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Abstract: This paper proposes a new ensemble feature selector, called the majority voting feature selector (MVFS),
for developing new maximal oxygen uptake (VO2max) prediction models using a support vector machine (SVM). The
approach is based on rank aggregation, which meaningfully utilizes the correlation among the relevance ranks of predictor
variables given by three state-of-the-art feature selectors: Relief-F, minimum redundancy maximum relevance (mRMR),
and maximum likelihood feature selection (MLFS). By applying the SVM combined with MVFS on a self-created dataset
containing maximal and submaximal exercise data from 185 college students, several new hybrid VO2max prediction
models have been created. To compare the performance of the proposed ensemble approach on prediction of VO2max,
SVM-based models with individual combinations of Relief-F, mRMR, and MLFS as well as with other alternative
ensemble feature selectors from the literature have also been developed. The results reveal that MVFS outperforms
other individual and ensemble feature selectors and yields up to 8.76% increment and 11.15% decrement rates in multiple
correlation coefficients (Rs) and root mean square errors (RMSEs), respectively. Furthermore, in addition to reconfirming
the relevance of sex, age, and maximal heart rate in predicting VO2max, which were previously reported in the literature,
it is revealed that submaximal heart rates and exercise times at 1.5-mile distance are two further discriminative predictors
of VO2max. The results have also been compared to those obtained by a general regression neural network and single
decision tree combined with MVFS, and it is shown that the SVM exhibits much better performance than other methods
for prediction of VO2max.
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1. Introduction
VO2max is defined as the maximum volume of oxygen an individual uses while exercising at maximal capacity,
and it is usually measured as a relative rate in milliliters of oxygen per kilogram of body mass per minute
(mL kg−1 min−1 ). The direct measurement of VO2max during a maximal exercise test is known as the most
proper technique for the evaluation of endurance capacity. However, given that the tests of direct measurement
of VO2max need expensive equipment, a great deal of time, and trained staff with expertise, a large number
of researchers have attempted to find indirect and simpler ways of determining VO2max based on prediction
equations. Consequently, dozens of various prediction models to estimate VO2max of different target audiences
ranging from professional athletes to fit adults, teenagers, and children have been proposed in the related
∗Correspondence: fakay@cu.edu.tr
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literature. This plethora of models shows a wide spectrum of different characteristics, depending on data
obtained by maximal, submaximal, nonexercise, or combined “hybrid” tests performed; machine learning or
statistical methods applied; or the predictor variables used. A detailed survey of previously conducted studies
on prediction of VO2max along with major conclusions can be found in [1].

In the course of recent years, another active research area in this field has been the application of feature
selection for identifying the most relevant predictors of VO2max, with the final aim of developing more accurate
prediction models [2]. Our literature review shows that there are three major studies [3–5] in the literature
employing individual feature selectors such as Relief-F, mRMR, and correlation-based feature selection (CFS)
to determine the discriminative predictors of VO2max. Particularly, the study in [3] proposed various Relief-
F-based and CFS-based regular VO2max models using maximal, submaximal, or nonexercise variables only.
Support vector machine (SVM), multilayer perceptron (MLP), and multiple linear regression (MLR) were used
to build the prediction models. In [4], SVM with individual combinations of Relief-F and mRMR was used
to develop new hybrid VO2max prediction models based on maximal and questionnaire data, with the aim of
comparing the performance of Relief-F with mRMR. For comparison purposes, prediction models based on a
radial basis function neural network (RBFNN) and decision tree forest (DTF) have also been created. In a
follow-up work, the study in [5] proposed new hybrid VO2max models by combining the maximal, submaximal,
and questionnaire variables using SVM combined with the Relief-F algorithm and compared the results to those
of MLP-based and tree boost (TB)-based models. To sum up the major conclusions made by these three studies,
it has been reported that sex, age, MX-HR, maximal exercise time, submaximal ending speed of the treadmill,
and Perceived Functional Ability (Q-PFA) and Activity Code (AC) questionnaires are the essential predictors of
VO2max, and SVM has been reported to be superior to the rest of the utilized regression methods for prediction
of VO2max.

However, the analysis of these studies indicates that every single feature selector strategy has its own
shortcomings, and there is no generalizable superiority of one feature selector over the others that consistently
performs well over all datasets. To overcome the shortcomings of individual methods, one possible way would
be to design ensemble feature selectors based on rank aggregation, which tends to achieve higher accuracy
and generalize better than individual methods [6, 7]. A rank aggregation can be described as a collection of
individual feature selectors whose results are combined typically by means of weighted or unweighted voting.
Although the idea of rank aggregation is not new, it has been applied mostly to classification problems [8–11]
rather than regression problems. An exhaustive review of the related literature revealed that, to the best of
our knowledge, there is only one major study [12] that introduced an ensemble feature selector, referred to as
EFS, also applicable to regression problems. However, EFS independently sums the results of each individual
feature selector up to a cumulative ranking after normalizing the individual results to a common scale, with no
deeper investigation of consistency relationships among the relevance ranks of variables reported by respective
individual feature selectors. A new approach quantifying and evaluating the correlation of the rank results of
individual feature selectors may further increase the robustness of an ensemble ranker in determining relevant
and irrelevant predictors of VO2max.

The purpose of this paper is to design a new ensemble feature selector, called the majority voting feature
selector (MVFS), which aggregates the consensus properties of Relief-F, mRMR, and MLFS, with the aim of
making more robust decisions about the set of relevantly identified VO2max predictors and creating new accurate
VO2max prediction models. SVM has been used to develop the prediction models, and the dataset on which the
proposed approach has been evaluated was created using data of 185 college students who successfully completed
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a submaximal 1.5-mile endurance test and a maximal graded exercise test. To compare the performance of the
proposed approach in prediction of VO2max, SVM-based models with individual combinations of Relief-F,
mRMR, and MLFS have also been developed. Similarly, to draw a comparison with the performance of SVM,
prediction models based on two popular types of artificial neural network-based and tree-structured methods
including the general regression neural network (GRNN) and single decision tree (SDT), respectively, have also
been created.

