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Abstract: The imperialist competitive algorithm (ICA), inspired by sociopolitical behavior in the real world, is a new
optimization algorithm. The ICA shows great potential to solve complex optimization problems. In order to improve
the ICA’s exploration ability and speed up its convergence, two improved schemes are proposed in this paper. The
first scheme presents a new possession probability in the imperialistic competition phase. Inspired by geopolitics, not
only the power of the empire but also the distance between the imperialists are taken into account in calculating the
new possession probability. The second scheme introduces the wavelet mutation operator into the original ICA so as to
improve its exploration ability. The improved ICAs (IICAs) are tested on several benchmark functions and then used
to design the optimum parameters of tuned mass damper and tune the parameters of a fractional order PID controller
of an automatic voltage regulator (AVR) system. Results show that the IICAs outperform the original ICA in terms of
solution quality and convergence speed.

Key words: Global optimization, imperialist competitive algorithm, wavelet mutation, geopolitics, tuned mass damper,
automatic voltage regulator

1. Introduction
Frequently, optimization is encountered in various scientific and engineering fields and plays a very important
role in solving problems. In the past decades, classic optimization algorithms underwent extensive development.
They are based on rigorous mathematical inference; however, they impose restricted conditions on the objective
function and may easily be trapped in local optimal and converge slowly, which has hampered finding solutions
to real-world optimization problems. Recently, evolutionary optimization algorithms, inspired by the biological
behavior of social insects or organizations, have been developed to solve various complex optimization problems.
Compared with classic optimization techniques, evolutionary algorithms (EAs) impose no restrictions on the
objective function and possess the global searching ability. The genetic algorithm (GA) [1], particle swarm
optimization (PSO) [2], ant colony optimization (ACO) [3], and artificial bee colony (ABC) [4] are just a few
examples. These algorithms show great potential in solving various complex optimization problems in business,
industry, engineering, computer science, and other fields.

The imperialist competitive algorithm (ICA) was proposed by Atashpaz-Gargari and Lucas in 2007,
inspired by sociopolitical processes of imperialistic competition of human beings in the real world [5]. Since
its proposition, the ICA was extensively investigated and widely applied in various domains, such as electrical
∗Correspondence: Yuelihu21@163.com
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power system optimization [6, 7], neural network training [8], flowshop scheduling [9, 10], data clustering [11],
facility layout problem [12], minimal spanning tree problem [12], and so on.

Though the ICA has some advantages such as fast convergence rate and better global minimum achieve-
ment, there still are some inefficiencies associated with it [13–15], which were surveyed in [12] in detail. Like
other EAs, premature convergence may occur in different situations. To prevent premature phenomena, muta-
tion operators are added to the ICA. In [16], a modified ICA (MICA) was proposed. In MICA, 10 randomly
mutated individuals are generated in each iteration, and the best mutated individual replaces the current coun-
try if it is better than the current country. Then the best solution found by MICA is further updated by
simulated annealing (SA). In [14], a mutation operation, as the mutation in differential evolution (DE), was
performed after colonies moved towards the imperialist. In [17], a hybrid ICA with GA was proposed. In the
algorithm, the mutation operator in the GA is introduced into the revolution step in the ICA. On the other
hand, the exploration capability of the ICA is unsatisfactory. To enhance the exploration capability of the ICA,
several modified schemes have been proposed. In [18, 19], a chaotic map was introduced to adjust the angles of
colonies’ movements toward imperialists. In [13], an adaptive ICA (AICA) was proposed. In AICA, the angles
of colonies moving towards imperialists are adapted through an absorption policy that changes dynamically.
In [20, 21], the concept of attraction and repulsion between the colony and its imperialists was introduced for
searching for better solutions. In [15], a chaotic ICA was suggested, where chaotic maps are used to improve the
movement of colonies. A gbest-guided ICA was developed in [22] to improve the exploitation. In [23], a hybrid
ICA-PSO algorithm was presented for single-objective and multiobjective problems. In [24], a fuzzy adaptive
ICA was proposed, where the deviation parameter is adaptively adjusted using a fuzzy controller.

In this paper, two schemes are proposed to improve the performance of the ICA. The first scheme presents
a new possession probability in the imperialistic competition phase. The new possession probability, which is
inspired by geopolitics, takes the power of the empire and the distance between the imperialist and the colonies
into account. The second scheme introduces the wavelet mutation operator into the original ICA to improve its
exploration ability.

