
Turk J Elec Eng & Comp Sci
(2019) 27: 3665 – 3681
© TÜBİTAK
doi:10.3906/elk-1806-132

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Incremental author name disambiguation using author profile models and
self-citations

Ijaz HUSSAIN∗, Sohail ASGHAR
Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan

Received: 18.06.2018 • Accepted/Published Online: 05.06.2019 • Final Version: 18.09.2019

Abstract: Author name ambiguity in bibliographic databases (BDs) such as DBLP is a challenging problem that
degrades the information retrieval quality, citation analysis, and proper attribution to the authors. It occurs when
several authors have the same name (homonym) or when an author publishes under several name variants (synonym).
Traditionally, much research has been conducted to disambiguate whole bibliographic database at once whenever some
new citations are added in these BDs. However, it is more time-consuming and discards the manual disambiguation
effects (if any). Only a few incremental author name disambiguation methods are proposed but these methods produce
fragmented clusters which lower their accuracy. In this paper, a method, called CAND, that uses author profile models
and self-citations for incremental author name disambiguation is proposed. CAND introduces name indices that enhance
the overall system response by comparing the newly inserted references to the indexed author clusters. Author profile
models are generated for the existing authors in BDs which help in disambiguating the newly inserted references. A
comparator function is proposed to resolve the incremental author name ambiguity which utilizes the most strong
bibliometric features such as coauthor, titles, author profile models, and self-citations. Two real-world data sets, one
from Arnetminer and the other from BDBComp, are used to validate CAND’s performance. Experimental results show
that CAND’s performance is overall better than the existing state-of-the-art incremental author name disambiguation
methods.

Key words: Incremental author name disambiguation, author profile models, name indices, self-citations, bibliographic
databases

1. Introduction
Due to a limited number of names or some popular names, different authors may have the same name and
in contrast to this, an author name may be represented in different ways due to different journals/conferences
naming conventions. Author name ambiguities can cause wrong attributions and incorrect search results [1–3].
This is quite common in Asian names, particularly in Chinese and Korean. The methods that resolve these
author name ambiguities are called author name disambiguation (AND) methods. The increased growth of
scientific publications has made the author name ambiguity problem much harder than in the past. Bollen et
al. predicted the substantial growth in coming years for the research articles [4]. In 2010, Jinaha estimated
that until now 50 million research articles have been published, and on average one article per minute is being
published [5].

Hussain et al., in a recent survey of author name disambiguation techniques, pointed out different
challenges in AND methods [6]. One of the major challenges among others is an incremental author name
∗Correspondence: ijazhussain7979@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
3665

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

disambiguation. Citation records are constantly generated and inserted into bibliographic databases (BDs) that
are already disambiguated. Each of these newly inserted references ri should be assigned to their respective
real authors. The majority of existing BDs rerun the whole disambiguation process upon new insertions of
citations which is called batch AND. However, this is infeasible due to three reasons. First, these methods have
scalability issues as they again apply disambiguation algorithms on the whole citation records of these BDs.
Second, these methods are not feasible for supervised disambiguation methods because they need to retrain the
model on each new citation update/insertion. Third and last, they destroy the manual disambiguation effects
which are sometimes necessary for fine-tuning of the disambiguation results.

Although, several AND methods have been proposed (see, for instance, [6]), but the vast majority of those
methods work for batch AND. To the best of our knowledge, there are only three incremental AND methods
[7–9]. These methods resolve only newly inserted articles and are more effective than batch (traditional) AND,
and preserve the manual disambiguation effects (if any).

De Carvalho et al. proposed a solution called “incremental unsupervised name disambiguation in cleaned
digital libraries (INDi)”, which produces very pure clusters on the basis of title and coauthors, but it splits an
author’s papers into many authors [7]. Esperidiao et al. enhanced the INDi by dropping the assumption that
BDs are already cleaned, and proposed five record-selection strategies for newly inserted records in these BDs
and found that a newly inserted record closer to the centroid of the existing disambiguated records called CEN

is best among these [8]. The fragment comparison method is used by Santana et al. to retrieve the relevant
author blocks to the new record [9]. All these methods suffer from fragmentation problem which lowers their
accuracy and compares the new reference to existing clusters by comparing it with all the individual references
in that clusters which is not feasible for larger clusters.

In this paper, we propose and evaluate a novel incremental AND method which creates less fragmented
clusters and improves the accuracy of the method 1. We used our previously proposed batch AND method [10]
as an input to the proposed incremental AND method (CAND), as shown in Figure 1.

In a nutshell, the main contributions of this paper are as follows:

– A blocking-based name index structure that enhances the overall system response is proposed and author
profile models are built, which helps in disambiguating the newly inserted citations,

– A comparison function is presented; this function utilizes the most strong bibliometric features such as
coauthors, titles, author profile models, and self-citations to effectively fuse the newly inserted reference
to the existing cluster/clusters. Self-citations are used for the first time to solve the incremental author
name ambiguity problem. CAND exploits author name indices, author profile models, and a comparison
function to solve the incremental author name ambiguity, and

– Experiments on two real-world data sets are performed to validate the effectiveness of CAND. Experi-
mental results show that CAND is overall better than the existing incremental AND methods.