2. Dataset generation

The dataset contains data from 185 college students (115 males and 70 females) from Brigham Young University,
aged from 18 to 26 years, where prior to any testing all subjects signed an informed consent document approved
by the University Institutional Review Board and completed a brief physical activity questionnaire to filter for
possible cardiovascular contraindications.

To produce the dataset, the subjects accomplished a submaximal 1.5-mile endurance test and a maximal
graded exercise test (GXT). The submaximal 1.5-mile test was completed on a 229.7-m indoor track, which
required the completion of ten and a half laps. A test administrator registered the elapsed exercise time and
heart rate via heart rate monitor as the subjects passed the 0.5-mile, 1-mile, and 1.5-mile distances. At least 24
h after the 1.5-mile test, subjects completed a maximal GXT in the laboratory. Upon entering the laboratory,
subjects’ heights and weights were measured using a standard physician’s scale and a wall-mounted stadiometer,
respectively. To warm up for the maximal test, subjects began walking on the treadmill and then were instructed
to continue walking briskly or to begin jogging/running at a comfortable pace for about 2–3 min. Following the
warm-up, subjects continued to exercise at this same self-selected pace while the treadmill grade was enhanced
1.5% every minute. These progressive increases in grade continued until subjects reached volitional fatigue and
could not move on despite oral motivation. After the maximal test, a brief 5-min cool-down (walking at a slow
pace) was completed. During the maximal GXT, subjects’ SM-HR was registered at the end of each stage.
VO2max was computed by averaging the highest four consecutive 15-s scores close to the end of the maximal
test.

In addition to physiological variables such as sex (0.62 ± 0.48), age (22.42 ± 3.39), height (1.75 ±
0.10), and weight (74.03 ± 15.42), the dataset contains two further categories of predictor variables. The first
category, i.e. maximal variables, contains MX-HR (193.83 ± 8.34) and MX-RER (1.15 ± 0.04), and the second
category, i.e. submaximal variables, consists of the exercise times SM-MIN1 (165.71 ± 16.25), SM-MIN2 (166.99
± 26.56), and SM-MIN3 (171.47 ± 17.05) and heart rates SM-HR1 (4.88 ± 1.38), SM-HR2 (9.72 ± 2.49), and
SM-HR3 (14.70 ± 3.56) at the 0.5-mile mark, 1-mile mark, and 1.5-mile mark, respectively.

3. Majority voting feature selector
The MVFS algorithm proposed in this study is an ensemble feature selector consisting of three individual
feature selectors including Relief-F, mRMR, and MLFS, the details of which were described in [13], [14], and
[15], respectively. The motivation behind designing this ensemble approach was that each individual feature
selector uses a specific feature evaluation criterion and may yield different ranking results even when applied
to the same dataset. The MVFS algorithm aims to aggregate the consensus properties of Relief-F, mRMR,
and MLFS to produce more robust decisions about the set of relevantly identified variables. The necessary and
sufficient condition for rank aggregation to outperform its individual members is that the combined rankers are
accurate and diverse. Another critical decision when performing ensemble feature selection is the aggregation
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technique used for combining the resulting variable lists from the multiple feature selectors into a single decision
for each variable. Our aggregation technique is based on performing majority voting or calculating correlation
scores among variables or, in the worst case, using the priority order among the three individual feature selectors,
which is to be predefined based on their average prediction performance on the dataset being considered.

The main steps of the MVFS algorithm can be summarized as follows. The ranking lists of the predictor
variables reported by Relief-F, mRMR, and MLFS are passed as input parameters to the ensemble feature
selector. For every rank of the lists, three steps are followed until one of the variables reported by the three
individual feature selectors is chosen. The first step involves the majority voting strategy where a consensus
among the feature selector results is to be reached. Majority voting belongs to the simplest strategies in
designing combination classifiers. However, the power of this strategy is comparable to other complex methods
[16]. Obviously, the decision criterion for majority voting is fulfilled when at least two of the three feature
selectors point to the same variable, or a unique consensus among the three feature selectors for the same
variable has been observed. In the other case, where the decision criterion is not fulfilled, i.e. each of the three
feature selectors report a different variable for the current rank, the algorithm proceeds with the second step.

The second step involves separate calculation of the so-called correlation score (CS) for each variable
reported by the three individual feature selectors. In the related literature, similar evaluation metrics correlating
the independent estimates of individual feature selectors were already introduced for classification problems and
have also been proved as effective solutions for robust decision making in ensemble techniques for more relevant
variables [17]. In this study, the CS for a variable, as given in Eq. (1), is formed by the addition of two further
scores, namely the inconsistency score (IS) of a variable across the three feature selector results and the ranking
distance of a variable to the first rank (DS). The formulas for CS and DS are shown in Eq. (2) and Eq. (3),
respectively:

CSvar (fs, i) = ISvar (fs, i) + DSvar (fs, i) , (1)

ISvar (fs, i) =

 |rankvar (Relief − F )− rankvar (mRMR) |+
|rankvar (Relief − F )− rankvar (MLFS) |+

|rankvar (MLFS)− rankvar (mRMR) |

 , (2)

DSvar (fs, i) =

 (rankvar (Relief − F )− 1)+
(rankvar (mRMR)− 1)+
(rankvar (MLFS)− 1)

 , (3)

where the rank function gives the relevance rank of the variable var reported by the corresponding feature selector
fs. IS expresses the inconsistency level of a variable in terms of its rank reported by the three individual feature
selectors, whereas DS is defined as the absolute difference between the rank of the variable being considered
and the first rank. The lower the values of both scores are, the more relevant the variables can be considered
to be. Particularly, a lower IS for a variable indicates that it has been relatively reported by approximately the
same rank by the three feature selectors. Similarly, a lower DS for a variable indicates that it is relatively more
relevant compared to the other two variables. In conclusion, CS is calculated for each variable in the triple
candidate set and the variable having the lowest CS is selected for that rank. In the other case, where at least
two variables have the same CS, the algorithm continues with the last step.

