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Abstract: This paper proposes a new optimization algorithm, namely HGAB3C, and presents its performance on the
CEC-2014 test suite. In HGAB3C, simple genetic algorithms (GAs) and big bang-big crunch (BB-BC) are hybridized.
The algorithm carries out global searches using a simple GA. In every generation the BB-BC algorithm is used to
carry out local searches. The addition of local search has improved the capability of simple GAs significantly. The
performance of the proposed algorithm is compared with 17 other optimization algorithms on all 30 functions of the
CEC-2014 benchmark suite. It is observed that HGAB3C outperforms all other algorithms on 4 benchmark functions.
For the 3 other functions, its performance equaled the best of the competing algorithms, which makes HGAB3C’s
performance best in a total of 7 benchmark functions. Out of the 18 competing algorithms, the proposed algorithm
ranked second for the unmatched best mean error measure. For the best performance measure (number of functions
giving unmatched best and equaled best mean error), the proposed algorithm was the third best. As far as the speed of
convergence is concerned, the algorithm gave an unmatched best performance for the shifted Schwefel function (function
10 of CEC-2014 test bench). It obtained a mean error value of 0.00E+00, outperforming the previous best of 1.23E-03,
converging to the target result in an average of 346.44 generations, which no other algorithm could achieve.
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1. Introduction
Engineering system complexity has grown many folds in the last few decades. Engineering system design is,
in a way, a process of optimizing design parameters based on some specified objective function(s). Business
decisions to maximize profits, data analysis of huge databases such as social media applications, metropolis
vehicular traffic, supply-chain applications, and drug design, which are growing with exponential complexity, all
call for newer quick and efficient optimization techniques. The demand for such optimization techniques today
is greater than ever before. These increasing system complexities and larger databases are forcing researchers
to search for new and better optimization techniques.

It has been observed that combining different optimization techniques with distinct features leads to better
techniques with improved results for optimization problems. Kumar et al. [1] proposed a multipopulation big
bang-big crunch algorithm and also evaluated its performance on the CEC-2014 test bench, finding it to be
in the category of best algorithms. Zhu et al. [2] proposed an improved genetic algorithm (GA) with some
∗Correspondence: lotus.k30@gmail.com
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local search operators to make it efficient for dynamic shortest-path problems. An evolutionary algorithm based
on covariance matrix learning and searching preference (CMLSP) proposed in [3] by Chen et al. discarded
the traditional crossover and mutation methods and was able to generate high-quality solutions around a
good solution. Elsayed et al. proposed the combination of three multioperator evolutionary algorithms into
one algorithm named UMOEAS (united multioperator evolutionary algorithm) [4, 5], and it proved to be
superior to single-operator evolutionary algorithms. In mean-variance mapping optimization (MVMO-SH),
multiparent crossover was integrated in swarm intelligence [6] and it effectively tackled a variety of problems
with varied mathematical properties and dimensions. MVMO with single parent–offspring approach has also
been effectively used on the CEC-2014 test bench [7]. Erlich et al. carried out this integration with the intention
of forcing the particles with the least fitness to explore other regions of the solution search space. Molina et al.
proposed a region-based MA with a trade-off between exploration and exploitation in [8]. Hu et al. proposed a
hybrid algorithm based on opposition-based learning (OBL) and adaptive differential evolution (ADE) named
partial opposition-based learning and adaptive differential evolution (POBL-ADE) [9]. A variant of differential
evolution with controlled restart was proposed in [10]. Another variant of DE, i.e. success-history based adaptive
differential evolution (SHADE), was modified to incorporate linear population size reduction in L-SHADE [11]
and proved to be a very good optimization algorithm on the CEC-2014 test bench. Li et al. also incorporated
a pattern-driven local search operator in binary particle swarm optimization to improve its search efficiency
[12]. Buzok et al. [13] and Yavuz et al. [14] also evaluated their hybrid algorithms, SHADE4 and SSEABC,
respectively, on the CEC-2014 test suite and found them to be better than their parent algorithms. Thus,
there is enough evidence available in the literature to suggest that an appropriate combination of two different
algorithms for exploration and exploitation can lead to results better than the individual results that these
algorithms have produced.

