
Turk J Elec Eng & Comp Sci
(2019) 27: 3599 – 3614
© TÜBİTAK
doi:10.3906/elk-1807-334

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Schedulability analysis of real-time multiframe cosimulations on multicore
platforms

Muhammad Uzair AHSAN∗, Halit OĞUZTÜZÜN
Department of Computer Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey

Received: 31.07.2018 • Accepted/Published Online: 17.12.2018 • Final Version: 18.09.2019

Abstract: For real-time simulations, the fidelity of simulation depends not only on the functional accuracy of simulation
but also on its timeliness. It is helpful for simulation designers if they can analyze and verify that a simulation will
always meet its timing requirements without unnecessarily sacrificing functional accuracy. Abstracting the simulated
processes simply as software tasks allows us to transform the problem of verifying timeliness into a schedulability analysis
problem where tasks are checked as to whether they are schedulable under the timing constraints or not. In this paper
we extend a timed automaton-based framework due to Fersman and Yi for schedulability analysis of real-time systems,
for the special case of real-time multiframe cosimulations. To the best of our knowledge, this work is the first to analyze
the schedulability of single- or multiframe real-time simulations. We found that there are some special requirements
posed by multiframe simulations, which necessitate changes and improvements in the existing framework designed for
actual real-time systems. We made the required theoretical extensions to the framework and implemented our extended
framework in UPPAAL, a tool for modeling, simulation, and verification of real-time systems modeled as timed automata.
The functional correctness and resource requirements of the implemented framework are then demonstrated using simple
examples.

Key words: Schedulability analysis, real-time simulations, cosimulations, task automaton, timed automaton

1. Introduction
The feature that distinguishes real-time simulation from others is that the simulation fidelity does not only
depend on the functional accuracy of the simulation model but also on the time correctness of the simulation
execution. In other words, the wall-clock time during a real-time simulation run must remain less than or
equal to the simulation time of the system models of the simulation. Let us call this constraint the real-time
constraint. The simulated models in a simulation are run by a simulation scheduler. If it can somehow be
proven that a particular scheduling technique used in a real-time simulation always results in an execution of
simulation models such that it never violates its real-time constraint then such a proof enhances our confidence
in the simulation results. The process of obtaining such a proof is referred to as schedulability analysis.

In this work, we develop a schedulability analysis framework for the case of real-time multiframe cosimu-
lation. This work is the first attempt, to the best of our knowledge, that deals with the schedulability analysis of
single- or multiframe real-time simulation. All the existing works that we are aware of on schedulability analysis
are meant for operational real-time systems only. The major contributions of this paper include presentation
of a model for real-time multiframe cosimulations, development of a schedulability analysis framework for the
∗Correspondence: e1952092@ceng.metu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
3599



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

presented model based on an existing timed automata-based framework for schedulability analysis of real-time
systems, and finally implementation and demonstration of the new framework.

1.1. Real-time multiframe cosimulation
The kind of simulation architecture where each model is solved independently in parallel and where one
simulation tool acts as the master or the orchestrator[1], executing the simulation tasks and performing
coordination among them, is known as cosimulation architecture.

The frame time of a simulation model is defined as the time interval between data transfers to or from
other simulation entities that are external to that model. These entities can either be hardware components or
other simulation models. The simulation master asks each model to proceed one step at a time. This step is
called a simulation step, and the step size is the amount of time the master wants the model to progress. A
frame of a simulation model can also contain multiple simulation steps [2] of that model. The simulations that
use different step sizes for different models are called multirate simulations [3] or simulations with multiframing
[4]. We can now redefine the real-time constraint introduced in Section 1 in terms of the frames as the constraint
that the wall-clock time must be less than or equal to the simulation time of a simulation model at the end of
each of its frames. This requirement on the simulation model is also known as “meeting its deadline”.

1.2. Schedulability analysis problem and the proposed approach for a solution
In a real-time system, a set of software tasks is said to be schedulable if it is possible for every task in the set
to meet its deadline. Schedulability analysis can then be defined as a process that determines if a task set is
schedulable given the properties (execution times, arrival times, etc.) of the tasks and the imposed constraints
(task deadlines, resources requirements, etc.). Similarly, in a real-time cosimulation, the simulation steps of
simulated models can be simply considered as software tasks. The problem of ensuring the timing correctness
of real-time cosimulation can then be regarded as one of real-time schedulability analysis of the given task-set.

To verify that a particular scheduling algorithm will never cause any task to miss its deadline, a proof
using some formal method is required. There are a number of schedulability analysis methods available in
the literature and among them is a class of analysis methods that are based on the theory of timed automata
[5–7] or an extension of them called task automata [8–10]. Timed automata are finite automata equipped with
clocks, whereas task automata further extend the definition of timed automata to include annotations for states
(locations) or edges depicting release of a task. These works use task automata to define a system’s task model,
a fundamental notion in the theory of real-time schedulability analysis. A task model basically represents an
abstraction of different tasks’ behaviors that are considered important for the problem at hand. This task
automaton-based task model is considered as the most general and most expressive form, which encompasses
almost all other task models in the literature [11].