The rest of the paper proceeds as follows: Some studies related to CAND are described in Section 2,
while CAND architecture is discussed in Section 3. At Section 4, CAND is compared with existing incremental
AND methods. Finally, we conclude the paper and discuss some possible future research directions of our work
at Section 5.

1In terms of clustering metrics (AAP, ACP, and K-metric)

3666

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

Data Extraction

Batch AND Results

Author 1 Author 2 Author 3Author 4

Publications

Comparing

Author 1 +Author 2 Author 3 Author 4 Author 5

Updates

Incremental AND results

Profiling

New records

Indexing

Figure 1. Incremental AND architecture diagram.

2. Related work
Current AND methods can be categorized into two groups: the first are the methods that resolve whole citations
in BDs on new insertions called batch AND and the second are those methods which disambiguate only newly
inserted citations called incremental AND. Similarly, Hussain et al. in [6] proposed a taxonomy for existing
AND methods and divided all methods into supervised [3, 11–13], unsupervised [14–19], semisupervised [20–22],
graph-oriented approaches using graph models or social networks [1, 23–25], and string processing or heuristic-
based methods [26–28]. In this section, we only overview the incremental AND methods. For detailed discussions
about AND methods and AND data sets, interested readers are referred to our recent survey of these techniques
presented in [6] and [29], respectively.

Kim et al. proposed an algorithm which consists of two main steps-data generation and matching
procedure. In the first step, data that are used for feature matching in the later stage are generated. Per
feature matching and clustering is used to generate the training/evaluation data. Experiments are done on the
Web of Science data set and the performances are compared [30].

Carvalho et al. proposed INDi a solution for the existing cleaned BDs. INDi utilizes similarity among
bibliographic records and groups the new records to authors with similar citation records in the BD or to new
authors when the similarity evidence is not strong enough. Heuristics such as titles and coauthors are used for
checking whether references of new citation records belong to preexisting authors of the BD or if they belong
to new ones (i.e. authors without citation records in the BD), avoid running the disambiguation process on the

3667

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

entire BD. They run simulations on BDBComp collection and synthetic data set to assess the effectiveness of
INDi.

Abdulhayoglu and Thijs used Research Gate (RG), connected components, and a graph-based machine
learning approach to form groups of authors. Connected components are compared with research gate retrieved
author pages for the same author. Then, they retained the groups that have at least 10 authors for detailed
examination and employed Google custom search engine API to access the pages of authors for complementing
the research gate pages [31].

Esperidiao et al. improved INDi by proposing a new technique INDi+ which try to overcome fragmen-
tation problem that is present in INDi. Of course, these INDi and INDi+ are more efficient than the batch
(traditional) AND methods, but they clearly lack a balance between purity and fragmentation of author papers.

Santana et al. proposed “Incremental author name disambiguation by exploiting domain-specific heuris-
tics (INC)” that use fragment comparison method for retrieving the relevant author blocks to the new record [9].
They used author names, coauthor names, titles, and venue for similarity calculation between new records and
the retrieved block of records. However, these methods suffer from different problems such as fragmentation,
not handling transitivity problem, how to configure their large set of parameters with limited training data.

Zhao et al. presented a naive Bayes probabilistic model which has three stages. In the first stage, they
initialize a model and if there is no model present in the existing disambiguation results, and then they use high-
precision rules for generating labeled training data. In the second stage, they trained a naive Bayes classifier
for each cluster group. In the third stage, clusters that achieve top posterior probabilities are matched with
coauthor similarities for predicting its class. This method creates very pure but fragmented clusters [32].

X

Y Z

Co-Authors Co-Authors

Figure 2. Transitivity problem.

In contrast to existing related methods, CAND uses author profile models, self-citations, and requires no
training. CAND compares new ambiguous record to a set of records (clusters) as a whole, so CAND does not
suffer from transitivity problem. When there are three or more papers where paper “A” is written by author
“X” and author “Y”, paper “B” is written by author “X” and author “Z”, and another paper is written by
author “Y” and author “Z”, in the first two papers, we are not sure that author “X” in the first paper and
author “X” in the second paper are the same. This is called transitivity problem as there is no direct relationship
between these two authors, but indirect relationship via their coauthors as shown in Figure 2. Generally, in
AND domain two papers are compared at a time and hence those methods are unable to solve this problem.
CAND compares new papers with an existing cluster. Therefore, it does not suffer from transitivity problem.
CAND is similar to INDi, INDi+, and INC as these methods use coauthors, and titles for disambiguation. A
comparison of CAND with state-of-the-art methods is given in Table 1.

3668

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

Table 1. A comparison between CAND and other related works (Ref. is Reference, Inc. is Incremental).

Ref. Inc. Methodology Dataset Evidence used Capability Limitations
[30] No Triangulation approach DBLP Automatic combined with

manual labeling
Both Manual labeling is time-

consuming and compared
with baseline algorithms.

[31] No Research Gate and Google
custom search engine were
compared with clustering
results.

Web of Science
Core Collection

Research Gate Profile and
Google Scholar pages

Homonyms External web accesses
make it slow.