The rest of this paper is organized as follows. The basic ICA and the improved schemes for the ICA are
given in Section 2. In Section 3, simulation results and discussions are presented. Finally, the conclusions are
summarized in Section 4.

2. Improved ICA

2.1. Brief review of ICA
For the sake of argument, the basic process of the ICA is reviewed. More details about the ICA can be found in
[5]. The ICA manages a population of individuals, each of them called a country. These countries are classified
as imperialists or colonies according to their power. Each imperialist possesses some colonies and they constitute
an empire. Empires compete with each other in the evolving process. If an empire fails in the competition,
it will lose its colonies, and therefore its power will become weaker and weaker. When it loses its all colonies,
the empire collapse. Finally, the ICA converges until only one empire exists. The ICA consists of four steps:
initialization, assimilation, competition, and finally convergence. In the initialization stage, the ICA randomly
generates a set of countries as follows:

country = [p1, p2, · · · , pNvar
]. (1)
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The cost of a country is calculated by evaluating the cost function with the variable (p1, p2, · · · , pNvar ) , i.e.

cost = f(country) = f(p1, p2, · · · , pNvar ). (2)

After this, Nimp of the most powerful countries are selected as imperialists and the remaining Ncol countries
will be colonies. The next step after initialization is to form empires by assigning colonies to a certain imperialist
according to the imperialist’s normalized cost.

After empires’ formation, the colonies in an empire move toward the corresponding imperialist to enhance
the power of the empire. This process is called assimilation. If one colony reaches a better position than that
of the imperialist, the colony becomes a new imperialist and the previous imperialist becomes a colony.

After assimilation, empire competition begins, which leads to an increase in the power of more powerful
empires and a decrease in the power of weaker ones. The competition is implemented by just picking some
(usually one) of the weakest colonies of the weakest empires and making a competition among all empires to
possess these (this) colonies. In the competition, each empire has a chance to possess the colonies according to
its total power. The probability of each empire possessing the colonies is defined as:

Ppn
=

∣∣∣∣∣ NTCn∑Nimp

i=1 NTCi

∣∣∣∣∣ , (3)

where Nimp is the number of imperialist countries and NTCn is the normalized total cost of the nth empire,
which is defined as

NTCn = TCn − max
i

{TCi}, i = 1, 2, · · · , Nimp. (4)

In order to divide the mentioned colonies among empires based on the possession probability of them, a vector
P is defined as

P =
[
Pp1

, Pp2
, · · · , Ppimp

]
. (5)

Then a vector R is created with the same size as vector P :

R =
[
r1, r2, · · · , rNimp

]
, ri ∼ U(0, 1) (6)

A vector D is defined as follows:
D = P −R. (7)

The empire whose relevant index is maximum in D will occupy the weakest colony of the weakest empire. If
an empire loses all its colonies, it will collapse. The assimilation and competition process repeats several times
until only one empire exists. Then the ICA converges to a state in which all the colonies and imperialists have
the same cost.

2.2. Improved ICAs

To enhance the convergence speed and the solution accuracy of the ICA, two improved schemes are proposed
in this section.
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2.2.1. A new possession probability in imperialistic competition
Imperialistic competition is an important step in the ICA. It provides a chance for each empire to increase
its power. In the original ICA, imperialistic competition is mainly based on the power of each empire. The
more powerful an empire is, the more likely the empire can possess the colonies. This strategy makes the
ICA converge in the early searching stage, which is the so-called premature phenomenon. If the premature
phenomenon occurs, the algorithm will lose more chances to improve the solution found so far.

