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Abstract: Near-field multiple-input multiple-output (MIMO) radar imaging systems are of interest in diverse fields
such as medicine, through-wall imaging, airport security, concealed weapon detection, and surveillance. The successful
operation of these radar imaging systems highly depends on the quality of the images reconstructed from radar data.
Since the underlying scenes can be typically represented sparsely in some transform domain, sparsity priors can effectively
regularize the image formation problem and hence enable high-quality reconstructions. In this paper, we develop
an efficient three-dimensional image reconstruction method that exploits sparsity in near-field MIMO radar imaging.
Sparsity is enforced using total variation regularization, and the reflectivity distribution is reconstructed iteratively
without requiring computation with huge matrices. The performance of the developed algorithm is illustrated through
numerical simulations. The results demonstrate the effectiveness of the sparsity-based method compared to a classical
image reconstruction method in terms of image quality.

Key words: Inverse problems, sparse reconstruction, image reconstruction, multiple-input multiple-output radar
imaging, microwave imaging

1. Introduction
Near-field radar imaging systems are of interest in various fields including medical diagnosis, through-wall
imaging, airport security, concealed weapon detection, and surveillance [1–4]. Many of the earlier developed
systems operate in monostatic mode, i.e. with colocated transmitter and receiver antennas [5–9]. However,
recently there has been growing interest in using sparse multiple-input multiple-output (MIMO) arrays with
spatially distributed transmit and receive antennas (i.e. multistatic array) because these can offer high resolution
with reduced hardware complexity, cost, and acquisition time [10–14].

The successful operation of near-field radar imaging systems highly depends on the quality of the im-
ages reconstructed using radar data. The classical approaches used for reconstructing the three-dimensional
scene reflectivity distribution are direct inversion methods such as backprojection and Kirchhoff migration al-
gorithms [15–21]. Although these classical methods generally offer fast computation, the reconstruction perfor-
mance degrades substantially in the presence of limited data (as acquired with sparse arrays) and measurement
noise.

Motivated by compressed sensing theory [22], sparsity-based reconstruction provides state-of-the-art
image reconstruction quality in various radar imaging problems with limited data [23–26]. For sparsity-based
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reconstruction, there are various publicly available algorithms [27], but they are mostly for the recovery of
two-dimensional and real-valued images. Moreover, when handling large-dimensional imaging problems, these
algorithms are highly inefficient in terms of both computation time and memory usage because they involve
computation with huge matrices. These limitations require the adaptation of the sparse recovery techniques to
a particular problem at hand. Most of the adapted sparse reconstruction techniques for radar imaging are for
monostatic or far-field imaging settings [6–9, 23, 28–36]. On the other hand, there is limited work for multistatic
and near-field settings [37–39], all of which are specialized to a particular application.

In this paper, we develop an efficient sparsity-based method to reconstruct the three-dimensional complex-
valued reflectivity distribution in a general near-field MIMO radar imaging setting. Sparsity is enforced in a
three-dimensional transform domain using total variation regularization, and the reconstruction is performed
iteratively without requiring computation with huge matrices. The developed sparse recovery algorithm is a
special case of the “half-quadratic regularization” approach [40, 41], which solves a series of quadratic problems
to obtain the reconstruction. Numerical simulations are performed for a microwave imaging setting with a
sparse MIMO array. The effectiveness of the developed method is demonstrated by comparing the performance
with the classical backprojection method.

The paper is organized as follows. In Section 2, we introduce the general measurement model for a near-
field and multistatic radar imaging setting. The image formation problem is formulated as an inverse problem
in Section 3. Section 4 presents the developed sparsity-based reconstruction method for efficiently solving the
resulting inverse problem. Numerical simulation results are presented in Section 5 for a microwave imaging
application with a sparse MIMO array. Section 6 concludes the paper.