[32] Yes A probabilistic naive
Bayes model that simul-
taneously uses a rich set
of metadata and reduces
the amount of pairwise
comparisons needed for
new articles.

Web of Science Authors, coauthors, e-
mail, self-citation, middle
initial with subject, exact
citation and exact venue.

- Parameter sweeping is uti-
lized.

[33] No High-precision rules are
used for generating initial
training instances for the
training of the supervised
method.

QIAN, Arnetminer ORCIDs linkage, e-mail
address, authors, coau-
thors, citations

Homonyms Performance of the pro-
posed method relies on
the availability of match-
ing features.

[9] Yes Fragment comparison
method

KISTI,
SyGar,BDBComp

Authors, coauthors, e-
mail and venue.

Homonyms Fragmentation, not han-
dling transitivity problem,
how to configure their
large set of parameters
with limited training data

[8] Yes AND heuristic such as
similar titles and coau-
thors are used.

BDBComp, SyGar Titles and coauthors - Fragmented clusters.

CAND Yes Author profile model com-
bined with heuristics and
self-citation.

Arnetminer, BDB-
Comp

Authors, coauthors, titles,
self-citations, author sig-
natures.

Both Cannot handle the case of
very ambiguous authors.

3. The proposed system: CAND

CAND consists of the following main modules: index creator, authors profile builder, data extractor, and
comparator, as shown in Figure 1. There are two inputs to the CAND algorithm. The first one is the
disambiguated results using the batch AND, and the second is the incremental updates of publications received
from different publishing venues. CAND assumed that at the start the BD is disambiguated. Thus, we use the
output of our previously proposed batch AND method as an input to CAND [10]. It is worth to note that the
batch AND method is applied only once and in subsequent citation loads, only the CAND algorithm is used for
disambiguation.

3.1. Indices creator
Author node consists of node ID, node name, and node publications. All author names are parsed into two
components: first name and last name. We index all these names using the last names of the authors. This
index is important for efficient retrieval of the results, and it improves the overall performance of the system.
The structure of the author name index is shown in Figure 3.

Author names are divided into first name and last name. Indices are created using the last name of the
authors, for example, Akram Abay and Altaf Abay would go into the same block “Abay, A” as shown in Figure
3. Any name having more than two name parts is also divided into the same two name parts (tokens). In this

3669

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

Last name index

Abay, A Hussain, I Zain, H

Abay,

Akram
Abay, Altaf Abay, Amir Zain, Hassan Zain, HussainAbay, Aziz

Figure 3. A blocking-based author names index structure.

indexing, Akram Abay in that block precedes Altaf Abay because the first name in Akram Abay alphabetically
comes before that in Altaf Abay.

3.2. Authors profile builder

Disambiguated results are clusters of nodes (authors) in coauthor’s graph. As mentioned in the previous
section, the author node consists of node ID, node name, node publications. All author names are parsed into
two components: first name and last name. We index all these names according to the proposed index in Section
3.1, using the last names of the authors.

When there is a huge number of existing authors, there is a very high probability that the new author
belongs to some of the existing authors. The same intuition is used for other features of the citations like
coauthors, titles, self-citations, and references. For example, an author usually publishes one’s research with a
specific set of coauthors, in certain venues, on certain topics, and self-cites very often [34]. According to a recent
study conducted by King et al., 9.4% of all citations are self-citations [35]. Snyder and Bonzi estimated the
pattern of self-citations in different disciplines and found that self-citation in physical sciences (15%) is larger
than in social sciences (6%) and humanities (3%) [36]. In the light of these facts, we assume that self-citation
may be a strong feature for author disambiguation.

Following these intuitions, we build a set of candidate author profile models, which we call author profile
models. Recall from the preceding paragraphs that these author profile models have author names, set of
coauthors, titles feature vectors, set of venues, and set of references. For example, we take an author Akram
Abay, which is already disambiguated (batch AND) with the help of algorithms presented in [10]. Our batch
AND algorithms keep a record of publications that belong to author Akram Abay. With these pieces of
information, we can easily build the profiles of candidate authors that are equivalent (or similar) to the newly
inserted authors. Figure 3 shows the structure of these author profiles. These profiles act as an author’s
signature and help to disambiguate authors.

3.3. Data extractor
When a number of new citations are inserted in BDs, citation records that are composed of a set of attributes
such as authors, coauthors, titles, venues, and references of the papers are tokenized. These newly inserted
records need disambiguation and assignment to their respective clusters. CAND takes these records one by one
and retrieves a set of equivalent (similar) author profiles from the already disambiguated BDs. CAND constructs
keyword feature vectors from the citation title words for comparison among author’s research interests. In this
research, it is assumed that such keyword feature vectors represent the author’s research interests, at least

3670

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

Author Index Profile (Author)

Aaby, Aamir

Aaby, Ajaz

Abay, Akram

:

:

...