This proposed work is based upon the fact that the GA is quick to find a near global best solution due to
its operators like crossover and mutation, but it may be unable to search the local best solution as the a simple
GA does not have any operator that could fine-tune the results to reach the global best solution [15]. Big bang-
big crunch (BB-BC) is a widely accepted algorithm that finds the best solution among the current population
[16, 17]. The next generation is evolved around the current best (elite) of the present population. This causes
the solution to improve with every generation. Hence, it offers a possibility to fine-tune the coarse solution
found in earlier generations. In the work presented in this paper, a simple GA and BB-BC are hybridized
into a single algorithm to achieve a fine-tuned global best solution whereby the idea is to explore the complete
solution search space to find a solution around the global best by the GA and then improve it by exploiting the
achieved solution using BB-BC. In this paper we implement the hybridized algorithm in MATLAB. We validate
the proposed algorithm on the CEC-2014 test bench and it is found to give very encouraging results.

This paper has been divided into 4 sections. Section 1 has presented the motivation for this work. Section
2 proposes the new hybridized algorithm, Section 3 presents simulation results and discussions, and Section 4
concludes the paper.

2. Proposed algorithm

In this section we present the proposed algorithm. In a simple GA, the creation of each new generation attempts
to generate new fitter solutions. For every generation created by a simple GA, a local search carried out by the
BB-BC algorithm attempts to further improve the fitness of the current generation. As stated earlier, in order
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to keep algorithm simple and effective, we chose a simple GA as our main algorithm to be fine-tuned for local
searches by the BB-BC algorithm. The proposed algorithm is given below.

2.1. Nomenclature and variables/constants used

Variables
Nind: No. of individuals in the population.
Ngen: No. of maximum generations.
Fobj: Objective function that calculates the error/fitness for the given candidate solution.
Pop: Initial random population for GA and BB-BC.
G_itr: No. of generations for GA.
B_itr: No. of generations for BB-BC.
GenID: Current generation number.
Constants (for 10-dimensional CEC-14 benchmark functions)
Dim: No. of variables in desired solution = 10.
LB: Array containing lower bound of each solution variable = [-100 -100 -100 -100 -100 -100 -100 -100 -100
-100].
UB: Array containing upper bound of each solution variable = [100 100 100 100 100 100 100 100 100 100 100].
Fobj: Objective function that calculates the error/fitness for the given candidate solution.
Fcor: Correction function that ensures that the generated solution is within the stipulated lower and upper
bounds (LB and UB), meeting all constraints. This function ensures that the updated value of each candidate
is within the range of -100 to 100.
Target: Target error = 10−9 ; error below this target value is considered to be 0.

2.2. Algorithm

Step 1: Initialization:
Create an initial population ‘Pop’ of ‘Nind’ individuals randomly within the constrained range of -100 to 100.
Step 2: Evaluate the fitness of each individual of the population:
Evaluate error (fitness) of the initial population for the minimization (maximization) problem and store the best
individual as Elite and its error as EliteErr (EliteFitness). All the functions in the CEC-14 benchmark suite are
minimization problems. Hence, in this paper, the error value of each individual is found and the individual with
minimum error is selected as Elite. The error value corresponding to the selected Elite individual is EliteErr.
Step 3: Iterative process
GenID = 1
For i = 1 to Ngen
Phase 1: GA
For gi = 1to G_itr
Rank the population according to its fitness (less error leads to a more fit individual).
Select individuals for breeding. There are several methods of sampling to choose fit individuals for sampling.
In this algorithm stochastic universal sampling has been used for selection.
Select individuals for breeding using stochastic universal sampling.
Perform crossover and mutation on selected individuals to generate offspring.
Evaluate fitness of each offspring.
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Reinsert offspring into the current population to generate a new population for the next generation.
End For
Save the best fit individual generated in Phase1 as Elite and its error as EliteErr.
Phase 2: BB-BC
For bi = 1to B_itr
Compute the fitness of each candidate solution in the current population.
Compute the center of mass using Eq. (1) or select the best fit individual as the center of mass:

x =

∑N
i=1

1
fi

xi∑N
i=1

1
fi

, (1)

where fi is the fitness of the ith candidate solution, i.e. xi , and N is the number of individuals in a population,
i.e. Nind. In this work, the best fit individual is considered as the center of mass.
Evolve a new generation around every Elite as follows:
For k = 1 to Nind
Using Eq. (2), calculate new candidate solutions around the center of mass/elite by adding or subtracting a
normal random number whose value decreases as the iterations elapse.