In international politics, geopolitics, a term coined by Rudolf Kjellén at the beginning of the twentieth
century, is a famous theory that analyzes and predicts international political behavior and the strategic situation
of a state or region. Geopolitics regards the geographical factor as a basic factor affecting or determining the
nature of a state or a region. In this light, the closer two countries are, the greater effect one country may
impose on the other, and vice versa. Owing to this fact, the distance between empires and the weakest colony
is taken into consideration in the imperialistic competition as well as the power of the empire. The closer an
empire and the weakest colony, the more likely the empire may possess it. Therefore, the possession probability
is modified as follows:

P
′

Pn
= λ1

∣∣∣∣∣ NTCn∑Nimp

i=1 NTCi

∣∣∣∣∣+ λ2

∣∣∣∣∣ Disn∑Nimp

i=1 Disi

∣∣∣∣∣ , (8)

where Disi is the distance between the weakest colony and the ith imperialist, which is defined via a Euclidean
metric, and λ1 and λ2 are two weights that balance the effect of power and geographic distance in the imperialist
competition. Eq. (8) indicates that an empire possesses a colony depending not only on its power but also
the distance between the empire and the colony in the competition phase. Consequently, the new possessing
probability of Eq. (8) enables an empire to more likely possess the weakest colonies. Thus, it promotes the
powerful empire to possess more colonies, and as a consequence, the convergence is sped up. In this way, the
exploitation of the ICA is enhanced.

2.2.2. Wavelet mutation
Like other EAs, the stronger the exploration capability, the more likely the algorithm is to find the better
solution. To enhance the exploration capability, the mutation operator is an efficient strategy. As mentioned in
Section 1, several mutation strategies such as random mutation, GA mutation, differential mutation, Gaussian
mutation, and Cauchy mutation have been proposed by researchers.

Most mutation operations are implemented stochastically. An important issue for the mutation operator is
to generate a high-quality solution. Apart from the above-mentioned mutation operators, the wavelet mutation
(WM) operator was proposed by Ling et al. in [25]. Compared to other mutation operators, the WM operator
not only can improve the solution stability but also has fine-tuning ability. On the other hand, WM can
generate positive and negative solutions with the same probability. Therefore, the WM is adopted in this paper
to enhance the exploration ability.

Let countryi = [pi1, pi2, · · · , piNvar
] be the ith country selected for mutating, and the WM mutated

country is
countryi = countryi(1 + χ(·)), (9)

where χ(·) is a random variable of obeying a wavelet probability distribution whose density function is described
by a wavelet function. In this paper, a Morlet wavelet function is adopted, i.e.

χ(ϑ) = e
−ϑ2

2 cos(5ϑ), −2.5 ≤ ϑ ≤ 2.5. (10)
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Its density function is shown in Figure 1. In each mutation operation, a random vector ϑ is generated in
[−2.5 2.5] , and then we substitute it into Eq. (10) to obtain another random vector χ . Then the random vector
χ is added to the country to be mutated. For example, let P = [2 8] be a country to be mutated, and let the
random vector ϑ be [1.5736 2.0290] . According to Eq. (10), random vector χ = [−0.0041 − 0.0960] . As a
result, the country P after mutation is P ′ = P + (1 + χ) = [2.9959 8.9040] .

Figure 1. Morlet wavelet density function.

3. Simulation results
To demonstrate their performance, the proposed IICAs are tested on six benchmark functions. The tested
algorithms include ICA with new possession probability (IICA-1), ICA with wavelet mutation (IICA-2), and
ICA both with new possession probability and wavelet mutation (IICA-3). All the IICAs are compared with
the original ICA. In all experiments, the parameters of the ICA and its improved versions are set as follows.
The number of countries Ncountry is set to 200, and 8 of the best countries form the imperialists. The other
192 ones are selected as colonies, and λ1 and λ2 in Eq. (8) are set to 0.2 and 0.8 , respectively, in this paper.

3.1. Benchmark test functions: results and analysis
3.1.1. Benchmark test functions
In this section, six typical benchmark functions are adopted to test the IICAs. The first function is unimodal
and the other five functions are multimodal with many local minima, where it is difficult to find the global
optimum. These functions and their ranges are listed in Table 1. Function f1 is a sphere function with only
one minimum. Function f2 is Rastrigin function, which is a complex multimodal problem with a large number
of local optima. When attempting to solve the Rastrigin function, algorithms may easily fall into local optima.
Functions f3 and f4 are Schwefel’s functions, whose deepest local optima are far from the global optima.
Function f5 is the Ackley function. It has one narrow global optimum basin and many minor local optima.
Function f6 is the Rosenbrock function.

3.1.2. Results and discussion
In this section, the tested results on the six benchmark test functions are given to show the efficiency of the
proposed IICAs. Each algorithm independently runs 30 times for each function. The best, the mean, and
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the worst cost value, with the standard deviation and convergence rate of the six benchmark functions with
dimension 10, are presented in Table 2 and Figure 2.