:

:

:

:

:

Co-authors List Titles FV Venues FV References List

Co-authors List Titles FV Venues FV References List

:

:

:

:

:

:
Co-authors List Titles FV Venues FV References List

Sohail Asghar, Muhammad Riaz, Muhammad

Rehan, Shakeel Ahmad, Mohsin Sattar,

Muhammad Ibrahim, Maryam Choudary

Author name disambiguation, homonym resolution,

synonym resolution, graph structural clustering,

semantic similarity, entity resolution, record linkage

Frontiers of information technology,

Knowledge engineering review, Journal of information

science, Turkish journal of electrical engineering and

computer science, Arabian journal of science

#%945584, #%2842290, #%6205546, #%6270759,

#%564877, #%5624235, #%5944847, #%4799177,

#%5866408, #%9664584, #%28662290, #%6056546,

#%564877, #%5642375, #%59487447, #%47917667

...

...
Aaby, A

:

:

:

:

Zhu, Z

:

:

:

:

Figure 4. Author profiles from disambiguated BDs.

partially. However, such kind of title feature vector construction demands preprocessing the title words. In the
titles, some words that are called stop words, for example, ‘a’, ‘an’,‘the’, ‘for’, ‘and’,‘of’,‘that’, are removed.
These words usually do not carry any semantic information and are frequently used in titles. In addition,
the remaining title keywords are stemmed. For example, the word “deputation” is transformed into the stem
“deput” by a stemmer. An advantage of the stemming is that all morphological variants are transformed to the
base word. Hence, it considerably reduces the dimensions of the feature vectors. CAND uses standard English
Stop Word list, and Porter stemmer [37] for stemming.

3.4. Comparator

Given a set of candidate clusters and a new record, there are three possibilities that the newly inserted record
either belongs to a candidate cluster or to more than one candidate clusters, or does not belong to any of the
candidate clusters. Figure 5 illustrates an example of possible ways of assignments of new reference record to
existing record of clusters. In the first case, the new record is merged with the equivalent (or similar) cluster
and author profile is updated accordingly while in the second case, all the equivalent (or similar) clusters are
merged into one cluster along with the new record, and author profiles are updated. When it is established
with the help of the CAND algorithm that the new record does not belong to any existing cluster, then a new
cluster is generated, and its author profile is built and saved for further disambiguation.

The pseudocode of the incremental author name ambiguity resolver algorithm is given in Algorithm 1.
The algorithm starts with the preprocessing of the newly inserted citations as described in Section 3.3 of this
paper (line 1). CAND retrieves the equivalent (or similar) author clusters to the newly inserted author in the
cleaned BDs clusters and builds their profiles. These profiles are built and indexed for each cluster according
to the procedures given in Sections 3.2 and 3.1, respectively. If there is no equivalent (or similar) cluster in
the cleaned BDs, then a new cluster of the newly inserted reference is created and inserted in the cleaned BDs

3671

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

Author 1 Author 2 Author 3 Author 4

Author 1 +Author 2 Author 3 Author 4 Author 5

CAND Algorithm
1. Merge with a cluster 2. Merge with two or more existing clusters 3. Make new clusters

New records Existing Clusters

Case 2

Case 1

Case 3

Figure 5. An example of new reference assignment to existing clusters.

(lines 2–11). Upon finding equivalent (or similar) clusters with respect to the newly inserted reference record
using Jaro similarity as given in Equation 1 [38], CAND tests two conditions between all the clusters and the
newly inserted records.

d(n1,n2) =
1
3 ∗

(
c

n1
+

c
n2

+
c−m

c

)
, (1)

where c is the number of common characters in two name strings. A character that is considered a common
character at position i in the string n1 has to be within the H window of the equivalent jth character in the

string n2 . Here H =
⌊

max(|n1|,|n2|)
2

⌋
− 1 . Similarly, m is equal to the number of characters matched from the

window but not at the same index divided by 2.
There are more than one similar coauthors present between the equivalent (or similar) cluster Acj and

newly inserted paper Ai using Equation 2:

Coauth (Ai, Acj) =
|Ai ∩Acj |

min(|Ai|, |Acj |)
. (2)

The ∩ along with the enclosing || -operator finds the number of common coauthors. The second condition
is that we find the self-citations using Equation 3, when the newly inserted paper cites some paper from the
existing clusters.

3672

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

Algorithm 1: CAND:Proposed Incremental AND Algorithm
Data: Existingset of clusters C,A set of records R
Result: Set of disambiguated clusters DC

1 R′ ←− Preprocess Records(R)

2 DC ←− 0

3 for refrence r ∈ R′ do
4 C ′ ←− Get Similar Clusters(C , r)

5 C ′′ ←− Build Author Profiles(C ′ , r)

6 P ←− Load Profiles(C ′′ , r)

7 if P == null then
8 c←− create new cluster()

9 DC ←− C ∪ c

10 Update(DC)

11 end
12 for cluster p ∈ P do
13 if p.coauthors ∩ r.coauthors ⩾ 1 and Sim(PFV , rFV) > 0.1

14 or r cites p.publications

15 then
16 p = p ∪ r

17 DC ←− C ∪ p

18 Update(DC)

19 end
20 else
21 c←− Create new Cluster(r)

22 DC ←− DC ∪ c

23 Update(DC)

24 end
25 end
26 end
27 returnUpdatedClusters DC

Selfcit =

n∑
j=1

(Pi ∩Rcj) . (3)

Feature vectors of titles are generated for all the papers in the data set. The similarity between the newly
inserted paper title feature vector and cluster feature vector is found using Equation 4. The similarity index,

Similarity (Afv, Bfv) =
Afv ∩Bfv

max |(Afv, Bfv)|
(4)

between these titles feature vectors is used for comparison between cluster and newly inserted paper. If any
condition satisfies then CAND merges that newly inserted paper to the existing cluster and updates the cluster
(lines 12–19). When these conditions are not satisfied, then a new cluster for the newly inserted paper is created
and set of clusters is updated accordingly. At the end, a set of updated clusters is returned (lines 20–27).