xnew(k) = Elite+
lr

m
(2)

End For
(l and m are proportional to the upper limit of the parameter and number of iterations, respectively, and r is
an array of random numbers between 0 and 1 and has the same length as that of a candidate solution/Elite.)
xnew is the new candidate solution.
GenID = GenID + 1;
End For
End For

3. Performance evaluation: simulation results and discussion
In order to evaluate the performance of the proposed HGAB3C algorithm we implemented the algorithm in
MATLAB and simulated its performance on 30 CEC-2014 benchmark functions with 10 dimensions only. We
used core i5 @ 3.2GHz with 4GB RAM-based desktop computers for evaluating the performance. We conducted
25 trials for each function. The performance of the proposed algorithm on the CEC-2014 test suite is shown
in Table 1. We compared the performance of HGAB3C with 17 other algorithms as given in [18, 19]. This
comparison is shown in Table 2.

The detailed comparative performance of the 18 algorithms is shown in Table 2, while Table 3 summarizes
the category-wise comparative performance of HGAB3C with 17 other algorithms. From Table 3 we observe
that HGAB3C gives the best performance for 7 of the 30 functions of the CEC-2014 test bench. We further
observe that out of these 7, for 4 functions i.e. function numbers 10, 20, 21, and 27, the proposed algorithm gave
the unmatched best performance. It obtained the unmatched best performance for function numbers 10, 20, 21,
and 27 with mean error of 0, 1.78E-02, 3.88E-02, and 1.31E-01, respectively, beating the earlier best of 1.23E-03,
5.59E-02, 4.08E-01, and 1.54E-01, respectively. For 3 other functions, i.e. function numbers 3, 8, and 26, it
matched the best performance given by other algorithms, as well. In the overall comparison we find that the
UMOEAS algorithm ranks first with the best performance for 11 of the 30 functions. However, UMOEAS could
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Table 1. Performance of HGAB3C algorithm on CEC-2014 test bench.

Function Best Median Worst Mean Standard Earlier
number deviation best mean
1 4.64E-08 5.83E-08 6.41E-08 5.76E-08 4.27E-09 0.00E+00
2 1.40E-01 1.66E-01 1.78E-01 1.65E-01 1.11E-02 0.00E+00
3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4 0.00E+00 0.00E+00 3.48E+01 1.11E+01 1.66E+01 0.00E+00
5 1.84E-09 2.00E+01 2.00E+01 1.76E+01 6.63E+00 1.64E-07
6 5.50E-06 3.00E-03 9.84E-01 1.70E-01 3.49E-01 0.00E+00
7 4.68E-02 7.38E-02 8.60E-01 1.36E-01 2.08E-01 0.00E+00
8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
9 1.99E+00 2.98E+00 5.99E+00 3.54E+00 1.70E+00 1.65E+00
10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.23E-03
11 3.48E+00 2.68E+01 2.52E+02 6.13E+01 6.96E+01 2.98E+00
12 6.59E-04 6.95E-04 6.95E-04 6.94E-04 7.35E-06 0.00E+00
13 1.44E-02 1.65E-02 1.54E-01 2.54E-02 2.97E-02 9.44E-03
14 1.40E-03 5.40E-03 9.80E-03 5.67E-03 2.37E-03 5.68E-04
15 2.80E-01 5.04E-01 9.30E-01 5.36E-01 1.90E-01 3.30E-01
16 9.72E-02 1.08E+00 2.54E+00 1.15E+00 7.11E-01 1.93E-01
17 1.90E-03 1.24E+01 4.00E+01 9.50E+00 1.07E+01 1.40E+00
18 1.33E-02 3.00E+00 1.56E+01 3.68E+00 3.54E+00 7.83E-01
19 1.95E-02 2.93E-02 1.01E+00 1.55E-01 3.21E-01 7.66E-02
20 2.90E-03 4.60E-03 7.72E-02 1.78E-02 2.61E-02 5.59E-02
21 4.05E-05 4.29E-04 3.14E-01 3.88E-02 1.03E-01 4.08E-01
22 4.20E-03 5.53E-02 4.16E-01 1.42E-01 1.53E-01 4.41E-02
23 3.29E+02 3.29E+02 3.29E+02 3.29E+02 2.32E-13 2.00E+02
24 1.08E+02 1.14E+02 1.18E+02 1.13E+02 2.54E+00 1.06E+02
25 1.13E+02 1.21E+02 2.01E+02 1.32E+02 2.66E+01 1.01E+02
26 1.00E+02 1.00E+02 1.00E+02 1.00E+02 4.09E-02 1.00E+02
27 8.70E-03 9.36E-02 5.95E-01 1.31E-01 1.22E-01 1.53E-01
28 3.57E+02 3.69E+02 4.79E+02 3.75E+02 3.15E+01 2.00E+02
29 2.23E+02 2.48E+02 2.69E+02 2.51E+02 1.23E+01 1.96E+02
30 4.59E+02 4.84E+02 5.78E+02 4.88E+02 2.67E+01 2.00E+02