Our goal in this work is to perform schedulability analysis for real-time multirate cosimulations to prove
the timing correctness of these simulations. We selected the timed automata-based schedulability analysis
framework proposed by Fersman and Yi [8] (FY framework) as the basis of our analysis technique. Although
timed automata-based techniques may suffer from high complexity (because of state space explosion) and even
undecidability [10], we mitigate these concerns by assuming that each task has a dedicated processor core. The
FY framework transformed the schedulability analysis problem into a state reachability problem of a timed
automaton. We worked on the same principle and transformed our problem as the state reachability problem.

After the necessary theoretical extension of the FY framework, we implemented the schedulability

3600



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

analyzing timed automaton in UPPAAL [12, 13], which is a popular timed automata-based tool for model-
checking, and then we tested the results and performance of our framework for a simple example.

1.3. Related work
After the introduction of timed automata by Alur and Dill in 1994 [5], researchers were quick to realize that
timed automaton-based formalism could be extended to model task arrival patterns. The works of Norstrom
[14] and Fersman [15] were the first to propose the use of an extension of timed automata as the task arrival
pattern. This extended timed automaton was later considered for real-time tasks and their scheduling analysis
and was also renamed as task automaton [10]. The task automaton turned out to be the most expressive task
model in the literature [11]. Besides task automata-based research, which we will describe in more detail in one
of the following paragraphs, other prominent works on scheduling analysis that used timed automata include
[16–18].

There has been a considerable body of cosimulation-related literature produced in the past few years
[19–21]. For an extensive survey of this literature, see [1]. However, to the best of our knowledge, none of
the cosimulation work deals with the problem of schedulability. Formal verification techniques are applied
to cosimulations [1], but only to verify the functional correctness of the simulation and not to check time
correctness.

Our work is based on task automata, which are used in a number of scheduling analysis works. The
authors of [10] analyzed the real-time schedulability of tasks on a single processor. They also determined three
conditions that, if simultaneously hold true, will cause the solution to scheduling analysis to be undecidable.
In [9, 22], the authors examined the schedulability of fixed-priority systems using task automata. They also
studied the case of data-dependent control, where the release time of a task may depend on a specific value
of some shared variable and hence on the time-point when some previous task finishes its execution. In a
further improvement of [22], the same authors introduced a more generic framework for real-time schedulability
analysis using task automata [8]. The new model was able to handle more general precedence relations and
resource constraints and they showed that the schedulability analysis problem for this more general case can
be solved using the same technique that was introduced in [22]. In another work [23], scheduling analysis using
task automata was extended to a multiprocessor setting and the authors found one more negative result as
compared to the single processor case in [10]. More precisely, they showed that the truth of only two conditions
is sufficient for the solution of a scheduling problem to fall into the undecidable category.

2. Multiframe cosimulation model
In this section we shall present a system model that we believe accurately describes a multiframe cosimulation.
In an effort to ensure that our proposed model for multiframe cosimulation reflects the standard industry
practices, we based our model on the cosimulation model presented in FMI standard 2.0 [24]. Before describing
the model of a multiframe cosimulation system, let us first list the assumptions that we make for our model:

1. There are as many processor cores available as there are task types.
2. Each processor core is assigned to a task type once for a simulation run. This assignment may be made

at design time or at runtime, but a processor core, once assigned, remains associated with the assigned
task type for the entire period of simulation.

3. Task instances can be aborted at any time during their execution.
4. An aborted task instance is responsible for leaving its acquired resources in a clean state.

3601



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

The purpose of the first assumption is to avoid cyclic dependencies among different task types because
of core sharing. Similarly, the precedence constraints or dependencies among tasks assigned to different cores
are also required to be acyclic (see Section 3.1). Cyclic dependencies among tasks make our analysis approach,
as discussed in Section 4, unusable. However, it is important to note that our model allows multiple instances
of the same task type to be active at the same time and therefore a first-in first-out (FIFO) queue needs to be
maintained for each core to keep the waiting instances of the assigned task type.

Assumption no. 2 forbids task migration between processor cores at runtime and relieves our framework
from handling delays arising due to these task migrations. However, it also limits the framework’s applicability
by excluding a class of schedulers that optimize system performance by dynamically shifting tasks between cores
during runtime.

We assume that tasks can be aborted or canceled at any time after their release. However, to ensure a
smooth simulation run in the event of task cancellation, assumption no. 4 makes the canceled task responsible
for leaving the system resources that it has been using in a clean state.

As described in the FMI standard [24], our system will be a cosimulation with a master that orchestrates
and synchronizes the running of the simulation. Tasks are allowed to communicate with the master only and
not directly with each other, and the master is then responsible for forwarding the communicated data to the
destination task, if any. This communication between the tasks and master does not necessarily have to occur at
the end of every simulation step; however, every communication time-point must coincide with the end time of
a simulation step. In other words, the simulation model frames are allowed to contain multiple simulation steps.
Figure 1 shows this communication architecture. For the sake of simplicity, we assume that the communication
between the master and a slave task has a constant delay and that this delay is included in the worst-case
execution time of each task.