For cases where the variable selection process for a rank is completed (i.e. the decision criterion of majority
voting for a variable is fulfilled in the first step or a variable with the highest CS is chosen in the second step),
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MVFS subsequently updates the list of variable ranks of the feature selector whose rank is assumed to be
incorrect. Particularly, the rank of the variable being corrected is moved up to the same rank of other dominant
feature selectors and the rest of the affected variables are rearranged so that they are listed after that reranked
variable by holding their previous relative orders.

The last step is based on the previously defined priority order of the feature selectors to decide the final
decision of a variable in the candidate set. To determine the priority ranking among the three individual feature
selectors for prediction of VO2max, the average performances of the three individual feature selectors on the
used dataset is considered, i.e. the feature selector producing the lowest average RMSE over all respective
VO2max models is assigned with the first priority, whereas the feature selectors occupying the second and third
places in terms of the performance regarding the average RMSEs receive the second and third priority for
prediction of VO2max, respectively. According to the average results obtained by applying the three individual
feature selectors on the utilized dataset, as presented in Section 5.3, their ranking from highest to the lowest
priority has been determined as MLFS, mRMR, and Relief-F.

This three-step procedure is repeated until the relevance of all predictor variables reported by the three
individual feature selectors has been evaluated. The pseudocode of the proposed ensemble ranker is illustrated
in Algorithm.

Algorithm Pseudocode of the MVFS algorithm.
1: Input: ranking lists of predictor variables reported by Relief-F, mRMR, and MLFS
2: Output: a new MVFS-based ranking list of predictor variables
3: repeat
4: Retrieve the triple of predictor variables at rank i
5: Apply the majority of voting principle on the triple of variables
6: if (consensus for a variable is reached)
7: then select the corresponding variable by majority of votes
8: else
9: Calculate the CS for each variable in the triple candidate set using Eq. 1

10: if (there is a single minimum CS)
11: then select the variable with the lowest CS
12: else
13: Select the predictor variable reported by the feature selector that

has been assigned with the highest priority
14: end if
15: end if
16: until the relevance of all predictor variables has been evaluated

4. Methodology and prediction models

By running the MVFS algorithm on the dataset, the relevance rank of every predictor variable has been
calculated. The relevance order of the variables, from highest to the lowest rank, is illustrated in Table 1.
Particularly, the results obtained by the MVFS show that the decisions on the rankings of 7 variables (i.e. age,
height, weight, MX-RER, SM-HR1, SM-HR2, and SM-MIN3) have been made by consensus voting; 4 variables
(i.e. sex, MX-HR, SM-MIN1, and SM-MIN2) have been ranked using the calculated CSs; and finally, only a
single variable (i.e. SM-HR3) has been ranked via the priority order of MLFS over the other two individual
feature selectors.
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The prediction models have been created by iteratively removing the predictor variable with the lowest
rank until a single variable with the highest rank remains in the last model. In the same manner, the relevance
ranks of the same predictor variables have been determined for Relief-F, mRMR, and MLFS. Additionally,
another alternative ensemble feature selector proposed in the literature, i.e. EFS, has also been applied to
the dataset. The achieved ranks of predictor variables for Relief-F, mRMR, MLFS, and EFS are illustrated in
Table 1. Table 2 shows the MVFS-based VO2max prediction models along with their predictor variables, and
similarly Table 3 through Table 6 illustrate the Relief-F-based, mRMR-based, MLFS-based, and EFS-based
prediction models, respectively, that have been created for comparison purposes.

Table 1. Relevance ranks of the variables given by MVFS, Relief-F, mRMR, MLFS and EFS.

Rank MVFS Relief-F mRMR MLFS EFS
1 SM-MIN3 Weight SM-MIN3 SM-MIN3 SM-MIN3
2 Weight SM-MIN3 Weight SM-MIN2 SM-HR1
3 SM-MIN2 MX-HR MX-RER Sex Sex
4 Sex SM-MIN2 Sex SM-MIN1 SM-MIN2
5 SM-MIN1 Height SM-MIN1 Weight Weight
6 MX-HR Sex MX-HR SM-HR3 SM-HR2
7 SM-HR3 SM-HR3 SM-MIN2 MX-RER SM-MIN1
8 MX-RER SM-MIN1 Age MX-HR SM-HR3
9 Age Age SM-HR1 Age Age
10 SM-HR1 SM-HR2 Height SM-HR1 MX-HR
11 Height SM-HR1 SM-HR2 SM-HR2 Height
12 SM-HR2 MX-RER SM-HR3 Height MX-RER

Table 2. Overview of MVFS-based VO2max models along with their predictor variables.

Models Predictor variables
Model 1 SM-MIN3, weight, SM-MIN2, sex, SM-MIN1, MX-HR, SM-HR3, MX-RER, age,

SM-HR1, height, SM-HR2
Model 2 SM-MIN3, weight, SM-MIN2, sex, SM-MIN1, MX-HR, SM-HR3, MX-RER, age,

SM-HR1, height
Model 3 SM-MIN3, weight, SM-MIN2, sex, SM-MIN1, MX-HR, SM-HR3, MX-RER, age,

SM-HR1
Model 4 SM-MIN3, weight, SM-MIN2, sex, SM-MIN1, MX-HR, SM-HR3, MX-RER, age
Model 5 SM-MIN3, weight, SM-MIN2, sex, SM-MIN1, MX-HR, SM-HR3, MX-RER
Model 6 SM-MIN3, weight, SM-MIN2, sex, SM-MIN1, MX-HR, SM-HR3
Model 7 SM-MIN3, weight, SM-MIN2, sex, SM-MIN1, MX-HR
Model 8 SM-MIN3, weight, SM-MIN2, sex, SM-MIN1
Model 9 SM-MIN3, weight, SM-MIN2, sex
Model 10 SM-MIN3, weight, SM-MIN2
Model 11 SM-MIN3, weight
Model 12 SM-MIN3
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Table 3. Overview of Relief-F-based VO2max models along with their predictor variables.