give only 2 unmatched best performances, and for the other 9 functions its performance was equaled by other
algorithms as well. PB3C is ranked second. We rank HGAB3C, LSHADE, and DE_b6e6rlwithrestart third,
followed by CMSLSP, SOO, SOO+BOBYQA, GaAPDE, and RMA-LSChCMA. Considering the unmatched
best criteria as performance metrics we rank PB3C as the best algorithm with 7 unmatched best performances.
We find that HGAB3C ranks second with 4 unmatched best performances and UMOEAS and LSHADE are
ranked third with both having 2 unique best performances. It is also evident from Table 3 that the best
performance of HGAB3C is distributed across all 4 categories of test functions. UMOEAS and LSHADE are
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Table 2. Comparison of HGAB3C with 17 other algorithms on CEC-2014 benchmark functions.

S. no. Algorithm F1 F2 F3 F4 F5 F6
1 NRGA 2.79E+04 9.15E+02 1.52E+03 1.54E+01 1.96E+01 2.45E+00
2 FWA_DM 5.01E+03 1.34E-04 1.88E-09 1.41E+00 2.00E+01 7.06E-01
3 UMOEAS 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.68E+01 0.00E+00
4 SOO + BOBYQA 4.57E+03 3.60E-02 5.84E+03 0.00E+00 2.00E+01 2.00E-03
5 SOO 8.81E+06 6.34E+00 6.64E+03 6.78E-01 2.00E+01 2.00E-03
6 RSDE 0.00E+00 0.00E+00 0.00E+00 2.81E+00 1.92E+01 5.29E-02
7 POBL_ADE 1.62E+04 2.27E+03 5.74E-04 2.55E+01 1.91E+01 1.04E+00
8 FERDE 2.37E+00 6.29E-05 1.35E-03 0.00E+00 1.91E+01 8.89E-01
9 FCDE 0.00E+00 0.00E+00 0.00E+00 1.84E+01 2.03E+01 3.57E+00
10 DE_b6e6rlwithrestart 0.00E+00 0.00E+00 0.00E+00 1.13E+00 1.85E+01 0.00E+00
11 CMLSP 1.77E-07 1.12E-15 1.06E-04 3.34E-15 1.69E+01 6.20E-02
12 GaAPADE 0.00E+00 0.00E+00 0.00E+00 3.07E+01 1.97E+01 1.48E-01
13 OptBees 7.84E+02 9.88E-03 9.21E-01 2.69E+00 2.00E+01 3.02E+00
14 LSHADE 0.00E+00 0.00E+00 0.00E+00 2.94E+01 1.42E+01 1.75E-02
15 RMA_LSCh_CMA 0.00E+00 0.00E+00 1.03E-07 8.50E-02 1.37E+01 1.48E-04
16 MVMO 4.95E-04 7.10E-09 9.86E-11 9.55E+00 1.66E+01 3.45E-03
17 PB3C 4.66E+01 1.44E+01 6.27E-09 3.72E-04 1.64E-07 1.96E-02
18 HGAB3C 5.76E-08 1.65E-01 0.00E+00 1.11E+01 1.76E+01 1.70E-01
S. no. Algorithm F7 F8 F9 F10 F11 F12
1 NRGA 2.03E-01 5.59E+00 8.69E+00 1.19E+02 5.76E+02 1.24E-01
2 FWA_DM 9.48E-02 2.54E-01 6.01E+00 1.59E+00 3.72E+02 4.25E-02
3 UMOEAS 0.00E+00 0.00E+00 2.73E+00 3.74E-01 1.44E+02 0.00E+00
4 SOO + BOBYQA 4.90E-02 1.89E+01 8.96E+00 1.30E+02 3.49E+02 0.00E+00