…
..

Task 1

CPU 1

Task 2

CPU 2

Task 3

CPU 3

Task 4

CPU 4

Task 5

CPU 5

Task n

CPU n

Master

CPU 0

Figure 1. Cosimulation system model.

Besides communication between the tasks, the master is also responsible for scheduling or invoking each
task for execution. A scheduler is therefore a part of the master and is responsible for executing tasks in such a
way that no task misses its deadline while at the same time ensuring that the precedence constraints between
them are not violated. However, a scheduler can only schedule a task after it is released for execution or in
other words becomes active. In our system model, we use task automata to define the task release or arrival
patterns.

3602



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

3. The proposed framework
Real-time schedulability analysis in the case of multiframe real-time cosimulation, possibly FMI-based, actually
amounts to analyzing the scheduler component of the cosimulation master. The analysis process checks if it
is possible for the scheduler to schedule tasks in real time for a given task arrival pattern and the constraints
defined between task types. The scheduler component makes scheduling decisions based on inputs provided
to it by the simulation designer using a task model. A task model includes the definition of the tasks’ arrival
patterns, worst-case execution times, deadlines, and precedence relations between them.

Since we intend to extend the timed automata-based FY framework for real-time schedulability analysis,
timed automata will naturally play a major role in our proposed framework as well. More specifically, a timed
automaton will be defined that will analyze schedulability for the cosimulation master while a slight variation
of timed automata, i.e. task automata [8], will be a major part of our task model description.

Next is the description of how the task model component of the master is represented in our proposed
framework, followed by the description and discussion of the timed automaton that can analyze the real-time
schedulability of any task in a given task model.

3.1. The task model
The task model component of the master is defined as a 3-tuple ⟨S,A,G⟩ , where:

• S is a set of task types. Each member of the set S defines a type of task.

• A is a set of task automata that defines the task arrival patterns.

• G is a directed acyclic graph (DAG) that defines precedence constraints between tasks.

Following is the detailed description of each component of the task model tuple.

3.1.1. Task type
We represent a task as an abstraction called a task type that contains only those task attributes that are of
interest. Multiple instances of a task type can exist in a system at the same time. We shall use the term “task”
to refer to both task type and its instance wherever the actual meaning is clear from the context.

Before proceeding further, let us define the three possible states of a task in our framework:

• Idle: When a task is waiting to be released by the cosimulation master.

• Waiting: When a task is released but is waiting either for some precedent task to finish execution or for
processor time.

• Executing: When the task is actually executing on a processor.

The three states and the transitions possible between them are shown in Figure 2. A task is termed
active during waiting or executing states. The response time (ResponseTime) of a task is defined as the time
elapsed between the instant when it was released and the instant when it finishes execution.

In most of the related works, a task type is usually defined by two static attributes: the task’s worst-case
execution time and its relative deadline. However, in our system model, where task periodicities are allowed to
be dynamic, the deadline attribute cannot be fixed at the time of task type definition. We therefore define the

3603



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

Idle

Waiting Executing

Task released by Master

All precedence constraints are satisfied 
OR

Task deadline does not allow waiting

Task finishes execution

Figure 2. Task states.

Deadline attribute as a dynamic property for our task types, which will be assigned a value by the cosimulation
master whenever a task instance is released for execution.

Recall that in Section 2 we assumed in our real-time cosimulation system model that a task can be
canceled at any time and will leave the system in a clean and well-defined state. To reach this clean state, a
canceled task typically needs to perform some additional housekeeping tasks that require processor time. We
introduce a new attribute in task type definition called worst-case cancellation time (WorstCaseCancelT ime).
It is formally defined as the maximum time that can elapse between a cancellation request from the master
and completion of that cancellation by the task. It is defined as a static task attribute and is assumed to be
determined at design time.

Two more attributes are added in our task type definition that are required for real-time schedulability
analysis. These are the task’s current simulation time (SimulationT ime) and its current integration interval
(CurrentIntegrationInterval ). CurrentIntegrationInterval is required to maintain SimulationT ime , by
continuously accumulating it, and also to calculate the next arrival time of a task. SimulationT ime is needed
in handling precedence constraints among tasks, as explained in Section 3.2.3.

The formal definition of task type is therefore a 5-tuple ⟨WCET,WCCT,DL,CII, ST ⟩ , where:

• WCET and WCCT are static attributes representing the task’s WorstCaseExecT ime and WorstCase-
CancelT ime , respectively.

• DL ,CII represent the task’s Deadline and CurrentIntegrationInterval and are assigned values at
runtime by the master.

• ST is the task’s current SimulationT ime being regularly updated using the CurrentIntegrationInterval .

3.1.2. Task automata
To define the arrival pattern of tasks, a task automaton will be used, which is actually a timed automaton with
some automaton states (termed as locations) annotated with tasks [8]. A transition to a location annotated
with a task means that the task mentioned in the annotation now leaves the idle state and moves to waiting
state. One minor modification in our case is that before each task gets ready for execution, the master will set
the CurrentIntegrationInterval and Deadline parameters of that task.