2. Forward problem
The first task in solving the imaging problem is to mathematically relate the unknown reflectivity field of the
scene to the radar measurements. The observation geometry for near-field MIMO imaging is illustrated in
Figure 1. The transmit and receive antennas are spatially distributed on a planar MIMO array located at
z = 0 . Each transmit antenna, located at (xt, yt, 0) , illuminates a scene that lies in the near-field of the array.
Under Born approximation, the radar pulses captured by the receive antenna at (xr, yr, 0) can be expressed in
the time-domain as follows [16]:

r(xt, yt, xr, yr, t) =

∫ ∫ ∫
1

4πdtdr
s(x, y, z) p

(
t− dt

c
− dr

c

)
dx dy dz, (1)

where

dt =
√
(xt − x)2 + (yt − y)2 + z2, (2)

dr =
√
(xr − x)2 + (yr − y)2 + z2. (3)

Here r(xt, yt, xr, yr, t) denotes the time-domain measurement obtained using the transmitter at (xt, yt, 0) and
the receiver at (xr, yr, 0) . Moreover, s(x, y, z) is the complex-valued three-dimensional reflectivity distribution
of the scene, dt and dr respectively denote the distances from the corresponding transmit and receive antenna
elements to the scatterer at (x, y, z) , p(t) is the transmitted pulse, and c denotes the speed of the light.
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Figure 1. Near-field MIMO radar imaging system.

By applying Fourier transform, the measurement model can also be expressed in the temporal frequency
domain [16] as:

r(xt, zt, xr, zr, k) =

∫ ∫ ∫
1

4πdtdr
s(x, y, z) p(k) e−jkdt e−jkdrdx dy dz. (4)

Here p(k) denotes the Fourier transform of the transmitted signal, where k = 2πf/c denotes the frequency-
wavenumber and f denotes the temporal frequency.

Because the measurements will be acquired digitally and image reconstruction will be performed on
a computer, a discrete forward model is needed. The continuous forward model in Eq. (1) or Eq. (4) is
converted to a discrete model by replacing the three-dimensional continuous reflectivity function with its discrete
representation in terms of voxels. By using lexicographic ordering, the voxel values of the discretized reflectivity
function are put into the vector s ∈ CN . The measurement vector is also denoted by y ∈ CM , which contains
the discrete set of measurements obtained using different transmitter-receiver pairs and frequency steps. Then
the linear relation between the image vector s and the measurement vector y can be expressed as follows:

y = As, (5)

where A ∈ CM×N is the observation matrix. In general, the observation matrix A is rectangular. The total
number of rows in A is the length, M , of the measurement vector, which is equal to the multiplication of the
number of transmit and receive antennas, and used frequency steps. The number of columns in A is equal to
the number of voxels, N .

Using the frequency-domain model given in Eq. (4), the (m,n)th element of the observation matrix,
representing the contribution of the nth voxel to the mth measurement, can be obtained [42] as:

Am,n =
p(km)e−jkmd

(n)
tm e−jkmd(n)

rm

4πd
(n)
tm d

(n)
rm

. (6)

Here the measurement index m indicates the locations of the transmitting and receiving antennas, as well as

the frequency, km , used in this measurement. Moreover, d
(n)
tm and d

(n)
rm respectively represent the distances

from the center of the nth voxel to the transmitter and receiver used in the mth measurement. Note that, for
the reflectivity function, the voxel size is chosen based on the desired down-range and cross-range resolutions of
the MIMO imaging system.

3. Inverse problem
In the inverse problem, the goal is to estimate the three-dimensional complex-valued reflectivity field, s , of the
scene from the radar measurements, y . Because the reflectivity field generally has strong correlations along
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range and cross-range directions, it can be sparsely represented in some transform domain. Incorporation of
such sparsity priors helps to regularize the imaging problem and hence prevents the reconstruction artifacts
that would otherwise result from reduced and noisy data.