5 SOO 4.90E-02 1.89E+01 8.96E+00 1.30E+02 3.49E+02 0.00E+00
6 RSDE 3.55E-02 6.61E-01 8.52E+00 6.84E+01 2.91E+02 2.21E-01
7 POBL_ADE 1.63E-01 7.81E+00 7.63E+00 1.53E+02 2.08E+02 2.69E-01
8 FERDE 1.88E-02 0.00E+00 5.64E+00 3.67E-02 7.55E+01 1.23E-01
9 FCDE 1.96E-01 1.61E+01 2.10E+01 2.92E+02 6.61E+02 7.73E-01
10 DE_b6e6rlwithrestart 1.69E-02 0.00E+00 4.90E+00 1.23E-03 1.97E+02 2.93E-01
11 CMLSP 0.00E+00 2.07E+00 1.66E+00 1.96E+02 1.53E+02 3.03E-02
12 GaAPADE 3.16E-03 0.00E+00 3.38E+00 1.52E-01 1.83E+02 1.40E-01
13 OptBees 1.56E-01 1.16E-13 2.08E+01 2.19E+02 3.93E+02 1.30E-01
14 LSHADE 3.04E-03 0.00E+00 2.35E+00 8.57E-03 3.21E+01 6.82E-02
15 RMA_LSCh_CMA 0.00E+00 0.00E+00 3.32E+00 7.68E+00 2.01E+01 1.65E-02
16 MVMO 1.86E-02 6.69E-15 3.49E+00 2.14E+00 9.63E+01 4.22E-02
17 PB3C 6.64E-02 1.99E+00 1.79E+00 2.50E-01 2.98E+00 8.41E-03
18 HGAB3C 1.36E-01 0.00E+00 3.54E+00 0.00E+00 6.13E+01 6.94E-04
S. no. Algorithm F13 F14 F15 F16 F17 F18
1 NRGA 1.58E-01 2.54E-01 1.02E+00 2.75E+00 1.61E+04 7.42E+03
2 FWA+DM 1.21E-01 2.14E-01 7.75E-01 1.76E+00 2.55E+02 2.52E+01
3 UMOEAS 9.44E-03 1.10E-01 6.67E-01 1.53E+00 8.48E+00 7.84E-01
4 SOO + BOBYQA 3.00E-02 1.30E-01 4.20E-01 2.52E+00 4.23E+02 3.95E+03
5 SOO 3.00E-02 1.30E-01 4.40E-01 2.52E+00 3.12E+06 1.29E+04
6 RSDE 1.28E-01 1.36E-01 9.83E-01 2.23E+00 4.77E+01 2.00E+00
7 POBL_ADE 1.31E-01 2.60E-01 7.12E-01 1.41E+00 2.57E+02 3.32E+01
8 FERDE 1.16E-01 9.36E-02 6.73E-01 1.53E+00 8.23E+00 2.73E+00
9 FCDE 3.56E-01 3.47E-01 1.59E+00 3.19E+00 3.03E+02 2.27E+01
10 DE_b6e6rlwithrestart 1.28E-01 1.11E-01 8.32E-01 1.87E+00 1.40E+00 6.21E-01
11 CMLSP 2.73E-02 1.89E-01 8.97E-01 1.56E+00 3.13E+02 3.09E+01
12 GaAPADE 6.01E-02 9.42E-02 6.06E-01 1.98E+00 9.91E+00 2.23E-01
13 OptBees 4.16E-01 3.69E-01 2.44E+00 2.64E+00 6.84E+02 3.35E+01
14 LSHADE 5.16E-02 8.14E-02 3.66E-01 1.24E+00 9.77E-01 2.44E-01
15 RMA_LSCh_CMA 3.29E-02 1.27E-01 4.72E-01 1.05E+00 7.83E+01 5.22E+00
16 MVMO 3.55E-02 8.91E-02 4.35E-01 1.45E+00 9.36E+00 7.83E-01
17 PB3C 1.69E-02 5.68E-04 3.32E-01 1.93E-01 2.43E+01 2.52E+00
18 HGAB3C 2.54E-02 5.67E-03 5.36E-01 1.15E+00 9.50E+00 3.68E+00
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Table 2. Contunied.
S. no. Algorithm F19 F20 F21 F22 F23 F24
1 NRGA 2.09E+00 1.72E+03 4.82E+03 3.76E+01 3.29E+02 1.31E+02