3604



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

3.1.3. Precedence DAG
The precedence constraints can be naturally represented as a DAG where the nodes represent the tasks and the
edges between them denote the presence of a precedence constraint. Use of a DAG means that cyclic constraints
are not allowed. As discussed in Section 3.2.2 below, we will have two kinds of precedence constraints in our
system model so the DAG in our case needs to have two types of edges to represent the two kinds of constraints.

3.2. Precedence handling in the proposed framework

Precedence handling is the basic difference between the FY framework and our proposed framework. Therefore,
we shall build upon this difference and introduce the related concepts and terms as we go forward.

3.2.1. Precedence handling in FY framework

The FY framework used boolean variables to indicate precedence between two tasks and had just one kind of
precedence constraint that is mandatory for the dependent task to satisfy. In the framework, a Boolean variable
gi,j , initialized as false , is introduced for every pair Pi, Pj if Pj is dependent on Pi . A true value of variable
gi,j means that Pi has completed and so Pj is allowed to run. Every time a task Pi finishes execution, all gi,j
are set to true and subsequently switched back to false when the dependent task Pj is completed. A task Pj

is ready to run only when gk,j = false for no Pk ; hence, a simple conjunction of all gk,j variables is enough to
determine if every precedence constraint of Pj is satisfied or not.

3.2.2. Shortcomings of FY framework

The problem with this relatively simple precedence handling is that it forces each precedence constraint to be
satisfied every time and the real-time schedulability under these mandatory precedence constraints does not
depend only on the WorstCaseExecT ime of tasks but also on the fact that all related tasks either have the same
periodicity, i.e. they all become ready for execution at the same time, or the precedent tasks have periodicity
shorter than that of the dependent task. If a dependent task P has a shorter periodicity and hence shorter
integration interval and deadline than its preceding task Q , then no matter how short the WorstCaseExecT ime

of P is, a mandatory precedence constraint between P and Q will cause each successive P instance to finish
closer and closer to its deadline, eventually causing a P instance to miss its deadline. However, our focus is
on real-time cosimulations with tasks having different frame sizes. In such multiframe real-time cosimulations,
contrary to the assumption in the FY framework, the tasks can have different periodicities. Another point of
difference is that the normal data dependency kind of precedence constraints among periodic simulation tasks
need not be a binding precedence constraint since it is almost always possible to advance the simulation with
extrapolated old data to ensure that no task misses its deadline. This should not mean that the cosimulation
master will always ignore the data dependency constraints among periodic simulation tasks because it is always
desirable, for the sake of the accuracy of the simulation, to wait for fresh outputs from the preceding tasks
if the dependent task’s deadline permits. In other words, if there is a possibility of improving the simulation
accuracy by delaying a task’s execution without violating its deadline, then the master should go for the delayed
execution.

Besides the nonbinding precedence constraints, there will be some precedence constraints that are binding
and the master must wait for these precedent tasks to finish before proceeding ahead. We thus have two kinds
of precedence constraints in our system, one that is nonbinding and another that is binding.

3605



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

3.2.3. Solution presented for the proposed framework

In our framework, an n× n matrix is used to represent the two kinds of precedence constraints where n is the
number of tasks in the system. Each entry Ei,j in the matrix denotes whether or not there is a precedence
constraint between tasks Pi and Pj and, if so, the type of that constraint. Therefore, Ei,j ∈ {B,N,∅} , where
∅ denotes No constraint while symbols B and N denote the existence of a binding or nonbinding constraint,
respectively.

However, the information represented in the above matrix is not enough for our purposes. There must
be a way for the cosimulation master to determine how long the execution of the task under analysis has to
be delayed because of some binding constraint, or for the case of nonbinding constraints whether or not it is
suitable to wait at all for a nonbinding precedent task to finish, and if yes, how long. The FY framework does
not provide any information to make such a decision. Our framework improves upon this and helps in deciding
between accuracy and real-time requirements by providing the following two necessary pieces of information,

1- Remaining response time: The master can use the remaining response time (RemResponseT ime) of
each precedent task to determine if the execution of P can be delayed to get fresh outputs from the precedent
tasks without violating P ’s deadline by checking the following condition:

Deadline(P ) ≥ RemResponseT ime(Q) +WorstCaseExecT ime(P ) (1)

The amount of time that a task P can wait is calculated by considering the largest RemResponseT ime

of a precedent task Q for which the condition given in Eq. 1 is true.
Our framework maintains a separate clock variable for each precedent task instance that keeps track of

the time since that instance is active. This clock in addition to the total response time of a task is used to keep
a running estimate of RemResponseT ime of that particular task.

2- Simulation time: The current SimulationT ime of tasks also needs to be taken into consideration by
the cosimulation master. In a multiframe cosimulation, tasks have different periodicities; therefore, their
SimulationT ime values are not in synchrony with each other. In such a scenario, the master is responsible for
handling the precedence relations in a way that can counter this lack of synchronization.

