, 0],
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or
x(t) = φ(t), y(t) = ψ(t), t ∈ [−τ, 0], (6)

where x(t) = (x1(t), x2(t), · · ·, xn1(t))
T and y(t) = (y1(t), y2(t), · · ·, yn2(t))

T .
For some parameters of the network model, we make the following assumptions.
Assumption 1 For i = 1, 2, · · ·, n1 and j = 1, 2, · · ·, n2 , the connection functions aij(t) , bij(t) , pji(t) ,

and qji(t) are continuous and bounded on [0,+∞) .
Assumption 2 For i = 1, 2, · · ·, n1 and j = 1, 2, · · ·, n2 , the activation functions f1j(x) , g1j(x) , f2i(x) ,

and g2i(x) satisfy the following Lipschitz conditions:

|f1j(x)− f1j(y)| ≤ α1|x− y|, |g1j(x)− g1j(y)| ≤ β1|x− y|, i = 1, 2, · · ·, n1,

|f2i(x)− f2j(y)| ≤ α2|x− y|, |g2i(x)− g2j(y)| ≤ β2|x− y|, j = 1, 2, · · ·, n2,

for any x, y ∈ R , where α1 , α2 , β1 , and β2 are some positive constants.

Definition 2 Let Ii(t) = 0 (i = 1, 2, · · ·, n1 ) and Jj(t) = 0 (j = 1, 2, · · ·, n2 ). Suppose that (x(t), y(t)) is the
solution of the system of Eq. (5) with the initial condition of Eq. (6). The system of Eq. (5) is said to be
asymptotically stable if

∥x(t)∥+ ∥y(t)∥ → 0, t→ +∞,

where ∥x(t)∥ =
n1∑
i=1

|xi(t)| and ∥y(t)∥ =
n2∑
j=1

|yj(t)| .

Definition 3 The system of Eq. (5) is said to achieve global stabilization if there exist suitable feedback controls
I(t) and J(t) such that the system of Eq. (5) is asymptotically stable.

3. Main results
In this section, we focus on the global stabilization of the system of Eq. (5). A kind of control scheme is proposed
based on feedback control, and a sufficient condition is derived to achieve the global stabilization of the system.
In particular, this kind of control scheme is proved to be robust in the presence of external disturbances. In
addition, a sufficient condition is obtained to achieve the global quasi-stabilization of the system with external
disturbances, and the corresponding error bound is estimated.

For i = 1, 2, · · ·, n1 and j = 1, 2, · · ·, n2 , Ii(t) and Jj(t) are designed as follows:

Ii(t) = −µixi(t) and Jj(t) = −νjyj(t), (7)

where µi and νj are any positive constants.
Now we state our main theorems. Let a∗ij = supt≥0 |aij(t)| , b∗ij = supt≥0 |bij(t)| , p∗ij = supt≥0 |pij(t)| ,

and q∗ij = supt≥0 |qij(t)| .

Theorem 1 Suppose that Assumptions 1 and 2 hold. If min{l1, l2} > max{m1,m2} , where

l1 = min
1≤i≤n1

{ci + µi − α2

n2∑
j=1

|p∗ji|}, m1 = max
1≤i≤n1

{β2
n2∑
j=1

q∗ji},

l2 = min
1≤j≤n2

{dj + νj − α1

n1∑
i=1

|a∗ij |}, m2 = max
1≤j≤n2

{β1
n1∑
i=1

b∗ij},
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then the global stabilization of the system of Eq. (5) can be achieved with the control of Eq. (7).

Proof Let

V (t) =

n1∑
i=1

|xi(t)|+
n2∑
j=1

|yi(t)|.

In view of Proposition 1, we obtain

Dq
tV (t+) ≤

n1∑
i=1

sgn(xi(t))D
q
txi(t) +

n2∑
j=1

sgn(yj(t))D
q
t yj(t)

=

n1∑
i=1

sgn(xi(t))[−(ci + µi)xi(t) +

n2∑
j=1

aij(t)f1j(yj(t)) +

n2∑
j=1

bij(t)g1j(yj(t− τ))]

+

n2∑
j=1

sgn(yj(t))[−(dj + νj)yj(t) +

n1∑
i=1

pji(t)f2i(xi(t)) +

n1∑
i=1

qji(t)g2i(xi(t− τ))].