2 FWA_DM 1.30E+00 1.34E+01 9.46E+01 3.41E+01 3.30E+02 1.27E+02
3 UMOEAS 2.00E-01 3.71E-01 5.40E-01 2.45E-01 3.30E+02 1.08E+02
4 SOO + BOBYQA 5.50E-01 6.93E+03 1.94E+03 1.27E+02 2.00E+02 1.16E+02
5 SOO 5.50E-01 9.36E+03 2.47E+04 1.27E+02 2.00E+02 1.16E+02
6 RSDE 1.03E+00 7.22E-01 1.21E+00 1.17E+01 3.30E+02 1.19E+02
7 POBL_ADE 2.09E+00 1.26E+01 1.03E+02 3.00E+01 3.29E+02 1.24E+02
8 FERDE 5.09E-01 1.70E+00 8.54E+00 3.24E+00 3.30E+02 1.15E+02
9 FCDE 2.46E+00 1.78E+01 1.48E+02 2.75E+01 3.30E+02 1.37E+02
10 DE_b6e6rlwithrestart 1.42E-01 5.59E-02 7.87E-01 1.54E-01 3.30E+02 1.12E+02
11 CMLSP 1.25E+00 1.99E+01 3.64E+01 8.95E+01 2.02E+02 1.10E+02
12 GaAPADE 2.57E-01 4.32E-01 5.09E-01 3.25E+00 3.30E+02 1.09E+02
13 OptBees 9.33E-01 8.96E+00 5.71E+01 1.70E+01 2.72E+02 1.37E+02
14 LSHADE 7.73E-02 1.85E-01 4.08E-01 4.41E-02 3.30E+02 1.08E+02
15 RMA_LSCh_CMA 7.66E-02 8.06E+00 4.93E+01 8.48E+00 3.30E+02 1.08E+02
16 MVMO 1.58E-01 3.13E-01 1.94E+00 2.63E-01 3.30E+02 1.09E+02
17 PB3C 2.75E-01 1.52E+00 3.32E+00 1.76E+00 2.75E+02 1.06E+02
18 HGAB3C 1.55E-01 1.78E-02 3.88E-02 1.42E-01 3.29E+02 1.13E+02
S. no. Algorithm F25 F26 F27 F28 F29 F30
1 NRGA 1.84E+02 1.00E+02 2.81E+02 4.77E+02 4.13E+02 1.73E+03
2 FWA_DM 1.79E+02 1.00E+02 3.21E+02 3.47E+02 2.12E+02 3.94E+02
3 UMOEAS 1.26E+02 1.00E+02 2.55E+01 3.13E+02 1.96E+02 2.34E+02
4 SOO + BOBYQA 1.39E+02 1.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02
5 SOO 1.45E+02 1.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02
6 RSDE 1.30E+02 1.00E+02 9.13E+01 3.87E+02 2.13E+02 5.05E+02
7 POBL_ADE 1.86E+02 1.00    E+02 2.56E+02 4.23E+02 3.55E+05 6.38E+02
8 FERDE 1.36E+02 1.00E+02 3.66E+02 3.66E+02 3.18E+02 5.35E+02
9 FCDE 1.84E+02 1.00E+02 4.75E+01 4.57E+02 3.41E+04 8.67E+02
10 DE_b6e6rlwithrestart 1.21E+02 1.00E+02 6.16E+01 3.63E+02 2.18E+02 4.67E+02
11 CMLSP 1.28E+02 1.00E+02 4.11E+01 2.80E+02 2.00E+02 2.16E+02
12 GaAPADE 1.64E+02 1.00E+02 8.97E+01 3.83E+02 2.22E+02 4.67E+02
13 OptBees 1.46E+02 1.00E+02 7.42E+00 3.07E+02 2.20E+02 3.89E+02
14 LSHADE 1.33E+02 1.00E+02 5.81E+01 3.81E+02 2.22E+02 4.65E+02
15 RMA_LSCh_CMA 1.75E+02 1.00E+02 1.85E+02 3.89E+02 2.27E+02 5.85E+02
16 MVMO 1.16E+02 1.00E+02 1.72E+01 3.61E+02 1.81E+02 4.92E+02
17 PB3C 1.01E+02 1.00E+02 1.54E-01 3.57E+02 2.28E+02 4.97E+02
18 HGAB3C 1.32E+02 1.00E+02 1.31E-01 3.75E+02 2.51E+02 4.88E+02