3673

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

4. Experiments and results

In this section, the performance of CAND is compared with two incremental AND techniques using Arnetminer
and BDBComp in the form of clustering evaluation metrics. We used these data sets because they have citation
information along with other attributes used in CAND and are open source data sets.

4.1. Data sets and evaluation measures
Tang et al. created Arnetminer data set from DBLP, ACM, and Microsoft academic graph, and other sources.
Arnetminer has 629,814 papers and more than 632,752 citation relationships. It is organized into 600,000 blocks,
one for each paper. Further details of Arnetminer can be viewed online at https://aminer.org/data. CAND
uses only coauthors, titles, and citations for the complete solution of the incremental author name ambiguity
problem.

BDBComp is a relatively small data set of 363 records belonging to 184 distinct authors, but it is very
difficult to disambiguate as majority of the authors have only one or two citation records. BDBComp statistics
are given in Table 2 and this collection also has been frequently used in similar AND studies [7, 8, 25].

Table 2. Details of BDBComp data set.

S No. Name No. of citation records No. of ambiguous authors
1 A. Oliveira 52 16
2 A. Silva 64 32
3 F. Silva 26 20
4 J. Oliveira 48 18
5 J. Silva 36 17
6 J. Souza 35 11
7 L. Silva 33 18
8 M. Silva 21 16
9 R. Santos 20 16
10 R. Silva 28 20

We analyze the citations per author, which is also called the diversity of the data set. It is obtained by
clustering the names of the authors in citations’ data set. In Figure 6, the left figure shows the distribution of
BDBComp, where 74.3% of the authors have published one paper. In contrast to this, in Arnetminer (right
figure), 48.2% of the authors published only one paper.

Three clustering metrics, namely author cluster purity (ACP), Author average purity (AAP), and K-
metric (K) as given in Equation 5, are used for evaluation of CAND [1, 9, 10].

ACP =
1

N

R∑
r=1

S∑
s=1

n2
rs

nr
, AAP =

1

N

S∑
s=1

R∑
r=1

n2
rs

ns
,K =

√
ACP ∗AAP, (5)

where N is total number of references in ambiguous group, R is empirical clusters, S is ground truth clusters,
nrs is total references which are present in both empirical and in ground truth clusters, and nr is total references
present in empirical clusters.

3674

https://aminer.org/data

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

4.2. Baseline methods
We found three incremental AND methods in the literature: INDi [7], reducing fragmentation in incremental
author name disambiguation (INDi+) [8], and INC [9]. We choose these methods as baselines to compare with
CAND because these are the state-of-the-art incremental AND methods and are closely related to our method.

Decarvalho et al., in [7], proposed INDi as a solution for the existing cleaned BDs. INDi utilized similarity
between bibliographic records and groups of the records of authors with similar citation records in the BD or
to new authors when the similarity evidence is not strong enough. INDi used coauthors, titles, and venues
heuristics for checking whether references of new citation records belong to preexisting authors, or to new
ones (i.e. authors without citation records in the BD). However, INDi suffered from two problems: first, it
created fragmented clusters of authors (i.e. records of the equivalent author is split into multiple groups), and
second, it could not handle the transitivity problem. Esperidiano et al., in [8], dropped the assumption that
the existing BDs are cleaned, and they tried to merge the fragmented clusters that were produced by INDi.
They also proposed different selection criteria to improve the cluster purity. Their strategy, which compared
the newly inserted record with only the leading cluster record that is the closest to the centroid of each cluster,
is considered the best overall performance in their experiments. We call this INDi+ and use this for comparison
because it is an improved version of INDi. We set its parameters as αtitle = 0.01 , αvenue = 0.1 and δ = 0.6 .

x = 1

74.3%

1 < x < = 10

21.4%

10 < x < = 100 and 0.2

4.1%

x = 1

48.2%

1 < x < = 10

43.9% 10 < x < = 100 and 0.3

7.6%

Figure 6. Author’s citation distribution of BDBComp (left) and Arnetminer (right).

Recently, Santana et al., in [9], proposed INC that used fragment comparison method for retrieving the
relevant author blocks to the new record, and then used author names, coauthor names, titles, and venue for
similarity calculation between new records and the retrieved block of records. We use its best parameter values
and set them as Wa = 3,Wc = 3,Wt = 1,Wv = 1 and γ = 2 .

4.3. Experimental results and discussion

We used an incremental load from each year starting from 1987 to 2007. In 1987, whole BD was disambiguated
using the batch AND algorithm proposed by us [18], whereas, for subsequent loads after 1987, CAND is used
for each new year. Figure 7 shows CAND’s performance on Arnetminer.