From f1j(0) = 0 and Assumption 2, it follows that |f1j(yj(t))| ≤ α1|yj(t)| . Similar inequalities can also
be obtained for the functions g1j , f2i , and g2i . Consequently, we have

Dq
tV (t+) ≤

n1∑
i=1

[
− (ci + µi)|xi(t)|+ α1

n2∑
j=1

a∗ij |yj(t)|+ β1

n2∑
j=1

b∗ij |yj(t− τ)|
]

+

n2∑
j=1

[
− (dj + νj)|yj(t)|+ α2

n1∑
i=1

p∗ji|xi(t)|+ β2

n1∑
i=1

q∗ji|xi(t− τ)|
]
.

Moreover, we have

Dq
tV (t+) ≤−

n1∑
i=1

(ci + µi − α2

n2∑
j=1

|p∗ji|)|xi(t)|+ β2

n1∑
i=1

n2∑
j=1

q∗ji|xi(t− τ)|

−
n2∑
j=1

(dj + νj − α1

n1∑
i=1

|a∗ij |)|yi(t)|+ β1

n2∑
j=1

n1∑
i=1

b∗ij |yi(t− τ)|

≤ −l(
n1∑
i=1

|xi(t)|+
n2∑
j=1

|yi(t)|) +m(

n1∑
i=1

|xi(t− τ)|+
n2∑
j=1

|yi(t− τ)|)

= −lV (t) +mV (t− τ),

where l = min{l1, l2} and m = max{m1,m2} . If l > m , then Proposition 2 gives that V (t) → 0 (t → ∞) .
This implies that ∥x(t)∥+ ∥y(t)∥ → 0 (t → ∞) . Hence, the system of Eq. (5) can achieve global stabilization
with the control of Eq. (7). 2

In practical applications, it is desired that the scheme with partial feedback control is always considered
due to its lower complexity and less a priori information of the system. Here, we investigate the stabilization
control control schema for the system of Eq. (5) with the partial feedback control.

The external inputs Ii(t) (i = 1, 2, · · ·, n1) and Jj(t) (j = 1, 2, · · ·, n2) are designed as follows:

Ii(t) = −µixi(t), Jj(t) = 0, (8)
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or
Ii(t) = 0, Jj(t) = −νjyj(t), (9)

where µi and νj are any positive constants.

Corollary 1 Suppose that Assumptions 1 and 2 hold. Let m1 and m2 be defined as in Theorem 1. If
min{l1, l2} > max{m1,m2} , where

l1 = min
1≤i≤n1

{ci + µi − α2

n2∑
j=1

|p∗ji|}, l2 = min
1≤j≤n2

{dj − α1

n1∑
i=1

|a∗ij |},

then the global stabilization of the system of Eq. (5) can be achieved with the control of Eq. (8).

Corollary 2 Suppose that Assumptions 1 and 2 hold. Let m1 and m2 be defined as in Theorem 1. If
min{l1, l2} > max{m1,m2} , where

l1 = min
1≤i≤n1

{ci − α2

n2∑
j=1

|p∗ji|}, l2 = min
1≤j≤n2

{dj + νj − α1

n1∑
i=1

|a∗ij |},

then the global stabilization of the system of Eq. (5) can be achieved with the control of Eq. (9).

Remark 1 For systems with constant connections, Wu et al. [10] considered the global Mittag-Leffler stabiliza-
tion of the corresponding case without time delays based on the above three kinds of controllers.

Remark 2 In [17], the author investigated the finite-time stability of delayed fractional-order BAM neural
networks with constant connection functions by using the Bellman–Gronwall inequality and other elementary
inequalities.