ranked at number 3 with each giving a unique best performance for 2 of the 30 functions. With one unique best
performance each, DE_b6e6rlwithrestart, CMLSP, SOO, SOO+BOBYQA, and MVMO are together ranked
thereafter.

Table 4 presents the convergence times for the proposed HGAB3C algorithm. For function no. 10, the
proposed algorithm proves to be the fastest. It converged to the target error of less than 10−9 value of objective
function in an average of 346.44 generations in 65.4 s mean time only, which no other algorithm could match.
Function 10 is a multimodal, separable function with a large number of local optima. The second better local
optimum is far from the global optimum. The GA and BB-BC both are good at evaluating optima for unimodal
as well as multimodal topologies. Furthermore, we used BB-BC specifically for enhancing the local search ability
and hence HGAB3C, which is a hybrid of the two, was able to explore the optimum for function no. 10 with
the best possible speed. Table 5 shows the experimental results of 20 runs of function no. 10 with varying GA
and BB-BC generations. It clearly indicates that if the number of iterations in the GA and BB-BC phase is 50
the HGAB3C converges faster. However, if the number of generations in any of the constituting algorithms is
reduced, the convergence rate is reduced.
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Table 3. Performance comparison of HGAB3C with 17 other algorithms on CEC-14 bench mark functions.

S. No. Algorithm Unmatched Equal Overall Functions with C1 C2 C3 C4
best best best best performance

1 PB3C 7 1 8 5, 11, 14, 15, 16, 24, 25, 26 X 5 X 3
2 HGAB3C 4 3 7 3, 8, 10, 20 ,21, 26, 27 1 2 2 2
3 UMOEAS 2 9 11 1, 2, 3, 4, 6, 7, 8, 12, 13, 26 ,29 3 6 X 2
4 LSHADE 2 5 7 1, 2, 3, 8, 19, 22, 26 3 1 2 1
5 DE_b6e6rlwithrestart 1 6 7 1, 2, 3, 6, 8, 17, 26 3 2 1 1
6 CMLSP 1 4 5 2, 4, 7, 9, 26 1 3 X 1
7 SOO 1 4 5 12, 23, 26, 28, 30 X 1 X 4
8 SOO+BOBYQA 1 4 5 12, 23, 26, 28, 30 X 1 X 4
9 MVMO 1 3 4 3, 7, 18, 26 1 1 1 1
10 GaAPDE X 5 5 1, 2, 3, 8, 26 3 1 X 1
11 RMA-LSCh-CMA X 5 5 1, 2, 7, 8, 26 2 2 X 1
12 RSDE X 4 4 1, 2, 3, 26 3 X X 1
13 FCDE X 4 4 1, 2, 3, 26 3 X X 1
14 OptBees X 2 2 7, 26 X 1 X 1
15 NRGA X 1 1 26 X X X 1
16 FWA-DM X 1 1 26 X X X 1
17 POBL_ADE X 1 1 26 X X X 1
18 FERDE X 1 1 26 X X X 1