As seen in this figure, fragmentation is extremely low from 1987 to 1990 and from 2003 to 2007, but there
is a slight decrease in between these two periods. Purity remains very high throughout 1987 to 2007, as it is one

3675

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

of the desirable characteristics of AND methods because in the later stages it is difficult or even impossible to
split the merging error. At the end of the twenty-one-year period, the values of K, ACP, and AAP for CAND
are 0.89, 0.87, and 0.92, respectively. On the other hand, as seen in Figure 8, purity is declining throughout the
period from 1987 to 2007.

Fragmentation value is relatively stable and almost equal to the purity of CAND on Arnetminer. K,
ACP, and AAP are 0.89, 0.78, and 0.83, respectively, for CAND using BDBComp at the end of the experiment.
Another important aspect of the results is that CAND performance on Arnetminer is relatively higher, and in a
narrower band than on BDBComp. We suspect that this is due to the fact that on average 56% of publications
belong to new authors in BDBComp, whereas in Arnetminer only 34% belong to new authors. It is highly
probable that the new inserted reference may be merged with some of the existing clusters.

1, 990 1,995 2,000 2, 005
0.4

0.6

0.8

1

Publications Load Year

V
a
lu

e

ACP

AAP

K-metric

1,990 1,995 2,000 2,005
0.4

0.6

0.8

1

Publications Load Year

V
a
lu

e

ACP

AAP

K-metric

Figure 7. ACP, AAP, and K-metric performance evalua-
tion of CAND on Arnetminer.

Figure 8. ACP, AAP, and K-metric performance evalua-
tion of CAND on BDBComp.

Table 3 lists results using CAND, INDi+, and INC on Arnetminer for the period from 1987 to 2007.
CAND achieves overall better performance than competing techniques during the whole period from 1987 to
2007. At the end of the twenty-one-year period, CAND achieves 14% and 11% higher value than INDi+ and
INC in K metric using Arnetminer, respectively.

Similarly, Table 4 shows ACP, AAP, and K-metric of CAND, INDi+ and INC on BDBComp. CAND
compares the new records with only the equivalent (or similar) cluster not with all the records in that cluster,
so it improves the running time compared to INDi+ and INC, which compare the newly inserted reference to
all the existing records. In general, ACP of CAND is higher than AAP because CAND produces pure clusters.
CAND achieves overall better performance compared to INDi+ and INC during the whole period. At the
end of the twenty-one-year period, CAND achieves 11% and 4% higher than INDi+ and INC in K-metric on
BDBComp, respectively.

As seen, overall results of the CAND using Arnetminer are higher than the results of BDBComp. CAND
performance using BDBComp is 6% less than Arnetminer. There are two main reasons behind this: first, in
BDBComp on average 56% of the publications belong to new authors and the majority of authors has published
only one article.

3676

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

Table 3. Performance Evaluation of CAND, INDi+, and INC for each year starting from 1987 to 2007 on Arnetminer
Collection

Arnetminer
CAND INDi+ INC
Year ACP AAP K ACP AAP K ACP AAP K
1987 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1988 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.96 0.96
1989 0.99 0.99 0.99 0.98 0.96 0.97 0.96 0.95 0.95
1990 0.98 0.94 0.96 0.97 0.93 0.95 0.95 0.94 0.94
1991 0.98 0.93 0.95 0.97 0.92 0.94 0.95 0.95 0.95
1992 0.97 0.92 0.94 0.96 0.91 0.93 0.94 0.94 0.94
1993 0.97 0.91 0.94 0.95 0.90 0.92 0.92 0.93 0.92
1994 0.97 0.92 0.94 0.94 0.89 0.91 0.91 0.93 0.92
1995 0.96 0.91 0.93 0.93 0.87 0.90 0.91 0.92 0.91
1996 0.96 0.92 0.94 0.94 0.86 0.90 0.89 0.91 0.90
1997 0.96 0.89 0.92 0.92 0.85 0.88 0.87 0.90 0.88
1998 0.95 0.88 0.91 0.92 0.84 0.88 0.86 0.89 0.87
1999 0.94 0.89 0.91 0.91 0.83 0.87 0.85 0.89 0.87
2000 0.93 0.90 0.91 0.91 0.82 0.86 0.84 0.90 0.87
2001 0.92 0.88 0.90 0.91 0.81 0.86 0.82 0.91 0.86
2002 0.92 0.88 0.90 0.91 0.79 0.85 0.81 0.89 0.85
2003 0.91 0.89 0.90 0.91 0.78 0.84 0.80 0.87 0.83
2004 0.92 0.89 0.90 0.90 0.76 0.83 0.80 0.85 0.82
2005 0.92 0.88 0.90 0.90 0.74 0.82 0.79 0.83 0.81
2006 0.92 0.88 0.90 0.89 0.73 0.81 0.79 0.83 0.81
2007 0.92 0.87 0.89 0.88 0.70 0.78 0.79 0.82 0.80

The reason why CAND has better results than INDi+ and INC is that it exploits strong features;
coauthors, content similarity, and self-citations. As INDi+ uses coauthor, titles, and venue similarity, some
wrong merges and split of the publications on the basis of these similarities may occur. Although INC tries
to improve the accuracy by comparing the new records with the similar existing records, they used the same
coauthors, titles, and venues similarities, which did not improve the performance of the system because of the
absence of discriminating training data.