4. Schedulability analyzing by timed automaton

4.1. Checking automaton

The timed automaton that we define for schedulability analysis is termed as checking automaton (CA) as it
basically checks if it is possible for instances of a particular task type to have a response time greater than its
assigned deadline, and therefore is unschedulable. The defined CA is actually a template automaton that needs
to be instantiated for schedulability analysis of each task type separately.

Like in the FY framework, the CA encodes the problem of unschedulability as a reachability problem.
However, the CA checks all the task instances released during a simulation scenario of the task type it is
instantiated for, and an ERROR state is reached whenever any one of the task instances is determined to be
violating its deadline, whereas the designers of the FY framework defined an automaton that checks a single
instance of a task type for unschedulability. They selected a particular task instance nondeterministically for
the analysis.

3606



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

We shall refer to the task type for which the CA is instantiated as P while the precedent tasks that will
feature in our discussion shall be referred to as Q . Similarly, the automaton location names in the CA that are
subscripted by p refer to the task under analysis whereas other subscripts are used for locations dealing with
precedent tasks.

Before proceeding further, let us describe a few data structures that are used in the definition of CA:

• queue, a FIFO queue to hold the instances of P while they are in waiting state. Maximum size of the
queue is defined by CA parameter maxQsize .

• ANBTasks, an array that holds all the active nonbinding precedent tasks.

• ABTasks, an array that holds active binding tasks with largest RemResponseT ime .

A couple of constants defined in each instantiation of the CA determine the maximum number of clocks
defined in that instance of the CA. These are:

1. maxQsize: Maximum number of instances of the task under analysis, P , that can be in the queue at
one time waiting for execution. A clock is required for each waiting task.

2. maxActiveNonBindingTasks: Maximum number of nonbinding precedent tasks that can be active at
any given moment. A clock is required for each active nonbinding task.

A clock is required for each binding precedent task as well, but since RemResponseT ime of only one
binding precedent task is required for one instance of P , the maximum number of active binding precedent
tasks that we may need to maintain is equal to maxQsize . Therefore, the total number of clocks defined in a
CA is given by the following equation:

nClocks = 2×maxQsize+maxActiveNonBindingTasks+ 2 (2)

4.2. The checking automaton construction
A timed automaton consists of nodes called locations and edges denoting transition between locations. Table 1
provides the description of all the locations and the edges between them as defined in the CA shown in Figure 3.

5. Experiments
The developed framework was implemented in UPPAAL version 4.1 and was tested on Middle East Technical
University’s Computer Engineering Department’s inek machine with 64-bit 3.10 GHz Intel Core i7-4770S
processor and 1600 MHz, 2x4 GB DDR3 RAM. A simple example was developed to determine the accuracy
of our framework implementation in analyzing the schedulability of a simulation scenario. Having proved
the functionality of the framework, another set of tests was performed to empirically assess two performance
parameters: time taken and total memory used during schedulability analysis. Following is a description of
these two kinds of experiments.

5.1. Functionality verification experiment

A simple case of a car’s power window simulation was selected for this experiment [25]. The power window
system works by reacting to the user pressing the window’s up or down button. A microcontroller reads the
user input and outputs a command signal to the DC motor, which runs to move a scissor mechanical assembly

3607



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

Figure 3. The checking automaton (CA).
3608



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

that in turn moves the car window. However, the user input is overridden if an obstacle is detected in the path
of an upward moving window. The obstacle event causes the controller to cancel its current command to move
the window up and instead issue a new command to move the window down a few centimeters. To realize the
defined functionality, the simulation was assumed to be composed of six simulation tasks, which are given in
Table 2.

The DAG that describes the precedent constraints or dependencies among these tasks is given in Figure 4.
All the dependency relations in the graph are nonbinding precedent constraints with the only exception of the
relation between Controller and ObstacleEventHandler tasks, which is defined as a binding constraint and
shown by a solid line in the figure. In our experiment, we analyzed the schedulability of the Controller task.

Table 1. Description of locations for checking automaton.

Location Name Description

Idle
To start with, the CA is in Idle location. The automaton leaves this location when either an instance
of task under analysis, i.e. P , or an instance of one of the precedent tasks is released for execution.

Active_q

In Active_q location, the CA keeps track of all the active nonbinding precedent tasks and an active
binding task, one with the largest RemResponseT ime. A transition back to Idle location is made
when all the active precedent tasks finish execution or, alternatively, the CA moves to BindingWait
location when an instance of P is released.

BindingWait

At this location, the CA imitates delaying execution of task P instance due to an active binding
precedence task. The duration of this mandatory delay equals the largest RemResponseT ime
value among active binding precedent tasks. At the end of binding wait time, the CA moves to
CheckNBIndexToWait location to check if it can wait for any active nonbinding precedent task to
finish execution. Other transitions that are possible include moving to Finish_p state if simulation
master cancels all waiting P instances or to ERROR location if clock of a waiting P instance in the
queue exceeds its deadline.