In practical applications, some external disturbances are always inevitable when various control are
imposed on the systems. Here, we consider the global stabilization of the system of Eq. (5) under the control
of Eq. (7) with some external disturbances. It is proved that the control of Eq. (7) is robust when the feedback
gains are sufficiently enough. Assume that the system of Eq. (5) with some external disturbances is described
as follows:

Dq
txi(t) =− cixi(t) +

n2∑
j=1

aij(t)f1j(yj(t)) +

n2∑
j=1

bij(t)g1j(yj(t− τ))− µixi(t) + ξi(t),

Dq
t yj(t) =− djyj(t) +

n1∑
i=1

pji(t)f2i(xi(t)) +

n1∑
i=1

qji(t)g2j(xi(t− τ))− νjyj(t) + ηj(t),

(10)

where ξi(t) and ηj(t) are two external disturbances.
For i = 1, 2, · · ·, n1 and j = 1, 2, · · ·, n2 , assume that ξi(t) and ηj(t) are continuous and bounded on

[0,+∞) , i.e. there exist two constants ρ1 and ρ2 such that

∥ξ(t)∥ ≤ ρ1 and ∥η(t)∥ ≤ ρ2

for any t ∈ [0,+∞) .
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Theorem 2 Suppose that Assumptions 1 and 2 hold. Let l1 and l2 be defined as in Theorem 1. If l1 and l2

are sufficiently large, then the global stabilization of the system of Eq. (10) can be achieved with the control of
Eq. (7).

Proof Let

V (t) =

n1∑
i=1

|xi(t)|+
n2∑
j=1

|yi(t)|.

According to the calculation method of Dq
tV (t) in the proof of Theorem 1, we can deduce

Dq
tV (t) ≤ −lV (t) +mV (t− τ) + ρ1 + ρ2.

Here, l = min{l1, l2} , m = max{m1,m2} , m1 = max1≤i≤n1
{β2

n2∑
j=1

q∗ji} , and m2 = max1≤j≤n2
{β1

n1∑
i=1

b∗ij} .

Consider the following fractional-order system:

Dq
tW (t) = −lW (t) +mW (t− τ) + ρ1 + ρ2,

where W (t) ≥ 0 and the initial value of W (t) is the same as that of V (t) . If l1 and l2 are sufficiently large, then
we have lsin(qπ/2) > m . From Lemma 1, we obtain W (t) → ρ1+ρ2

l−m (t → +∞) . Together with Proposition 3,

it follows that V (t) = ∥x(t)∥ + ∥y(t)∥ ≤ W (t) → ρ1+ρ2

l−m (t → +∞) . This implies that the system of Eq. (10)
can achieve global stabilization when l1 and l2 are sufficiently large. 2

Based on the proof of Theorem 2, we can easily obtain the following global quasi-stabilization result.

Theorem 3 Suppose that Assumptions 1 and 2 hold. Let l1 , l2 , m1 , and m2 be defined as in Theorem 1. Let
l = min{l1, l2} and m = max{m1,m2} . If lsin(qπ/2) > m , then we have

∥x(t)∥+ ∥y(t)∥ ≤ ρ1 + ρ2
l −m

, t→ +∞,

where δ
△
= ρ1+ρ2

l−m is the estimated error bound, i.e. the global quasi-stabilization of the system of Eq. (10) can
be realized with the control of Eq. (7).

4. Numerical simulations
In this section, some numerical examples are presented to illustrate the effectiveness of our results. A predictor-
corrector scheme is used to obtain the numerical solutions of fractional-order neural networks with step-length
θ = 0.1 .

Consider the fractional-order BAM neural networks with time delays, which are written in the following
form:

Dq
tx(t) = −Cx(t) +A(t)f1(y(t)) +B(t)g1(y(t− τ)) + I(t),

Dq
t y(t) = −Dy(t) + P (t)f2(x(t)) +Q(t)g2(x(t− τ)) + J(t),

(11)

where q = 0.85 , C = diag(0.07, 0.08) , D = diag(0.05, 0.06) , τ = 0.1 , f1(y(t)) = (tanh(y1(t)), tanh(y2(t)))
T ,

g1(y(t − τ)) = (sin(y1(t − τ)) , sin(y2(t − τ)))T , f2(x(t)) = (tanh(x1(t)), tanh(x2(t)))
T , g2(x(t − τ)) =
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(sin(x1(t− τ)) , sin(x2(t− τ)))T , and

A(t) =

(
0.1 0.2sin(t)

−0.3sin(t) −0.2exp(−t)

)
, B(t) =

(
0.25cos(t) 0.35cos(t)
0.32cos(t) 0.2exp(−t)

)
,

P (t) =

(
0.4exp(−t) 0.2cos(t)
0.3exp(−t) 0.3

)
, Q(t) =

(
0.3 ∗ exp(−t) −0.2 ∗ cos(t)
0.2 ∗ exp(−t) 0.3 ∗ cos(t)

)
.