To enforce sparsity [27, 43, 44], the inverse problem is formulated as:

min
s

∥y −As∥2 + α2∥Φs∥1, (7)

where Φ is a sparsifying transform operator for s , chosen based on the reflectivity characteristics of the scene,
and α is the regularization parameter. For example, if the scene consists of point scatterers, the identity
operator can be chosen (i.e. Φ = I ) to enforce sparsity in the space domain. For extended targets, a commonly
used choice for Φ is the discrete gradient operator, which can be expressed for the three-dimensional reflectivity
image as:

Φ =

Dx

Dy

Dz

 , (8)

where the matrices Dx , Dy , and Dz represent discrete approximations to the gradient operator along the x , y ,
and z directions, respectively. This regularization choice is also known as total variation and allows to preserve
sharp edges and rapidly changing structures in an extended target when they fit the data. In practice, there is
no need to form the matrices Dx , Dy , and Dz since these operations can be efficiently computed by filtering
the three-dimensional reflectivity image with simple derivative kernels, such as [−1 0 1] , along the respective
coordinate directions.

4. Image reconstruction algorithm

Because there is no closed-form solution for the resulting convex optimization problem in Eq. (7), numerical
techniques are needed to find the solution. Various algorithmic approaches with different convergence rates
and guarantees exist for solving such optimization problems. An important class of algorithms is gradient-
based algorithms, which are commonly obtained with a fixed-point approach applied to an approximated
problem [27, 43, 44]. To efficiently obtain the solution, here we use such a fixed-point iterative approach [41]
based on the half-quadratic regularization method [40].

To develop the algorithm, first, a smooth approximation is applied to the l1 -norm to make it differentiable
everywhere, which results in the following optimization problem [41]:

min
s

∥y −As∥2 + α2
3N∑
i=1

√
|[Φs]i|2 + β. (9)

Here β is the smoothing parameter. Note that when β = 0 , the above cost function reduces to the original
cost function in Eq. (7). Moreover, when β is sufficiently small, it provides a differentiable cost function that
is close to the original one. By differentiating this new cost function with respect to s and equating it to zero,
the following nonlinear equation can be obtained for the solution:

(
AHA+ α2ΦHW (s)Φ

)
s = AHy, (10)
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where W (s) is a matrix that depends on the unknown s as follows:

W (s) = diag

(
1/2√

|[Φs]i|2 + β

)
. (11)

Based on this result, a fixed-point iteration is obtained, which successively computes the matrix W (s) using
Eq. (11) and then updates the solution s by solving a linear system. The computations in the l th iteration can
then be summarized as follows:

W (sl) = diag

(
1/2√

|[Φsl]i|2 + β

)
, (12)

sl+1 =
(
AHA+ α2ΦHW (sl)Φ

)−1
AHy. (13)

The iteration in Eq. (13) computes the solution of the linear system in Eq. (10) with a direct matrix
inversion approach. However, for the reconstruction of large-scale images, such a direct approach is not feasible
since it requires working with huge matrices. As a result, in practice, more efficient iterative methods must
be employed for the solution of the resulting sets of equations. Here the conjugate gradient (CG) method is
adapted to efficiently solve this linear system. The iterations of the CG algorithm are performed efficiently
using only scalar products of vectors and evaluations of the forward operator and its adjoint (i.e. Ax and AHy )
for different inputs. This eliminates the need to explicitly form the matrix B = AHA + α2ΦHW (sk)Φ or its
inverse.

While sparsity-based reconstruction enables better image quality, it generally requires a much higher
computational cost than the direct inversion methods such as backprojection. The computational complexity
of the fixed-point approach presented here is mainly dominated by the evaluations of the forward and adjoint
operators (i.e. Ax and AHy ) in the inner CG iterations. For example, if the number of inner CG iterations is
denoted by Li , and the number of outer iterations is denoted by Lo , then the number of forward and adjoint
operator computations required is Lo × Li . On the other hand, only a single adjoint operator evaluation
is required for the backprojection method. As a result, the direct inversion methods like backprojection are
generally three to four orders of magnitude faster than the sparsity-based reconstruction approach presented
here.