CheckNBIndexToWait

CheckNBIndexToWait location is defined as a committed location for the CA, which means that
no time can pass while the automaton is in this location. Therefore, the location is immediately
exited by simply checking if there is a nonbinding precedent task instance that can be waited upon
safely. If yes, then the CA moves to NonBindingWait location; otherwise, a move to Executing_p
location is made.

NonBindingWait

This location imitates the delay due to waiting for a nonbinding precedent task. From here, the CA
can move to Executing_p location when the waiting time expires, to CheckNewTaskDL location
if a new instance of P is released, or to Finish_p location in the event that the simulation master
cancels all waiting P instances.

Executing_p

This location emulates the time spent while executing an instance of task P . It can be entered either
from Idle location when an instance of task P gets released with no active precedent tasks or after
exhausting all the waiting periods, binding and/or nonbinding. A normal exit from this location will
cause the CA to move to Finish_p location. However, in the case of a P instance’s clock surpassing
its associated deadline, the CA moves to the ERROR location.

Finish_p

Finish_p location is entered either when an instance of task P , which is either at the head of the
queue or is executing, gets canceled or when a P instance finishes execution. It is again a committed
location and so the CA exits this location immediately and moves to one of the three other locations:
Idle, Active_q, or BindingWait, based on the current system state.

CheckNewTaskDL

This location was mentioned in description of the NonBindingWait location above. At this location
the CA checks the deadline of a new instance of P , released while the system is waiting for a
nonbinding precedent task to finish, and determines if the new P instance can safely wait for the
remainder of the nonbinding wait period or not.

ERROR

ERROR is a special location that is only entered when an instance of P is found to be violating
its deadline, i.e. when a clock associated with any P instance passes the corresponding deadline.
The locations where a P instance’s clock can surpass its own deadline are either when CA is in
BindingWait location or in Executing_p location

To verify a task’s schedulability for a simulation scenario, the entire scenario can be thought of as
composed of similar subscenarios of duration equal to the least common multiple of the periodicities of the
concerned tasks. From Table 2, this duration is tlcm = 40 time units. All these subscenarios are identical

3609



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

except the ones where occurrence of a sporadic task or event is possible. These exceptional scenarios can be
called event-affected subscenarios. In our experiment, normalizing the time instants when the sporadic Obstacle-
EventHadndler task can arrive within a subscenario, we got event-affected subscenarios where the sporadic
event can occur at any time between 15 to 25 time units. An analysis of all the event-affected subscenarios and
only one normal subscenario is enough to complete the schedulability analysis for the entire simulation run.

User I /O

Task

Obstacle 

Event 

Handler

Controller

Task

ScissorMech

Task

WindowMove

Task

DC_Motor

Task

Figure 4. Graph showing precedent constraints among power window simulation tasks.

Table 2. Tasks in car’s power window simulation.

Task name Description Attributes

Controller task A task that emulates the actions of a microcontroller used in a car’s
power window

WCET = 3 time units
WCCT = 2 time units
Period = 8 time units

User input task A task that periodically checks if the user has pressed window up
or down button

WCET = 4 time units
WCCT = 1 time units
Period = 5 time units

Obstacle event
handling task

A task that is triggered if an obstacle is detected in the path of the
car window while it is moving up

WCET = 1 time units
WCCT = 1 time units
Sporadic: Can arrive between
495 and 505 time units

DC motor task A task that simulates the working of a power window’s DC motor
WCET = 2 time units
WCCT = 1 time units
Invoked from controller task

Scissor mechanism task A task that simulates the mechanical assembly that moves a window
up or down

WCET = 3 time units
WCCT = 2 time units
Invoked from DC motor task

Window move task A task that simulates the window movements

WCET = 3 time units
WCCT = 1 time units
Invoked from
scissor mechanism task

The CA is then instantiated by taking the Controller task as the AnalyzedTask while considering
UserInput and ObstacleEventHandler as the precedent tasks. Since the problem of schedulability is now
transformed into a state reachability problem, the only query that needs to be tested in order to check the schedu-
lability is Is there any system state where CA is in ERROR location?, or formally, E <> CheckingAutomaton.-
ERROR . This query is verified using UPPAAL’s verifier for each subscenario.

3610



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

5.1.1. Functional verification result
The results of the analysis showed that for the subscenarios where the obstacle event occurred between the 16th
and 18th time units or at either the 24th or 25th time unit, the Controller task was found schedulable. In rest
of the subscenarios, the Controller task was found unschedulable. These results match with the ones obtained
through manual analysis, verifying the functionality of our framework.

5.2. The performance experiments

The time and memory utilization while performing model checking or property verification of a task automata
system in UPPAAL depends on the number of clock variables used and the duration for which the system is
to be checked. Another factor that affects the verification performance greatly is the presence of indeterminate
events in the system. Indeterminate events are basically automaton transitions that are declared to fire at an
indeterminate time instant.