Table 1. Test functions.

Function name Expression Search range Global minima
Sphere f1(x) =

∑n
i=1 x

2
i [−100, 100] 0

Rastrigin f2(x) =
∑n

i=1(x
2
i −10 cos(2πxi)+10) [-5.12,5.12] 0

Schwefel1.2 f3(x) =
∑n

i=1(
∑i

j=1 xj)
2 [-100,100] 0

Schwefel2.21 f4(x) =
n∑

i=1

|xi| [-100,100] 0

Ackley f5(x) =

−20 exp(−0.2
√

1
10

∑n
i=1 x

2
i ) −

exp(
√

1
10

∑n
i=1 cos(2πxi)) + 20 + e

[-32,32] 0

Rosenbrock f6(x) =
∑n

i=1[100(xi+1−x2
i )

2+(xi−
1)2]

[-30,30] 0

From the results, it can be seen that for function f1 , the results obtained by the three improved ICAs
are all better than those of the original ICA. However, IICA-3 is the best among these algorithms. As shown
in Figure 2a, the convergence rates of the three improved ICAs have no evident differences from each other;
however, they are all faster than the original ICA. This is because this function is unimodal, smooth, and
symmetric, making it easy to be solved. For function f2 , which is a multimodal function with many local
optima, the improved ICAs all perform better than the original ICA, and IICA-3 performs the best among
these reference algorithms. From Figure 2b, the three improved ICAs converge faster than the ICA. Also,
the convergence speed of IICA-3 is the fastest. Similar conclusions can be obtained for the remaining four
multimodal functions from Figures 2c–2f. Therefore, the improved ICAs show great superiority compared to
the original ICA. IICA-3, which adopts new possession probability and has the WM mutation operator, performs
the best compared to IICA-1 and IICA-2. The two improved schemes not only improve the solution quality but
also increase the convergence speed.

3.1.3. Effects of the weights λi

In the first improved scheme, the new possession probability is the weighted sum of the normalized power and
distance. To reveal the effect of the two weights on the optimization performance, we test the IICA-1 algorithm
with different combinations of weights. The optimization results are statistically listed in Table 3. Figure 3
shows the convergence curve of the IICA-1 for the six benchmark functions. From Table 3 and Figure 3, we can
see that the weights in Eq. (8) have little effect on the optimization performance.

3.1.4. Computation efficiency

To show the computation cost of the improved algorithms, Table 4 shows the computation time of each algorithm.
It can be seen that the computation costs of the improved ICAs are comparable to each other. In general, the
improved algorithms are more computationally efficient than the ICA. That is to say, the improved algorithms
do not increase the computation burden.
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Table 2. Optimization results of IICA-1, IICA-2, IICA-3, and original ICA through 30 independent runs on six
benchmark functions.

Fuctions Algorithm Best Mean Worst Standard dev.

f1

ICA 2.8319e-16 6.9182e-14 6.5782e-13 1.3342e-13
IICA-1 3.1725e-17 3.3453e-14 2.3830e-13 5.1899e-14
IICA-2 4.4522e-19 1.2293e-16 1.1527e-15 2.6397e-16
IICA-3 7.3460e-20 8.5843e-17 5.0433e-16 1.3419e-16

f2

ICA 1.0534e-11 1.1992e-6 3.3451e-5 6.0052e-6
IICA-1 1.5987e-14 5.9144e-8 1.7477e-6 3.1457e-7
IICA-2 3.5527e-15 1.1530e-8 3.3729e-7 6.0498e-8
IICA-3 0 3.9156e-9 1.0739e-7 1.9250e-8

f3

ICA 1.4139e-7 4.1120e-5 2.6960e-4 6.4304e-5
IICA-1 3.9286e-8 1.0438e-5 5.6644e-5 1.3999e-5
IICA-2 1.0953e-8 2.0209e-6 2.0295e-5 4.0709e-6
IICA-3 3.5595e-9 5.5918e-7 3.9799e-6 9.7807e-7

f4

ICA 0.0011 0.0045 0.0180 0.0039
IICA-1 1.9934e-4 0.0037 0.0136 0.0029
IICA-2 1.3189e-4 0.0011 0.0106 0.0019
IICA-3 1.0779e-5 5.1497e-4 0.0019 4.0269e-4