5. Numerical results
In this section, we illustrate the performance of sparsity-based image reconstruction for an application in
microwave imaging [16]. For this, we consider the sparse MIMO array topology shown in Figure 2, which is
known as the Mills Cross array. The width of the planar array is 0.3 m, and 12 transmit and 13 receive
antennas are spaced uniformly along its diagonals in a cross configuration. The number of frequency steps is
chosen as 21 , ranging from 4 to 16 GHz, with a step of 0.6 GHz. The target center is located at a distance of
0.5 m from the MIMO array.

For such an imaging setting, the expected theoretical resolution [16] with a nonsparse array is 2.5 cm in
the cross-range directions, x and y , and 1.25 cm in the down-range direction, z . The goal is to estimate the
reflectivity image within a cube of size 0.3 m × 0.3 m × 0.3 m, where the voxel size is chosen as 1.25 cm ×
1.25 cm × 0.625 cm (i.e. half of the expected resolution in each direction). Note that the underlying image
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reconstruction problem is highly underdetermined; the ratio of the number of measurements to the number of
unknown image voxels is nearly 10 percent.

-0.2                  -0.1                     0                      0.1                    0.2

x (m)

-0.2

-0.1

0
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)
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Figure 2. 2D MIMO array with 12 transmit and 13 receive antennas arranged in a cross configuration.

Two different target scenarios are considered in the numerical simulations. The first scenario is the same
as the one in [16], where the scene consists of nine point scatterers located within a volume of size 0.2 m × 0.2

m × 0.15 m. The left column of Figure 3 shows different views of the true reflectivity image for this target
scenario. The radar measurements are simulated using the model in Eq. (5), and then the 3D reflectivity image is
reconstructed from the radar measurements using the developed sparsity-enforcing algorithm with regularization
parameter α = 25 . The conventional backprojection algorithm is also implemented in the frequency-domain for
comparison. The reconstructions obtained with the classical backprojection algorithm and sparsity-enforcing
algorithm are respectively shown in the middle and right columns of Figure 3. The figure contains the summed
magnitude of the 3D images along range direction z and cross-range direction x , as well as the three slices at
z = 0.425 m, z = 0.5 m, and z = 0.575 m, containing the point scatterers.

The results demonstrate the superior focusing capability of the developed imaging algorithm compared
to the classical backprojection method. The theoretical resolution is achieved even though the acquired data
are substantially reduced due to the use of a sparse array and few frequency steps. Such high resolution is
not possible to be achieved with the backprojection algorithm both in the range and cross-range directions.
Moreover, as can be seen from the second row of Figure 3, the neighboring range slices that do not contain
point scatterers are almost perfectly clean in our reconstructions, while this is not true for the backprojection
result. The summed magnitude and the slice at z = 0.575 m are replotted in Figure 4 together with their
mesh plots for better visualization. Because the same target scenario as in [16] is considered here, one can
additionally compare the proposed approach with the range migration method developed in [16], which requires
a uniform array topology. A uniform array of similar size is used there with many more antenna elements and
frequency steps, which results in 1000 times more measurements than in our case. Visual inspection of the
results presented in that work illustrates that sparsity-based reconstruction also provides better image quality
than the range migration technique, even with significantly fewer measurements.

To quantitatively evaluate the quality of the reconstructions, the peak signal-to-noise-ratios (PSNRs) are
also calculated, which are 23.18 dB and 46.38 dB for the backprojection and the sparsity-based reconstructions,
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Figure 3. Imaging results for the first target scenario with nine distributed point scatterers. The left, middle, and right
columns respectively show different views of the true reflectivity image, backprojection reconstruction, and sparsity-based
reconstruction. Each 3D reconstruction is normalized by the largest magnitude value, and figures in the same row share
the same color bar. The first and second rows respectively show the summed magnitude of the 3D images along the
range direction z and the cross-range direction x . The third, fourth, and fifth rows respectively show the magnitude
slices at z = 0.425 m, z = 0.5 m, and z = 0.575 m.
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Figure 4. Imaging results for the first target scenario with nine distributed point scatterers. The summed magnitudes
(a–f) and the slices at z = 0.575 m (g–l) are replotted together with their mesh plots for better visualization.
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respectively. A higher value of PSNR generally indicates that the image quality is better. The difference in
these PSNR values also demonstrates the effectiveness of the sparsity-based reconstruction. In computational
image formation, typical values for the PSNR are between 20 and 40 dB, where 40 dB or higher PSNR roughly
corresponds to excellent image quality and PSNRs lower than 20 dB indicate poor image quality. Hence, these
PSNR values also suggest that, for simple point scatterers, the quality of the sparsity-based reconstruction is
almost excellent, while backprojection only provides a reconstruction of average quality.