For simplicity in these performance experiments, we have assumed that there are no indeterminate events
in the system. The experiments, therefore, are used to evaluate the affect of clock variable count and the time
duration for which the system is checked. An example scenario with arbitrary functionality was used in which
total number of tasks was 6 . The task automata that defined the arrival patterns of these tasks used a total
of 6 clock variables. These 6 clocks are in addition to the clocks defined in the CA, whose count depends
upon parameters maxQsize and maxActiveNonBindingTasks as shown in Eq. (2). Since clock count is the
primary source of complexity in a timed automata system, to see its effect on performance of schedulability
analysis, one can increase the clock variables by varying either maxQsize or maxActiveNonBindingTasks ,
or both. In these experiments we increased the number of clocks by keeping maxQsize as 2 while increasing
the maxActiveNonBindingTask count.

5.2.1. Performance experiment results

A total of 35 experiments were conducted in order to evaluate the performance of our framework implementation.
Each of these experiments used one out of five maxActiveNonBindingTask values of 2 , 4 , 6 , 8 , or 10 and
seven possible simulation durations that included 50, 100, 500, 1000, 1500, 2000 , and 3000 . The time elapsed
and the memory consumed during these tests were recorded and are presented here as surface plots in Figures 5
and 6. In each of the plots, the X-axis represents the number of maxActiveNonBindingTasks and the Y-axis
represents simulation time duration. The unit of simulation time is not fixed and depends upon the simulation
time resolution for which the analysis is required. The Z-axis in Figure 5 shows the verification time in seconds
while the same axis in Figure 6 shows the memory consumption in KB. As one would expect, the test results
in both plots show that the time taken and memory consumed during the verification process increase with
the increase in both duration of tested scenario and maxActiveNonBindingTasks , i.e. number of clocks. The
actual values of verification time range from 0.26σ for a maxActiveNonBindingTasks value of 2 and simulation
duration of just 50 time units to 2355.74σ at the maximum tested values of 10 maxActiveNonBindingTasks

and 3000 time units. The memory consumed for the same scenarios is 10, 824 KB and 3, 198, 240 KB,
respectively.

6. Future work
We feel that there is room for simplifications in some aspects of the proposed framework, which will be the
focus of our future work. More experimentation will also be done with the implemented framework focusing on

3611



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

0

500

3000 10

1000

1500

V
er

if
ic

at
io

n
 T

im
e

2500

Time Elapsed During Verification

9

2000

2500

82000 7

Simulation Time max Active Nonbinding Tasks

1500 651000 4500 30 2

Figure 5. Verification time plot.

0
3000

0.5

1

2500

1.5

10
2000

M
em

o
ry

 C
o

n
su

m
ed

 (
K

B
)

#10 6

2

9
8

2.5

Memory Consumed During Verification

Simulation Time

1500 7

3

Max Active Nonbinding Tasks

6

3.5

1000 5
4500

30 2

Figure 6. Memory consumption plot.

some real-world simulation scenarios adopted from industry. This will help us in refining the framework more
and eventually in making it available for simulation designers to use it for their schedulability analysis and
scheduler synthesis needs. Another area of work could be the automated instantiation of CA based on given
task dependencies. In this work, the instantiated CA has been coded in UPPAAL manually.

7. Conclusion
This paper is the first ever attempt to address the problem of schedulability analysis in real-time simulation. We
presented a timed automaton-based framework for analyzing the schedulability of real-time multiframe cosim-

3612



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

ulations. A cosimulation system model based on the FMI 2.0 standard was presented with an assumption that
each simulated task has its own dedicated processor core for execution. It was argued that the seemingly trivial
problem of schedulability in such a cosimulation model becomes nontrivial when coupled with multiframing and
precedence constraints.

A schedulability analysis framework was presented, which is an extension of an existing framework due
to Fersman and Yi that was developed for the schedulability analysis of real-time systems. It was justified that
the previous framework needs to be extended for the case of our cosimulation system model. The framework
was then extended and related concepts were also presented.

The construction of the timed automaton, CA, used in the proposed schedulability analysis framework
was presented and its UPPAAL implementation was tested. The functional accuracy test results showed that
the framework detected the unschedulable scenarios correctly. Performance tests, on the other hand, provided
the rate of increase in the time and memory requirements of our implementation with respect to clock variable
count and tested time duration. These results can be interpreted to gain an idea about the practical limits of
the framework.

References

[1] Gomes C, Thule C, Broman D, Larsen PG, Vangheluwe H. Co-simulation: a survey. ACM Computing Surveys
2018; 51: 49.

[2] Crosbie R. Real-time simulation using hybrid models. In: Popovici K, Pieter JM (editors). Real-Time Simulation
Technologies: Principles, Methodologies, and Applications. Boca Raton, FL, USA: CRC Press. Taylor & Francis
Group, 2013. pp. 4-31.

[3] Gear CW, Wells DR. Multirate linear multistep methods. BIT 1984; 24: 484-502.

[4] Ledin J. Simulation Engineering. Lawrence, KS, USA: CMP Books, 2001.

[5] Alur R, Dill D. A theory of timed automata. Theoretical Computer Science 1994; 126: 183–235.

[6] Abdedda Y, Asarin E, Maler O. Scheduling with timed automata. Theoretical Computer Science 2006; 354: 272-300.