f5

ICA 1.5252e-8 7.0852e-8 2.3547e-7 5.4622e-8
IICA-1 7.1000e-9 7.9881e-8 5.5727e-7 1.2140e-7
IICA-2 1.5518e-10 6.2877e-9 8.6040e-8 1.5528e-8
IICA-3 2.6611e-11 4.1597e-9 1.8920e-8 5.7006e-9

f6

ICA 1.6561e-8 5.8113e-5 4.0707e-6 1.0630e-5
IICA-1 8.2159e-9 9.7549e-6 1.7501e-6 2.6755e-6
IICA-2 8.0495e-10 2.2039e-5 1.6473e-6 4.5697e-6
IICA-3 2.9741e-10 6.0600e-7 5.5404e-8 1.2386e-7

3.2. Parameter optimization of tuned mass damper

Tuned mass damper (TMD) is a structural vibration control device invented by Frahm [26]. Nowadays many
tall buildings and long-span bridges are equipped with different kinds of TMD systems to attenuate undesirable
vibrations caused by strong wind or earthquakes. When a main structure equipped with a TMD system is
excited by an external excitation, most of the input energy is absorbed by the TMD system and only a part
of the energy is transferred to the main structure system. As a result, the motion of the main structure
is controlled and the vibration is attenuated. Usually, a TMD system is made up of a mass, a spring, and
a dashpot attached to a main structure. For a TMD system, an important issue is to optimally design its
parameters, i.e. mass, damping, and stiffness, such that a satisfactory response of the main structure system
can be obtained. Though much effort has been paid, determining the optimal parameters of TMD is still a
difficult problem. The commonly used method to optimally design the parameters of TMD is the numerical
iteration method. However, this method is sensitive to initial values and easily trapped into local minimum.
Recently, many metaheuristic algorithms such as the GA, PSO [27], and harmony search (HS) algorithm [28]
have been adopted to design the optimum parameters of TMD systems.
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Figure 2. Comparisons between different ICAs for test functions: (a) sphere, (b) Rastrigin, (c) Schwefel1.2, (d)
Schwefel12.21, (e) Ackley, (f)Rosenbrock.

Table 3. Optimization results of IICA-1 with different weights (λ1 , λ2 ) for six benchmark functions.

Fuctions λ1 = 0.8, λ2 = 0.2 λ1 = 0.5, λ2 = 0.5 λ1 = 0.2, λ2 = 0.8

f1 3.1725e-17 1.1697e-16 6.2786e-16
f2 1.5987e-14 2.4851e-12 4.9081e-12
f3 3.9286e-8 8.4415e-8 9.7467e-8
f4 1.9934e-4 4.6074e-4 2.7410e-4
f5 7.1000e-9 4.0070e-9 6.1764e-9
f6 8.2159e-9 9.3842e-9 1.6835e-8

In this section, the improved ICAs are used to optimally design the parameters of a TMD system. For the
sake of convenience, the main structural system with a TMD system is modeled as a single-degree-of-freedom
(SDOF) system and the excitation is an external force applied to the main system, which is shown in Figure 4.

The motion equation of the system is as follows [29]:[
ms 0
0 mT

]{
ẍs

ẍT

}
+

[
cs + cT −cT
−cT cT

]{
ẋs

ẋT

}
+

[
ks + kT −kT
−kT kT

]{
xs

xT

}
=

{
F
0

}
, (11)

where xs is the displacement of the main system relative to the base and xT is the displacement of TMD
relative to the base. ms , cs , and ks are the mass, damping, and stiffness of the main system, respectively,
and mT , cT , and kT are the mass, damping, and stiffness of TMD system, respectively. F is the external
force applied to the main system, which is assumed to be a Gaussian white noise with constant power spectral
S0 . Let ωs =

√
ks/ms and ξs = cs/2

√
ksms be the natural frequency and viscous damping ratio of the main

system, respectively. Also, let ωT =
√
kT /mT and ξT = cT /2

√
kTmT be the natural frequency and damping
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Figure 3. Comparisons between different weighs for test functions: (a) sphere, (b) Rastrigin, (c) Schwefel1.2, (d)
Schwefel12.21, (e) Ackley, (f) Rosenbrock.