Models Predictor variables
Model 13 Weight, SM-MIN3, MX-HR, SM-MIN2, height, sex, SM-HR3, SM-MIN1, age,

SM-HR2, SM-HR1, MX-RER
Model 14 Weight, SM-MIN3, MX-HR, SM-MIN2, height, sex, SM-HR3, SM-MIN1, age,

SM-HR2, SM-HR1
Model 15 Weight, SM-MIN3, MX-HR, SM-MIN2, height, sex, SM-HR3, SM-MIN1, age,

SM-HR2
Model 16 Weight, SM-MIN3, MX-HR, SM-MIN2, height, sex, SM-HR3, SM-MIN1, age
Model 17 Weight, SM-MIN3, MX-HR, SM-MIN2, height, sex, SM-HR3, SM-MIN1
Model 18 Weight, SM-MIN3, MX-HR, SM-MIN2, height, sex, SM-HR3
Model 19 Weight, SM-MIN3, MX-HR, SM-MIN2, height, sex
Model 20 Weight, SM-MIN3, MX-HR, SM-MIN2, height
Model 21 Weight, SM-MIN3, MX-HR, SM-MIN2
Model 22 Weight, SM-MIN3, MX-HR
Model 23 Weight, SM-MIN3
Model 24 Weight

Table 4. Overview of mRMR-based VO2max models along with their predictor variables.

Models Predictor variables
Model 25 SM-MIN3, weight, MX-RER, sex, SM-MIN1, MX-HR, SM-MIN2, age, SM-HR1,

height, SM-HR2, SM-HR3
Model 26 SM-MIN3, weight, MX-RER, sex, SM-MIN1, MX-HR, SM-MIN2, age, SM-HR1,

height, SM-HR2
Model 27 SM-MIN3, weight, MX-RER, sex, SM-MIN1, MX-HR, SM-MIN2, age, SM-HR1,

height
Model 28 SM-MIN3, weight, MX-RER, sex, SM-MIN1, MX-HR, SM-MIN2, age, SM-HR1
Model 29 SM-MIN3, weight, MX-RER, sex, SM-MIN1, MX-HR, SM-MIN2, age
Model 30 SM-MIN3, weight, MX-RER, sex, SM-MIN1, MX-HR, SM-MIN2
Model 31 SM-MIN3, weight, MX-RER, sex, SM-MIN1, MX-HR
Model 32 SM-MIN3, weight, MX-RER, sex, SM-MIN1
Model 33 SM-MIN3, weight, MX-RER, sex
Model 34 SM-MIN3, weight, MX-RER
Model 35 SM-MIN3, weight
Model 36 SM-MIN3

Due to fact that SVM [18], in the literature, has been often reported to be superior to other machine
learning methods especially in the field of sport physiology [1, 19, 20], it has been chosen to build the VO2max
prediction models. SVM constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional space
to perform a regression analysis. The values of cost (C), epsilon (ϵ) for the ϵ -insensitive loss function, and the
type of kernel function are the main parameters influencing the performance of SVM-based models. The radial
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Table 5. Overview of MLFS-based VO2max models along with their predictor variables.

Models Predictor variables
Model 37 SM-MIN3, SM-MIN2, sex, SM-MIN1, weight, SM-HR3, MX-RER, MX-HR, age,

SM-HR1, SM-HR2, height
Model 38 SM-MIN3, SM-MIN2, sex, SM-MIN1, weight, SM-HR3, MX-RER, MX-HR, age,

SM-HR1, SM-HR2
Model 39 SM-MIN3, SM-MIN2, sex, SM-MIN1, weight, SM-HR3, MX-RER, MX-HR, age,

SM-HR1
Model 40 SM-MIN3, SM-MIN2, sex, SM-MIN1, weight, SM-HR3, MX-RER, MX-HR, age
Model 41 SM-MIN3, SM-MIN2, sex, SM-MIN1, weight, SM-HR3, MX-RER, MX-HR
Model 42 SM-MIN3, SM-MIN2, sex, SM-MIN1, weight, SM-HR3, MX-RER
Model 43 SM-MIN3, SM-MIN2, sex, SM-MIN1, weight, SM-HR3
Model 44 SM-MIN3, SM-MIN2, sex, SM-MIN1, weight
Model 45 SM-MIN3, SM-MIN2, sex, SM-MIN1
Model 46 SM-MIN3, SM-MIN2, sex
Model 47 SM-MIN3, SM-MIN2
Model 48 SM-MIN3

Table 6. Overview of EFS-based VO2max models along with their predictor variables.