CAND consists of four main stages in which building author profiles is a rather time-consuming step as
compared to the other steps. However, it is worth noting that this is a one time process. Once the profiles of the
authors are built, they are saved for subsequent retrievals and comparisons. CAND compares newly inserted
records to similar clusters in contrast to all records, which is more efficient than competing methods. Table 5
shows the running times of the three incremental disambiguation methods using Arnetminer and BDBComp.
All experiments were performed on a personal computer with Intel(R) Core(TM)i7-5200U CPU @ 2.20 GHz
2.20 GHz and 8 GB memory and all methods were implemented using Python 3.6.4. All times are an average
run time of the twenty-one runs given in seconds.

3677

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

Table 4. Performance evaluation of CAND, INDi+, and INC for each year starting from 1987 to 2007 on BDBComp

BDBComp
CAND INDi+ INC
Year ACP AAP K ACP AAP K ACP AAP K
1987 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1988 0.98 0.94 0.96 0.96 0.98 0.97 0.97 0.96 0.96
1989 0.97 0.93 0.95 0.96 0.96 0.96 0.96 0.94 0.95
1990 0.97 0.92 0.94 0.95 0.93 0.94 0.98 0.92 0.95
1991 0.96 0.92 0.94 0.94 0.92 0.93 0.97 0.90 0.93
1992 0.96 0.91 0.93 0.93 0.91 0.92 0.95 0.90 0.92
1993 0.95 0.89 0.92 0.92 0.90 0.91 0.95 0.90 0.92
1994 0.94 0.88 0.91 0.90 0.89 0.89 0.96 0.89 0.92
1995 0.94 0.87 0.90 0.91 0.87 0.89 0.94 0.88 0.91
1996 0.94 0.86 0.90 0.87 0.86 0.86 0.95 0.88 0.91
1997 0.93 0.84 0.88 0.88 0.85 0.86 0.93 0.87 0.90
1998 0.94 0.83 0.88 0.87 0.84 0.85 0.97 0.86 0.91
1999 0.94 0.82 0.88 0.86 0.83 0.84 0.96 0.85 0.90
2000 0.92 0.82 0.87 0.85 0.82 0.83 0.94 0.85 0.89
2001 0.92 0.81 0.86 0.82 0.81 0.81 0.92 0.84 0.88
2002 0.90 0.80 0.85 0.80 0.80 0.80 0.91 0.82 0.86
2003 0.90 0.80 0.85 0.79 0.79 0.79 0.90 0.80 0.85
2004 0.90 0.79 0.84 0.77 0.77 0.77 0.90 0.79 0.84
2005 0.90 0.79 0.84 0.76 0.77 0.76 0.89 0.78 0.83
2006 0.89 0.78 0.83 0.75 0.77 0.76 0.88 0.76 0.82
2007 0.89 0.78 0.83 0.74 0.77 0.75 0.87 0.74 0.80

Table 5. Running times comparison among CAND, INDi+, and INC on Arnetminer and BDBComp.

Method
Data Set CAND INDi+ INC
Arnetminer 434.098± 20.054 684.847± 34.524 875.421± 43.867

BDBComp 0.296 ± 0.087 0.387 ± 0.094 0.514 ± 0.108

As seen in Table 5, INC is the slowest among all the methods on both data sets. INC calculates prior
probability distributions of all the attributes which is a time consuming step. CAND is faster than the other
techniques due to its indexing structure and comparing newly inserted records with the same clusters (not
all records). CAND is about 1.6 to 2.1 times faster than INDi+ and INC, respectively. CAND fails on very
ambiguous authors cases as an example is given in Table 6. In different citations, if two ambiguous authors share
ambiguous coauthors, then these ambiguous authors are called very ambiguous authors as shown in Table 6,
the first two publications belong to two different “Chun Chen” and “Bing Liu” and last two ambiguous authors
“Chuen-Liang Chen” and “C. Chen” share ambiguous coauthors “Biing-Feng Wang” and “B. Wang”.

3678

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

Table 6. A very ambiguous author case.

Publications
Citation Id Authors Title of Publication
C1 Chun Chen, Guang Qiu, Jiajun Bu, Bing

Liu
Expanding domain sentiment lexicon
through double propagation

C2 Robert F. Lucas, Mary W. Hall, Jacqueline
Chame, Chun Chen, Nastaran Baradaran,
Yoon-Ju Lee, Bing Liu, Pedro C. Diniz

ECO: An empirical-based compilation and
optimization system

C3 Chuen-Liang Chen, Biing-FengWang,
Gen-Huey Chen

A Simple Approach to Implementing Mul-
tiplication with Small Tables

C4 C. Chen, Yang Xiao, B.Wang Bandwidth Degradation QoS for Adaptive
Multimedia inWireless/Mobile Networks

5. Conclusions and future work
Self-citations and author profiles are little or never used in the domain of author name disambiguation. In
this paper, we propose CAND, which solves the incremental author name ambiguity problem in ever-growing
BDs using coauthors, titles, author profile models, and self-citations. CAND is an unsupervised method that
neither require costly training data nor a priori hidden information such as the number of ambiguous authors.
CAND performance is tested on two real-world benchmark data sets of Arnetminer and BDBComp. It shows
overall better results than incremental baseline techniques. CAND delivers an effective (in term of clustering
metrics) solution to the incremental author name ambiguity problem by using coauthors, content similarity, and
citation networks. In the future, we intend to use some strategies to automatically find thresholds for different
parameters of CAND.