Table 4. Computation time of each algorithm (s).

f1 f2 f3 f4 f5 f6

ICA 1.2621 1.6499 0.9603 2.2603 2.2281 1.7617
IICA-1 1.4784 1.5335 1.381 2.099 2.1555 2.3455
IICA-2 0.9336 1.9007 1.0578 2.4555 1.6633 0.9368
IICA-3 0.9016 1.7637 0.9586 2.756 1.5004 0.9276

Figure 4. A SODF main system with TMD.

ratio of the TMD system. The mass and tuning frequency ratio of the TMD system are defined as η = mT /ms

and f = ωT /ωs . The mean square displacement response of the main system is

σ2
xs

=

∫ ∞

−∞
S0|Hxs

(ω)|dω, (12)
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where

Hxs
(ω) =

1

Λms
(−ω2 + 2iξTωTω + ω2

T ), (13)

Λ =ω4 − 2i[ωsξs + (1 + η)ξTωT ]ω
3 − [ω2

s + (1 + η)ω2
T + 4ωsωT ξsξT ]ω

2

+ 2iωsωT [ωT ξs + ωsξT ]ω + ω2
sω

2
T ,

(14)

where i is the unit of imaginary number. Let N = σ2
xs
k2s/2πS0ωs be the response quantity of the main system.

Substituting Eq. (13) and Eq. (14) into Eq. (12), and after some manipulations, one can obtain the following
[29]:

N(η, ξT , f) =
P

4Q
, (15)

where

P =ξT [1− f2(2 + η) + f4(1 + η)2] + ηf3ξs + 4f2ξ3T (1 + η)

+ 4fξ2T ξs[1 + f2(1 + η)] + 4f2ξT ξ
2
s ,

(16)

Q =ηfξ2T + ξT ξs{1− 2f2 + f4(1 + η)2 + 4f2ξ2T (1 + η)

+ 4fξT ξs[1 + f2(1 + η)] + 4f2ξ2s}+ ηf3ξ2s .
(17)

The optimization problem of TMD can be formulated as

Nopt = arg min
η,ξT ,f

N(η, ξT , f), (18)

subjected to η > 0, ξT > 0, f > 0 . It is observed that for a damped main structural system excited by
white noise external force, the optimum response quantity Nopt decreases as the mass ratio η increases [27].
Therefore, only the damping and tuning frequency ratio of TMD for specified mass ratio η should be optimized.
The ICA and IICAs are used to fulfill this task. The optimum parameters obtained by the ICA and IICAs,
PSO [27], and curve fitting [29] are listed in Table 5. It can be seen that the ICA and IICAs obtain the
same optimum parameters. The reason for this is that the optimization problem of Eq. (18) has only two
optimization variables. Compared to multidimensional optimization problems, the optimization problem of Eq.
(18) is relatively simple and the basic ICA can obtain satisfactory optimization results. However, it can be
seen that the response quantities of the ICA and IICAs are all smaller than that of PSO and curve fitting for
different damping ratios ξs . Therefore, it can be concluded that the ICA and IICAs outperform PSO and curve
fitting in solving the optimum parameter of TMD. To see this more clearly, Figures 5–7 show the optimum
parameters of TMD varying with mass ratio η for ξs = 0.01 , ξs = 0.05 , and ξs = 0.1 . In Figures 5–7, ICAs
represent both ICA and IICAs because the optimum parameters of TMD obtained by the ICA and IICAs are
the same. Also, the optimum parameters of TMD obtained by PSO and curve fitting are the same, so only the
curve for curve fitting is plotted.
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Table 5. Optimum TMD parameters obtained through ICAs and PSO and curve fitting for specified mass ratio.

η
ξ = 0.01 ξ = 0.05 ξ = 0.1

ξT fopt Nopt ξT fopt Nopt ξT fopt Nopt

ICA 0.01 0.0325 0.9937 4.9549 0.0291 0.9928 1.0114 0.0311 0.9910 0.5726
0.02 0.0568 0.9864 4.8145 0.0407 0.9865 1.2746 0.0427 0.9842 0.6901
0.03 0.0756 0.9790 4.3884 0.0505 0.9804 1.4273 0.0516 0.9778 0.7680
0.05 0.1032 0.9646 3.7101 0.0688 0.9681 1.5786 0.0662 0.9654 0.8675
0.07 0.1241 0.9508 3.2543 0.0866 0.9556 1.6300 0.0789 0.9535 0.9266
0.09 0.1414 0.9376 2.9292 0.1037 0.9430 1.6348 0.0908 0.9419 0.9631
0.1 0.1490 0.9312 2.7986 0.1119 0.9367 1.6277 0.0965 0.9361 0.9757