In the second numerical simulation, imaging of a distributed target is analyzed. The target contains a
box of size 0.1 m × 0.1 m × 0.1 m with a uniform reflectivity value of 0.5 , and the letter U , which has twice
the reflectivity, is inside the box. The left column of Figure 5 provides different views of the true reflectivity
image for this scenario. The radar measurements are again simulated using the model in Eq. (5), and then the
3D reflectivity image is reconstructed using the developed sparsity-enforcing algorithm with the regularization
parameter α = 25 . The reconstructions obtained with the classical backprojection algorithm and the sparsity-
enforcing algorithm are shown in the middle and right columns of Figure 5, respectively. The figure shows the
summed magnitude of each 3D image along range direction z and cross-range direction x , as well as the three
central slices at z = 0.48125 m, z = 0.49375 m, and z = 0.50625 m, containing the uniform box with and
without the letter U.

The results for the distributed target also demonstrate the superior focusing performance of the developed
algorithm compared to the classical backprojection method. In fact, in this case, the characteristics of the target
are not reconstructed well with the backprojection algorithm as can be seen from the middle column of Figure
5. In particular, the shape of the box and the letter U are not clearly visible in the corresponding slices. On the
other hand, the sparsity-based algorithm is capable of reconstructing the fine details with the provided limited
data, as can be clearly seen from the slices given in the right column of Figure 5. The summed magnitude and
the slice at z = 0.50625 m are replotted in Figure 6 together with their mesh plots for better visualization.

The PSNR values also support these observations since the PSNRs of the backprojection and sparsity-
based reconstructions are 11.34 dB and 24.15 dB, respectively. These PSNR values also indicate that the
backprojection result does not have acceptable image quality, while sparsity-based reconstruction has good
quality, although not perfect. However, considering the limited amount of measurements available and the
complexity of the distributed target, the sparsity-based reconstruction can be regarded as successful.

6. Conclusion
In summary, we have presented an efficient sparsity-based image reconstruction method for near-field MIMO
radar imaging. Because the three-dimensional scene reflectivity has correlations along both range and cross-
range directions, a sparse representation model is exploited for reconstruction with limited data. The developed
sparse recovery algorithm, which is a special case of the “half-quadratic regularization” method, performs
the reconstruction efficiently without requiring computation with huge matrices. The simulation results have
demonstrated the superior focusing capability of the developed reconstruction method compared to the classical
backprojection method for an imaging setting with limited data. The results suggest that high-quality images
can be obtained with the developed sparsity-based method even with sparse MIMO arrays and sparse frequency
data.
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Figure 5. Imaging results for the second scenario with a distributed target. The left, middle, and right columns
respectively show different views of the true reflectivity image, backprojection reconstruction, and sparsity-based recon-
struction. Each 3D reconstruction is normalized by the largest magnitude value, and figures in the same row share the
same color bar. The first and second rows respectively show the summed magnitude of the 3D images along the range
direction z and the cross-range direction x . The third, fourth, and fifth rows respectively show the magnitude slices at
z = 0.48125 m, z = 0.49375 m, and z = 0.50625 m.
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Figure 6. Imaging results for the second scenario with a distributed target. The summed magnitudes (a–f) and the
slices at z = 0.50625 m (g–l) are replotted together with their mesh plots for better visualization.
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