Models Predictor variables
Model 49 SM-MIN3, SM-HR1, sex, SM-MIN2, weight, SM-HR2, SM-MIN1, SM-HR3, age,

MX-HR, height, MX-RER
Model 50 SM-MIN3, SM-HR1, sex, SM-MIN2, weight, SM-HR2, SM-MIN1, SM-HR3, age,

MX-HR, height
Model 51 SM-MIN3, SM-HR1, sex, SM-MIN2, weight, SM-HR2, SM-MIN1, SM-HR3, age,

MX-HR
Model 52 SM-MIN3, SM-HR1, sex, SM-MIN2, weight, SM-HR2, SM-MIN1, SM-HR3, age
Model 53 SM-MIN3, SM-HR1, sex, SM-MIN2, weight, SM-HR2, SM-MIN1, SM-HR3
Model 54 SM-MIN3, SM-HR1, sex, SM-MIN2, weight, SM-HR2, SM-MIN1
Model 55 SM-MIN3, SM-HR1, sex, SM-MIN2, weight, SM-HR2
Model 56 SM-MIN3, SM-HR1, sex, SM-MIN2, weight
Model 57 SM-MIN3, SM-HR1, sex, SM-MIN2
Model 58 SM-MIN3, SM-HR1, sex
Model 59 SM-MIN3, SM-HR1
Model 60 SM-MIN3

basis function (RBF) has been utilized as the kernel function, which requests the optimization of the function
parameter gamma (γ ). The optimal values of the three model parameters C, ϵ , and γ have been determined
using the well-known grid search technique [21]. The grid search technique works by looking for values of every
parameter using predetermined geometric steps across a search range, and the values of C, ϵ , and γ yielding
the maximum prediction performance are selected. The lower and upper limit values of the search range for C
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and γ have been chosen according to the recommendations made in [22]. Particularly, in [22], it was reported
that trying exponentially growing sequences of C and γ is an effective way to determine the optimal values.

To draw a comparison with the performance of SVM, prediction models based on GRNN [23] and SDT [24]
have also been developed. GRNN is a popular artificial neural network (ANN)-based method that does not
necessitate an iterative training procedure like backpropagation networks. Thus, it is usually much faster to
train a GRNN than other backpropagation networks such as MLP or RBFNN, and GRNNs have the potential
to often exhibit more satisfactory prediction performance. For a GRNN-based model, the values of minimum
and maximum values for sigma and the search step influence the performance of GRNN-based models. The
Gaussian function has been chosen as the kernel function. Finally, for the category of tree-structured methods,
preference has been given to SDT due to its simplicity, potential effectiveness in making decisions, and negligible
training times, which often are in the order of milliseconds. The quality of an SDT-based model is determined
by the values of minimum rows in a node, minimum size of node to split, and maximum tree levels. Table 7
and Table 8 show the ranges of values of the utilized parameters for the SVM-based models and the GRNN-
and SDT-based models, respectively.

Table 7. Ranges of values of the utilized parameters for the SVM-based models.

Method Parameter Range

SVM
Cost (C) [2−2 − 219]
Epsilon (ϵ) [0.001− 170]
Gamma (γ) [2−10–212]

Table 8. Ranges of values of the utilized parameters for the GRNN-based and SDT-based models.

Method Parameter Range

GRNN
Minimum sigma [0.0001, 11]
Maximum sigma [1, 65]
Search step [1, 59]

SDT
Minimum rows in a node [1, 20]
Minimum size of node to split [3, 10]
Maximum tree levels [5, 40]

The prediction errors of the models have been assessed by calculating the Rs and RMSEs, whose equations
are given in Eq. (4) and Eq. (5), respectively:

R =

√√√√1−
∑n

i=1 (Y − Y ′)
2∑n

i=1

(
Y − Y

)2 , (4)

RMSE =

√√√√ 1

n

n∑
i=1

(Y − Y ′)
2
, (5)

where Y and Y
′ represent the measured and predicted VO2max values, respectively. Ȳ gives the mean of the

measured VO2max values and N is the number of samples in a test subset. The evaluation of the generalization
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errors of the models, on the other hand, has been conducted using 10-fold cross-validation. Consequently, for
each fold, the training data included 162 samples, while the test data included 19 samples. The cross-validation
process is repeated 10 times using different sets of training and testing data, and the results from the folds have
been averaged to increase the confidence in the prediction results and reduce the bias over a single fold.

5. Results and discussion
This section includes four subsections. In the first subsection, numerical results for Rs and RMSEs of all MVFS-
based, Relief-F-based, mRMR-based, MLFS-based, and EFS-based prediction models developed by using SVM,
GRNN, and SDT are illustrated. The discussion regarding the results and relevant variables affecting the
quality of the MVFS-based prediction models are presented in the second subsection. In the third subsection,
the results of MVFS-based models are compared with the ones of models created by individually using the
Relief-F, mRMR, and MLFS algorithms. Finally, in the fourth subsection, the results of MVFS-based models
are compared with the ones of models created by using EFS, which, in contrast to the rest of individual feature
selectors, falls into the same class of ensemble feature selectors as MVFS, thus enabling an additional direct
comparison with the proposed approach.

5.1. Results
Table 9 presents the Rs and RMSEs of MVFS-based VO2max models developed by using SVM, GRNN, and
SDT. For comparison purposes, Table 10 through Table 13 show the Rs and RMSEs of VO2max models created
by using the relevance ranks of variables reported by Relief-F, mRMR, MLFS, and EFS algorithms, respectively.

Table 9. Rs and RMSEs for MVFS-based VO2max prediction models.

SVM GRNN SDT
Models R RMSE R RMSE R RMSE
Model 1 0.89 2.58 0.85 3.06 0.69 4.21
Model 2 0.90 2.55 0.86 3.04 0.71 4.16
Model 3 0.90 2.54 0.86 3.00 0.71 4.14
Model 4 0.90 2.53 0.86 2.98 0.71 4.11
Model 5 0.89 2.62 0.85 3.04 0.70 4.19
Model 6 0.89 2.63 0.85 3.11 0.70 4.19
Model 7 0.88 2.71 0.84 3.22 0.69 4.26
Model 8 0.87 2.83 0.82 3.29 0.66 4.43
Model 9 0.87 2.88 0.82 3.32 0.65 4.46
Model 10 0.82 3.29 0.77 3.76 0.60 4.84
Model 11 0.75 3.89 0.68 4.32 0.46 5.52
Model 12 0.74 3.92 0.67 4.39 0.45 5.59

5.2. Discussion
Based on the relevance ranks of predictor variables reported by the MVFS algorithm, it is seen that the sub-
maximal variable SM-MIN3 is the most relevant predictor of VO2max. In contrast, height and the submaximal
variables SM-HR1 and SM-HR2 have been ranked within the last three orders, suggesting that they are rela-
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Table 10. Rs and RMSEs for Relief-F-based VO2max prediction models.