Obviously, the activation vector functions satisfy Assumption 2 with α1 = α2 = β1 = β2 = 1 .
In the following numerical simulations, the initial values of system are taken as x(t) = (1.2, 1.5)T and

y(t) = (2.6, 1.3)T for any t ∈ [−0.1, 0] .
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Figure 1. Evolution of the system of Eq. (11) without
control.

Figure 2. Evolution of the system of Eq. (11) with the
control of Eq. (12).

Without external control, the time evolution of the system of Eq. (11) is shown in Figure 1. Let µ1 = 5.3 ,
µ2 = 4.7 , ν1 = 5.5 , and ν2 = 5.2 , i.e.

I(t) = (5.3x1(t), 4.7x2(t))
T , J(t) = (5.5y1(t), 5.2y2(t))

T . (12)

It is easily verified that the feedback gains µ1, µ2, ν1, ν2 satisfy the condition of Theorem 1. With the control of
Eq. (12), the time evolution of the system of Eq. (11) is presented in Figure 2. This indicates that the global
stabilization of the system of Eq. (11) can be achieved with the control of Eq. (12).

In the following, the external disturbances are considered. Let ξ(t) and η(t) be given as ξ(t) =

(−0.2 ∗ cos(t), 0.1 ∗ exp(−t))T and η(t) = (0.1, 0.1 ∗ sin(t))T , respectively. Assume that the feedback gains
are much larger, i.e. µ1 = 10.3 , µ2 = 9.7 , ν1 = 10.5 , and ν2 = 10.2 . The corresponding control is as follows:

I(t) = (11.7x1(t), 11.9x2(t))
T , J(t) = (11.5y1(t), 11.2y2(t))

T . (13)

With this kind of control, the time evolution of the system of Eq. (11) with external disturbances is shown in
Figure 3. This indicates that this kind of control scheme is robust with some external disturbances when the
feedback gains are much larger.
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Figure 3. Evolution of the system of Eq. (11) with
external disturbances under the control of Eq. (13).

Figure 4. Evolution of the system of Eq. (11) with the
estimated error bound δ = 0.742 .

0 5 10 15 20 25 30 35 40 45 50
t

0

1

2

3

4

5

6

7

8

||
x|
|+
||
y|
|

Figure 5. Evolution of the system of Eq. (11) with the desired error bound δ = 0.25 .

Now the global quasi-stabilization of the system of Eq. (11) is discussed in the presence of external
disturbances. Assume that ξ(t) and η(t) are given as ξ(t) = (1.2 ∗ cos(t),−0.8 ∗ exp(−t))T and η(t) =

(0.6,−0.9 ∗ sin(t))T .
Let µ1 = 4.3 , µ2 = 3.7 , ν1 = 4.5 , and ν2 = 4.2 . By a simple calculation, we get lsin(qπ/2) > m(= 0.55) ,

which satisfies the condition in Theorem 3. The time evolution of the system of Eq. (11) with external
disturbances is presented in Figure 4. This indicates that the global quasi-stabilization of the system can be
achieved with the estimated error bound δ ≈ 0.742 .

In order to make the error bound be controlled to δ = 0.25 , the value of l can be taken as l = 10.38 ,
which satisfies lsin(qπ/2) > m . Furthermore, in view of the condition in Theorem 3, the values of feedback
gains can be chosen as µ1 = 11.3 , µ2 = 10.7 , ν1 = 11.5 , and ν2 = 11.2 . Under this control, the time evolution
of the system of Eq. (11) with external disturbances is presented in Figure 4, which implies that the global
stabilization of system can be achieved with the desired error bound of δ = 0.25 .
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5. Conclusions
This paper investigated the stabilization problem of fractional-order delayed BAM neural networks. Based on
feedback control, we derived a sufficient condition to realize the global stabilization of systems by using the
fractional inequality, the Lyapunov stability theory, and the comparison principle. In particular, we also proved
that this kind of control scheme is robust with external disturbances when the feedback gains are sufficiently
large. In addition, we obtained a condition that can guarantee the global quasi-stabilization of systems with
some external disturbances and we gave the corresponding estimated error bound, which can be adjusted
in practical applications. Finally, we provided some numerical simulations to verify the effectiveness of the
theoretical results.
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