IICA-1 0.01 0.0322 0.9935 4.9550 0.0291 0.9928 1.0114 0.0311 0.9910 0.5726
0.02 0.0570 0.9854 4.8145 0.0407 0.9865 1.2746 0.0427 0.9842 0.6901
0.03 0.0756 0.9790 4.3884 0.0505 0.9804 1.4273 0.0516 0.9778 0.7680
0.05 0.1032 0.9646 3.7101 0.0688 0.9681 1.5786 0.0662 0.9654 0.8675
0.07 0.1241 0.9508 3.2543 0.0866 0.9556 1.6300 0.0789 0.9535 0.9266
0.09 0.1414 0.9376 2.9292 0.1037 0.9430 1.6348 0.0908 0.9419 0.9631
0.1 0.1490 0.9312 2.7986 0.1119 0.9367 1.6277 0.0965 0.9361 0.9757

IICA-2 0.01 0.0325 0.9937 4.9549 0.0291 0.9928 1.0114 0.0311 0.9910 0.5726
0.02 0.0568 0.9864 4.8145 0.0407 0.9865 1.2746 0.0427 0.9842 0.6901
0.03 0.0756 0.9790 4.3884 0.0505 0.9804 1.4273 0.0516 0.9778 0.7680
0.05 0.1032 0.9646 3.7101 0.0688 0.9681 1.5786 0.0662 0.9654 0.8675
0.07 0.1241 0.9508 3.2543 0.0866 0.9556 1.6300 0.0789 0.9535 0.9266
0.09 0.1414 0.9376 2.9292 0.1037 0.9430 1.6348 0.0908 0.9419 0.9631
0.1 0.1490 0.9312 2.7986 0.1119 0.9367 1.6277 0.0965 0.9361 0.9757

IICA-3 0.01 0.0325 0.9937 4.9549 0.0291 0.9928 1.0114 0.0311 0.9910 0.5726
0.02 0.0568 0.9864 4.8145 0.0407 0.9865 1.2746 0.0427 0.9842 0.6901
0.03 0.0756 0.9790 4.3884 0.0505 0.9804 1.4273 0.0516 0.9778 0.7680
0.05 0.1032 0.9646 3.7101 0.0688 0.9681 1.5786 0.0662 0.9654 0.8675
0.07 0.1241 0.9508 3.2543 0.0866 0.9556 1.6300 0.0789 0.9535 0.9266
0.09 0.1414 0.9376 2.9292 0.1037 0.9430 1.6348 0.0908 0.9419 0.9631
0.1 0.1490 0.9312 2.7986 0.1119 0.9367 1.6277 0.0965 0.9361 0.9757

PSO 0.01 0.0498 0.9921 7.6317 0.0498 0.9901 3.7485 0.0498 0.9877 2.2218
0.02 0.0702 0.9846 5.7995 0.0702 0.9819 3.2808 0.0702 0.9785 2.0698
0.03 0.0856 0.9773 4.8928 0.0856 0.9741 2.9850 0.0856 0.9700 1.9594
0.05 0.1098 0.9632 3.9158 0.1098 0.9592 2.6039 0.1098 0.9542 1.7995
0.07 0.1290 0.9496 3.3656 0.1290 0.9450 2.3549 0.1290 0.9394 1.6835
0.09 0.1452 0.9366 2.9989 0.1452 0.9315 2.1730 0.1452 0.9253 1.5926
0.1 0.1525 0.9302 2.8557 0.1525 0.9250 2.0981 0.1525 0.9186 1.5536

curveFit 0.01 0.0498 0.9921 5.2383 0.0498 0.9901 1.1121 0.0498 0.9877 0.6065
0.02 0.0702 0.9846 4.8855 0.0702 0.9819 1.3994 0.0702 0.9785 0.7383
0.03 0.0856 0.9773 4.4129 0.0856 0.9741 1.5505 0.0856 0.9700 0.8240
0.05 0.1098 0.9632 3.7156 0.1098 0.9591 1.6760 0.1098 0.9542 0.9285
0.07 0.1290 0.9496 3.2563 0.1290 0.9450 1.7003 0.1290 0.9394 0.9857
0.09 0.1452 0.9366 2.9301 0.1452 0.9315 1.6846 0.1452 0.9254 1.0176
0.1 0.1525 0.9302 2.7992 0.1525 0.9250 1.6697 0.1525 0.9186 1.0274
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Figure 5. Optimum damping ξT of TMD obtained by ICAs and curve fitting for different ξs .