SVM GRNN SDT
Models R RMSE R RMSE R RMSE
Model 13 0.89 2.58 0.85 3.06 0.69 4.21
Model 14 0.89 2.59 0.85 3.09 0.69 4.28
Model 15 0.90 2.54 0.85 3.03 0.69 4.23
Model 16 0.90 2.49 0.86 2.99 0.73 3.97
Model 17 0.89 2.61 0.84 3.13 0.67 4.34
Model 18 0.89 2.60 0.85 3.08 0.67 4.31
Model 19 0.85 3.03 0.79 3.57 0.58 4.75
Model 20 0.77 3.73 0.71 4.13 0.55 5.32
Model 21 0.77 3.78 0.70 4.19 0.54 5.40
Model 22 0.75 3.84 0.69 4.23 0.54 5.42
Model 23 0.75 3.89 0.68 4.32 0.46 5.52
Model 24 0.22 5.67 0.21 5.71 0.14 5.84

Table 11. Rs and RMSEs for mRMR-based VO2max prediction models.

SVM GRNN SDT
Models R RMSE R RMSE R RMSE
Model 25 0.89 2.58 0.85 3.06 0.69 4.21
Model 26 0.87 2.85 0.82 3.33 0.68 4.50
Model 27 0.87 2.90 0.82 3.35 0.67 4.57
Model 28 0.87 2.84 0.82 3.31 0.68 4.45
Model 29 0.86 2.97 0.82 3.47 0.66 4.68
Model 30 0.85 3.06 0.79 3.55 0.65 4.81
Model 31 0.87 2.88 0.82 3.36 0.67 4.46
Model 32 0.85 3.10 0.80 3.51 0.66 4.58
Model 33 0.85 3.02 0.81 3.47 0.67 4.49
Model 34 0.75 3.86 0.69 4.29 0.47 5.43
Model 35 0.75 3.89 0.68 4.32 0.46 5.52
Model 36 0.74 3.92 0.67 4.39 0.45 5.59

tively the most irrelevant predictors of VO2max. Similar observations regarding the two submaximal variables
also apply for Relief-F, mRMR, and MLFS, for which SM-MIN3 has been ranked within the first two orders,
while SM-HR1 and SM-HR2 have consistently been ranked within the last four variables.

Among the set of MVFS-based prediction models, it is seen that Model 4 containing the physiological
variables sex, age, and weight; the maximal variables MX-HR and MX-RER; and the submaximal variables
SM-MIN1, SM-MIN2, SM-MIN3, and SM-HR3 yields the lowest RMSEs for prediction of VO2max, no matter
whether SVM, GRNN, or SDT has been employed for model development. In more detail, SVM has been
found to deliver the lowest RMSE value with 2.53 mL kg−1 min−1 ; building the same prediction model with
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Table 12. Rs and RMSEs for MLFS-based VO2max prediction models.

SVM GRNN SDT
Models R RMSE R RMSE R RMSE
Model 37 0.89 2.58 0.85 3.06 0.69 4.21
Model 38 0.90 2.55 0.85 3.01 0.71 4.15
Model 39 0.90 2.54 0.86 3.00 0.71 4.14
Model 40 0.90 2.53 0.86 2.98 0.71 4.11
Model 41 0.89 2.62 0.85 3.04 0.70 4.19
Model 42 0.88 2.70 0.84 3.14 0.67 4.34
Model 43 0.88 2.71 0.84 3.14 0.67 4.37
Model 44 0.87 2.83 0.82 3.29 0.66 4.43
Model 45 0.80 3.51 0.73 3.98 0.57 5.17
Model 46 0.78 3.66 0.72 4.08 0.56 5.23
Model 47 0.76 3.81 0.71 4.16 0.55 5.36
Model 48 0.74 3.92 0.67 4.39 0.45 5.59

Table 13. Rs and RMSEs for EFS-based VO2max prediction models.

SVM GRNN SDT
Models R RMSE R RMSE R RMSE
Model 49 0.89 2.58 0.85 3.06 0.69 4.21
Model 50 0.89 2.59 0.85 3.09 0.69 4.28
Model 51 0.90 2.49 0.83 2.97 0.71 4.07
Model 52 0.89 2.58 0.85 3.02 0.70 4.12
Model 53 0.88 2.72 0.84 3.12 0.67 4.30
Model 54 0.87 2.82 0.83 3.21 0.66 4.42
Model 55 0.87 2.80 0.84 3.11 0.67 4.39
Model 56 0.87 2.78 0.84 3.10 0.70 4.17
Model 57 0.79 3.53 0.77 3.65 0.58 4.78
Model 58 0.58 4.74 0.56 4.80 0.30 4.92
Model 59 0.28 5.61 0.24 5.65 0.24 5.66
Model 60 0.74 3.92 0.67 4.39 0.45 5.59

GRNN gives the second most accurate prediction with an RMSE value of 2.98 mL kg−1 min−1 ; and finally
the development of the model with SDT occupies the last place with an RMSE value of 4.11 mL kg−1 min−1 .
In contrast to Model 1 including the full set of predictor variables, the best performing model (i.e. Model 4)
including 9 variables yields 1.93%, 2.61%, and 2.38% decrement rates in RMSEs for SVM, GRNN, and SDT,
respectively. In other words, although Model 4 consists of relatively fewer predictor variables, it yields lower
RMSEs compared to Model 1.