[7] Abdeddaim Y, Kerbaa A, Maler O. Task graph scheduling using timed automata. In: International Parallel and
Distributed Processing Symposium; Nice, France; 2003. p. 8.

[8] Fersman E, Yi W. A generic approach to schedulability analysis of real-time tasks. Nordic Journal of Computing
2004; 11: 129-147.

[9] Fersman E, Mokrushin L, Pettersson P, Yi W. Schedulability analysis of fixed-priority systems using timed automata.
Theoretical Computer Science 2006; 354: 301-317.

[10] Fersman E, Krcal P, Pettersson P, Yi W. Task automata: schedulability, decidability and undecidability. Information
and Computing 2007; 205: 1149-1172.

[11] Stigge M, Yi W. Graph-based models for real-time workload: a survey. Real-Time Systems 2015; 51: 602-636.

[12] Larsen KG, Pettersson P, Yi W. Uppaal in a nutshell. International Journal of Software Tools and Technology
Transfer 2014; 1: 134-152.

[13] Behrmann G, David A, Larsen KG. A tutorial on Uppaal. In: Bernardo M, Corradini F (editors). Formal Methods for
the Design of Real-Time Systems. SFM-RT 2004, Lectures Notes in Computer Science. Berlin, Germany: Springer,
2004. pp. 200-236.

[14] Norstrom C, Wall a. Timed automata as task models for event-driven systems. In: Sixth International Conference
on Real-Time Computing Systems and Applications. RTCSA’99 (Cat. No. PR00306). Hong Kong, China: IEEE
Computer Society, 1999. pp. 182-189.

3613



AHSAN and OĞUZTÜZÜN/Turk J Elec Eng & Comp Sci

[15] Fersman E, Pettersson P, Yi W. Timed automata with asynchronous processes: schedulability and decidability.
In: Katoen JP, Stevens P (editors). Tools and Algorithms for the Construction and Analysis of Systems. Berlin,
Germany: Springer; 2002. pp. 67-82.

[16] David A, Illum J, Larsen KG, Skou A. Model-based framework for schedulability analysis using Uppaal 4.1. In:
Nicolescu G, Mosterman PJ (editors). Model-Based Design for Embedded Systems. Boca Raton, FL, USA: CRC
Press, 2009. pp. 117-144.

[17] Boudjadar A, Kim JH, Larsen KG, Nyman U. Compositional schedulability analysis of an avionics system using
Uppaal. In: International Conference on Advanced Aspects of Software Engineering; Constantine, Algeria; 2014.
pp. 140-147.

[18] Shan L, Graf S, Quinton S, Fejoz L. A framework for evaluating schedulability analysis tools. In: Aceto L, Bacci G,
Bacci G, Ingólfsdóttir A, Legay A et al. (editors). Models, Algorithms, Logics and Tools. Lecture Notes in Computer
Science. Cham, Switzerland: Springer, 2017. pp. 539-559.

[19] Gonzalez Perez CA, Varmazyar M, Nejati S, Briand L, Isasi Y. Enabling model testing of cyber-physical systems.
In: ACM/IEEE 21st International Conference on Model Driven Engineering Languages and Systems; Copenhagen,
Denmark; 2018. pp. 179-186.

[20] Brandstetter V, Wehrstedt JC. A framework for multidisciplinary simulation of cyber-physical production systems.
IFAC PapersOnLine 2018; 51: 809-814.

[21] Domenici A, Fagiolini A, Palmieri M. Integrated simulation and formal verification of a simple autonomous vehicle.
In: International Conference on Software Engineering and Formal Methods; Cham, Switzerland; 2017. pp. 300-314.

[22] Fersman E, Mokrushin L, Pettersson P, Yi W. Schedulability analysis using two clocks. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems; Berlin, Germany; 2003. pp. 224-239.

[23] Krcal P, Stigge M, Yi W. Multi-processor schedulability analysis of preemptive real-time tasks with variable
execution times. Lecture Notes in Computer Science 2007; 4763: 274-289.

[24] Blockwitz T, Otter M, Akesson J, Arnold M, Clauss C et al. Functional mockup interface 2.0: The standard for
tool independent exchange of simulation models. In: 9th International Modelica Conference; Munich, Germany;
2012. pp. 173-184.

[25] Prabhu SM, Mosterman PJ. Model-based design of a power window system: Modeling , simulation and validation.
In: IMAC-XXII: A Conference on Structural Dynamics, Society for Experimental Mechanics, Inc.; Dearborn, MI,
USA; 2004.

3614


	Introduction
	Real-time multiframe cosimulation
	Schedulability analysis problem and the proposed approach for a solution
	Related work

	Multiframe cosimulation model
	The proposed framework
	The task model
	Task type
	Task automata
	Precedence DAG

	Precedence handling in the proposed framework
	Precedence handling in FY framework
	Shortcomings of FY framework
	Solution presented for the proposed framework


	Schedulability analyzing by timed automaton
	Checking automaton
	The checking automaton construction

	Experiments
	Functionality verification experiment
	Functional verification result

	The performance experiments
	Performance experiment results


	Future work
	Conclusion