Table 4. Convergence performance of HGAB3C.

Function Average Minimum Maximum Average
number generations generations generations convergence time
3 1782.44 800 3686 2.74E+02
4 35480 4656 100000 5.16E+03
8 284.64 200 397 4.20E+01
10 346.44 230 488 6.54E+01

Table 5. Convergence performance of HGAB3C for function no. 10.

Number of Number of Average Increase in Average iterations Increase in
generations generations convergence convergence required for required
in GA phase in BB-BC phase time (s) time convergence iterations
50 50 47.05 - 275.7 -
100 1 540.64 11.5 times 2.33E+03 8.4 times
1 100 689.75 14.7 times 6.31E+03 22.9 times

It is observed that each algorithm does not perform equally well in all four categories of functions [5].
Category 1 (C1) is a group of unimodal functions and has the following three functions: rotated high conditioned
elliptic function, rotated bent cigar function, and rotated discus function. Many algorithms, i.e. UMOEAS,
LSHADE, DE_b6e6rlwithrestart, GaAPDE, RSDE, and FCDE, have achieved the target in this entire category.
This implies there are many options to choose from if the objective function belongs to the category of unimodal
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functions. In category 2 (C2) of 13 simple multimodal functions, UMOEAS, PB3C, and CMLSP provide the
best solution for 6, 5, and 3 functions, respectively, and are followed by HGAB3C with the best performance
for 2 functions in this category. Readers may refer to [5] for a list of functions, their categories, and names.
In category 3 (C3) with 6 functions in all, no algorithm is able to perform best for more than 2 functions.
HGAB3C and LSHADE performed best for 2 functions in C3 each, followed by DE_b6e6rlwithrestart and
MVMO with the best performance for 1 function each. From the above discussion, it is evident that HGAB3C
has performed best for 1 or 2 functions of each category, which implies that it can be applied to problems with
varied mathematical properties.

4. Conclusions
This paper has proposed a new hybrid optimization algorithm named HGAB3C. The algorithm was implemented
in MATLAB and its performance was evaluated on the CEC-2014 test suite. The performance of HGAB3C was
compared with 17 other algorithms found in the literature. Among the 17 other algorithms, it performed best
in 7 of the 30 benchmark functions, ranking third overall. Out of the 7 best performing functions, HGAB3C
gave an unmatched best performance for 4 of the functions. HGAB3C obtained an unmatched best performance
for function numbers 10, 20, 21, and 27 with mean errors of 0, 1.78E-02, 3.88E-02, and 1.31E-01, respectively,
beating the earlier best of 1.23E-03, 5.59E-02, 4.08E-01, and 1.54E-01, respectively. For the unique best
performance measure, the proposed algorithm ranks second, superseded by the PB3C algorithm. In the case of
the other 3 functions that gave best performances as well, a few other algorithms have also performed equally
well. For instance, for function number 3, UMOEAS, LSHADE, DE_b6e6rlwithrestart, MVMO, GaAPDE,
RSDE, and FCDE were also able to achieve the same target value of the objective function as achieved by
HGAB3C. Similarly for function number 8, along with HGAB3C, LSHADE, DE_b6e6rlwithrestart, GaAPDE,
and RMA-LSCh-CMA also achieved the set target. Almost all algorithms were found to perform equally well
for function number 26. As far as convergence time is concerned, for the shifted Schwefel function (function
number 10), no other algorithm except HGAB3C could converge and achieve the mean target error of less than
10−9 in an average of 346.44 generations only.
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