Among the set of regression methods, SVM unexceptionally exhibits the best performance by yielding
the lowest RMSEs for all prediction models. Particularly, compared with the RMSEs obtained by GRNN-based
and SDT-based models, the average percentage decrement rates in RMSEs obtained by SVM-based models are
13.63% and 35.50% for prediction of VO2max, respectively. These results complement the previous studies in
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[3–5], where SVM was also reported to be superior to MLP, RBFNN, DTF, TB, and MLR for prediction of
VO2max. GRNN-based models, in turn, outperform the SDT-based models, which comparatively show the
worst performance for prediction of VO2max.

Among the set of predictor variables, it turns out that in addition to SM-MIN3 ranked with the highest
importance by the MVFS, the inclusion of the sex, age, MX-HR, and SM-HR3 variables in VO2max models
causes consistent reductions in RMSEs, independent of the utilized regression methods. In more detail, the
outcomes show that inclusion of sex, age, MX-HR, and SM-HR3 variables into the respective SVM-based
prediction models yields 12.46%, 3.43%, 4.24%, and 2.95% lower RMSEs, respectively. This observation also
applies to the rest of the feature selectors and machine learning methods used in this study. Furthermore,
leaving out the MX-RER variable in prediction models has a negligible effect on prediction accuracy, leading to
slightly lower RMSEs. The rest of the predictor variables, on the other hand, can have an improving, negligible,
or deteriorating effect on prediction of VO2max, depending on with which other variables they are combined to
form the prediction model.

As the individual inclusion of sex, age, MX-HR, and SM-HR3 variables in VO2max models causes
consistent reductions in RMSEs, it would be interesting to investigate how the special combination of these
variables affects the prediction accuracy. To this end, we constructed and evaluated a new model using these
variables in an exclusive way. The results show that the model produces RMSE values of 3.31 mL kg−1 min−1 ,
3.35 mL kg−1 min−1 , and 3.86 mL kg−1 min−1 for SVM, GRNN, and SDT, respectively. Consequently, it can
be concluded that although the variables individually have a consistent positive effect on prediction of VO2max,
combining these variables in an exclusive model does not outperform the RMSE of the SVM-based Model 4,
which exhibits the lowest RMSE with 2.53 mL kg−1 min−1 for MVFS.

Prediction models developed by using the combination of physiological, maximal, and submaximal
variables (i.e. Model 1 through Model 6) lead to lower RMSEs than the ones of models developed by using the
physiological variables in combination with maximal or submaximal variables only.

The most accurate prediction models formed by the MVFS (i.e. Model 4) do not include the SM-HR1,
SM-HR2, and height variables, which consistently have been ranked with the lowest three scores according to
the MVFS algorithm.

Finally, it is observed that prediction models giving the lowest RMSEs for all four feature selectors include
at least one predictor variable from each category of physiological, maximal, and submaximal variables. This,
in turn, confirms the effectiveness of combining the relevant predictors of VO2max from different categories in
a hybrid model to improve the accuracy over regular models.

5.3. Results for comparing MVFS with individual feature selectors

In this subsection, the average results of MVFS-based models are compared with the average ones of Relief-F-
based, mRMR-based, and MLFS-based models, and it is shown that the performance gain obtained by using the
MVFS algorithm compared to individual feature selectors on prediction of VO2max is statistically significant.

Table 14 shows the average Rs and RMSEs of MVFS-based, Relief-F-based, mRMR-based, and MLFS-
based models developed by using SVM, GRNN, and SDT. According to these results, the following comments
can be made:

• Compared with the average RMSEs of the Relief-F-based models, the average RMSEs of the MVFS-based
models are 11.13%, 9.28%, and 6.06% lower for SVM, GRNN, and SDT, respectively.
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Table 14. Comparing the average results of MVFS-based models with the average ones of models based on individual
feature selectors using SVM, GRNN, and SDT.

MVFS Relief-F mRMR MLFS
R RMSE R RMSE R RMSE R RMSE

SVM 0.86 2.91 0.79 3.28 0.84 3.16 0.85 3.00
GRNN 0.81 3.37 0.74 3.71 0.78 3.62 0.80 3.44
SDT 0.64 4.51 0.58 4.80 0.62 4.77 0.64 4.61

• Compared with the average RMSEs of the mRMR-based models, the RMSEs of the MVFS-based models
are 7.66%, 6.96%, and 5.57% lower for SVM, GRNN, and SDT, respectively.

• Compared with the average RMSEs of the MLFS-based models, the RMSEs of the MVFS-based models
are 2.75%, 2.13%, and 2.15% lower for SVM, GRNN, and SDT, respectively.

Figure represents the average PDRs in RMSEs of VO2max prediction for MVFS-based models compared
to RMSEs obtained by Relief-F-based, mRMR-based, and MLFS-based models using SVM, GRNN, and SDT.
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Figure Percentage decrease rates in RMSEs of VO2max for MVFS-based models compared to RMSEs obtained by
Relief-F-based, mRMR-based, and MLFS-based models using SVM, GRNN, and SDT.

The statistical significance of the performance gain obtained by using the MVFS algorithm compared
to individual feature selectors on prediction of VO2max has been determined using the well-known Wilcoxon
signed-rank test [25]. More specifically, the test has been applied on the average RMSEs of all SVM-based,
GRNN-based, and SDT-based models of the three pairs including (MVFS, Relief-F), (MVFS, mRMR), and
(MVFS, MLFS). The sample size of the test case equals nine (n = 9), and the two-sided level of significance,
i.e. α , is set to 0.05. The test statistic for the Wilcoxon signed-rank test is W, defined as the smaller of W+
and W-, which are the sums of the positive and negative ranks, respectively. It is to be checked whether the
observed test statistic W supports the null or research hypothesis. This check is performed using the critical
value of W, which can be found using a predefined and well-known table of critical values. The calculated value
of W in each case equals zero, and the critical value of W for n = 9 at α = 0.05 is 5. Since W is less than
the critical value, the null hypothesis is rejected and it can be concluded that the performance gain obtained
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by using the MVFS algorithm compared to individual feature selectors is statistically significant at α = 0.05
for prediction of VO2max.