Figure 6. Optimum tuning frequency fopt of TMD obtained by ICAs and curve fitting for different ξs .

Figure 7. Optimum response quality Nopt of TMD obtained by ICAs and curve fitting for different ξs .

3.3. FOPID controller parameter tuning for AVR system
In order to further prove their superiority, the improved ICAs are used to tune the parameters of a FOPID
controller for an AVR system. The FOPID controller is an extension of the conventional PID controller using
fractional calculus [30]. In a FOPID controller, the orders of the differential and integral terms are noninteger.
The transfer function of the FOPID controller is represented as

Gc(s) = Kp +
Ki

sλ
+Kds

µ (λ, µ > 0), (19)

where λ , and µ are the orders of the integral and differential terms. Compared with the PID controller, there
are two extra parameters in a FOPID controller, which provides more flexibility in controller; therefore, and
better control performance can be obtained [30]. Several intelligent optimization methods have been used to
design FOPID controllers for AVR systems [31–33]. In this section, the improved ICAs are used to design a
FOPID controller for an AVR system. An AVR system equipped with a FOPID controller is shown in Figure
8.
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Figure 8. The block diagram of an AVR system with FOPID controller.

Table 6. Optimal values of FOPID controller parameter and corresponding performance indexes obtained by ICA,
IICA-1, IICA-2, and IICA-3.

Kp Ki Kd λ µ Mp Ess tr ts

ICA 1.2474 0.5973 0.3411 0.9460 1.1487 0.0089 0.0062 0.1666 0.2123
IICA-1 1.3231 0.4392 0.3147 1.0950 1.1444 0.0077 0.0017 0.1761 0.2264
IICA-2 1.0583 0.5183 0.3104 1.0252 1.1021 0 0.0008 0.194 0.2581
IICA-3 0.9742 0.4844 0.2671 1.0323 1.0894 0 0 0.2232 0.3011

To tune the parameters of the FOPID controller, the following performance index is adopted:

J(Kp,Ki,Kd, λ, µ) = (1− e−ν)(Mp + Ess) + e−ν(ts − tr), (20)

where Mp is the overshoot of system response, Ess is the steady error, ts is the settling time, tr is the
raising time, and ν is the weight factor. Similarly, all the algorithms independently run 30 times. The optimal
parameter values of the FOPID controller and the values of performance indexes Mp , Ess , tr , and ts are listed
in Table 6. Figure 9 shows the terminal voltage response of the AVR system with FOPID controller optimized
by ICA, IICA-1, IICA-2, and IICA-3. It can be seen from Figure 9 that the FOPID controllers obtained by ICA,
IICA-1, and IICA-2 have similar control performance, i.e. the system has faster response speed, oscillates a bit,
and has a little steady error. For the FOPID controller obtained by IICA-3, although the system responses are
slower than those of ICA, IICA-1, and IICA-2, it oscillates less and has no steady error. This shows that the
IICA-3 algorithm performs better than the other reference algorithms.

Figure 9. AVR system controlled by FOPID controllers.
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4. Conclusion
In this paper, a novel improved imperialist competitive algorithm is presented for global optimization. The ICA
is an optimization method based on a sociopolitically motivated strategy. In order to achieve more accurate
results with faster speed, two improved schemes for the ICA are proposed. First, a new possession probability
in imperialistic competition is proposed by taking the distance between the imperialists and the colony into
account. Second, a wavelet mutation operator is added to the ICA to enhance the exploration ability of the ICA.
The improved algorithms are tested on six benchmark functions and used to design the optimum parameter of
TMD and tune the parameters of a fractional PID controller of an AVR system. Experimental results show that
the improved ICAs perform better than the ICA in terms of solution quality and convergence speed, especially
in solving multimodal optimization problems.
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