5.4. Results for comparing MVFS with ensemble feature selector
In the literature, there exist many ensemble feature selectors exclusively designed for classification problems,
making a direct comparison with our approach for regression problems unsuitable. After an exhaustive search of
the related literature, we were able to only find one major study that proposed an alternative ensemble feature
selector, i.e. EFS, which is also applicable for regression problems.

The rationale behind EFS can be summarized in three steps: (i) calculate the results of the n feature
selection methods to be used; (ii) transform the results of each individual feature selector to a common scale
(i.e. values between 0 and 1/n ); and finally (iii) sum them up to a cumulative ranking (i.e. values between
0 and 1). Currently, EFS incorporates, among others, logistic regression (LogReg), the error-rate (ER)-based
and the area under the curve (AUC)-based variable importance measures from the conditional random forest
algorithm (ER-RF and AUC-RF, respectively), Pearson correlation (PC), and Spearman correlation (SC) that
can be applied to regression problems, and the user can decide which feature selection methods should be used.
There is no weighting among the methods, so to obtain the ensemble ranks of the features, the relevance scores
for each individual feature reported by respective feature selectors are summed up.

There are three major differences between MVFS and EFS. First, in contrast to EFS, which normalizes
the relevance ranks of variables to a common scale and makes a cumulative ranking, MVFS follows a three-step
procedure, each of which evaluates any variable by taking into accounting (a) the majority voting principle;
(b) the correlation among the variables; and finally (c) the average superiority of one feature selector over the
others previously defined by the user. Secondly, MVFS is made up of Relief-F, mRMR, and MLFS, which are
currently not included in EFS. Differently from the rest of the individual feature selectors implemented in EFS,
Relief-F, mRMR, and MLFS have the merit that in previous studies [4, 5, 26] they have, in general, been shown
to perform with satisfactory performance in creating accurate VO2max models. Finally, in EFS there is no
weighting among the feature selectors. In principle, MVFS also starts with no weighting among the methods;
however, in case the rank decision of a variable cannot be made by the first two steps (i.e. after performing
majority voting and correlation score evaluation), MVFS allows users to prioritize one method over the others
for a variable selection in the last step.

To draw a comparison with the performance of MVFS, we constructed several ensemble feature selectors
using different combinations of individual feature selectors implemented in EFS. With the help of our extensive
experiments, the set of feature selectors leading to the most accurate results for prediction of VO2max has been
determined as the triple ensemble of LogReg, AUC-RF, and PC rankers.

Table 15 shows the average Rs and RMSEs of MVFS-based and EFS-based models developed by using
SVM, GRNN, and SDT. It is seen that considering the results obtained by the three utilized machine learning
methods, MVFS, on average, achieves a PDR of 6.09% in terms of RMSE compared to the EFS algorithm.
Particularly, MVFS-based models developed with SVM have comparatively been found to deliver the highest
PDR with 10.69%. The second place is occupied by GRNN, which yields a PDR of 6.11%. Finally, the lowest
PDR is obtained by SDT, which slightly improves the average accuracy by producing a PDR of 1.47%.

Finally, we compared and evaluated MVFS and EFS in terms of their run times. It is to be noted that
the required run time strongly depends on the selection of individual feature selectors making up the ensemble
rankers. For example, the run time required for MVFS on a commodity computer with Intel Duo Core 3.00 GhZ
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Table 15. Comparing the average results of MVFS-based models with the average ones of EFS-based models using
SVM, GRNN, and SDT.

MVFS EFS
R RMSE R RMSE

SVM 0.86 2.91 0.78 3.26
GRNN 0.81 3.37 0.74 3.59
SDT 0.64 4.51 0.58 4.57

CPU and 4 GB memory depends on MLFS taking a relatively much longer time than Relief-F and mRMR,
lasting approximately 3 min. Similarly, if EFS, consisting of LogReg, AUC-RF, and PC, is applied on the same
dataset, the feature ranking process lasts about 6 min. Nonetheless, given the fact that such feature selection
processes are executed only once for importance measures of variables before model design, execution times in
such magnitudes can be neglected.

6. Conclusion
In this paper, it has been shown that the ensemble nature of the proposed feature selector improves the
performance of model generation on average. Particularly, compared with the results of models created by
individually using the Relief-F, mRMR, and MLFS algorithms, the proposed MVFS-based models resulted in
better performance in terms of the average Rs and RMSEs achieved by SVM, GRNN, and SDT. The performance
of the MVFS algorithm has also been compared with EFS, another alternative ensemble feature selector from
the literature, which was constructed from the LogReg, AUC-RF, and PC rankers. Again, depending on
the utilized machine learning method, the proposed hybrid approach shows its advantages by achieving up to
10.69% performance gain compared to the EFS algorithm for prediction of VO2max. Furthermore, in addition to
reconfirming the relevance of sex, age, and MX-HR in predicting VO2max, which were previously reported in the
literature, two additional variables, namely submaximal heart rates and exercise times at 1.5-mile distance, have
also been found to have an improving effect on the performance of VO2max prediction. Finally, regarding the
ranking among the machine learning methods, SVM unexceptionally exhibits the best performance by yielding
the highest Rs and the lowest RMSEs for all prediction models. GRNN-based models, in turn, occupy the second
place in terms of performance regarding the Rs and RMSEs, whereas the SDT-based models comparatively show
the worst performance for prediction of VO2max.
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