Acknowledgment

We are thankful to Higher Education Commission (HEC) of Pakistan for partial funding of this research under
the Indigenous fellowship 2PS2-566.

References

[1] Shin D, Kim T, Choi J, Kim J. Author name disambiguation using a graph model with node splitting and merging
based on bibliographic information. Scientometrics 2014; 100(1): 15-50. doi: 10.1007/s11192-014-1289-4

[2] Han H, Xu W, Zha H, Giles CL. A hierarchical naive Bayes mixture model for name disambiguation in author
citations. In: Proceedings of the 2005 ACM symposium on Applied computing; Santa Fe, NM, USA; 2005. pp.
1065-1069.

[3] Han D, Liu S, Hu Y, Wang B, Sun Y. Elm-based name disambiguation in bibliography. World Wide Web 2015; 18
(2): 253-263. doi: 10.1007/s11280-013-0226-4

[4] Bollen J, Rodriguez MA, Van de Sompel H, Balakireva LL, Hagberg A. The largest scholarly semantic network
ever. In: Proceedings of the 16th international conference on World Wide Web 2007; Banff, Alberta, Canada. pp.
1247-1248.

[5] Jinha AE. Article 50 million: an estimate of the number of scholarly articles in existence. Learned Publishing 2010;
23(3): 258-263. doi: 10.1087/20100308

3679

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

[6] Hussain I, Asghar S. A survey of author name disambiguation techniques: 2010–2016. Knowledge Engineering
Review 2017; 32. doi: 10.1017/S0269888917000182

[7] De Carvalho A P, Ferreira A A, Laender A H, Gon calves M A. Incremental unsupervised name disambiguation in
cleaned digital libraries. Journal of Information and Data Management 2011; 2(3): 289.

[8] Esperidiao LVB, Ferreira AA, Laender AH, Goncalves MA, Gomes DM et al. Reducing fragmentation in incremental
author name disambiguation. Journal of Information and Data Management 2014; 5 (3): 293.

[9] Santana AF, Gonçalves MA, Laender AH, Ferreira AA. Incremental author name disambiguation by exploiting
domain-specific heuristics. Journal of Association of Information Science and Technology 2017; 68(4): 931-945. doi:
10.1002/asi.23726

[10] Hussain I, Asghar S. DISC: Disambiguating homonyms using graph structural clustering. Journal of Information
Science 2018; Journal of Information Science, 44(6), 830-847. doi: 10.1177/0165551518761011

[11] Wang J, Berzins K, Hicks D, Melkers J, Xiao F et al. A boosted-trees method for name disambiguation. Sciento-
metrics 2012; 93 (2): 391-411. doi: 10.1007/s11192-012-0681-1

[12] Tran HN, Huynh T, Do T. Author name disambiguation by using deep neural network. In: Asian Conference on
Intelligent Information and Database Systems 2014; Cham; 2014. pp. 123-132.

[13] Shoaib M, Daud A, Khiyal M. Improving Similarity Measures for Publications with Special Focus on Author Name
Disambiguation. Arabian Journal for Science and Engineering 2015; 40(6) : 1591-1605. doi: 10.1007/s13369-015-
1636-7

[14] Tang J, Fong AC, Wang B, Zhang J. A unified probabilistic framework for name disambiguation in digital library.
IEEE Transactions on Knowledge and Data Engineering 2012; 24 (6): 975-987. doi: 10.1109/TKDE.2011.13

[15] Cota RG, Ferreira AA, Nascimento C, Gonçalves MA, Laender AH. An unsupervised heuristic-based hierarchical
method for name disambiguation in bibliographic citations. Journal of the American Society for Information Science
and Technology 2010; 61(9): 1853-1870. doi: 10.1002/asi.21363

[16] Wu H, Li B, Pei Y, He J. Unsupervised author disambiguation using dempster-shafer theory. Scientometrics 2014;
101 (3): 1955-1972. doi: 10.1007/s11192-014-1283-x

[17] Hussain I, Asghar S. Resolving namesakes using the author’s social network. Turkish Journal of Electrical Engi-
neering & Computer Science 2018; 26(1): 554-569. doi:10.3906/elk-1702-293

[18] Hussain I, Asghar S. Author name disambiguation by exploiting graph structural clustering and hybrid similarity.
Arabian Journal for Science and Engineering 2018; 1-17. doi: 10.1007/s13369-018-3099-0

[19] Onodera N, Iwasawa M, Midorikawa N, Yoshikane F, Amano K et al. A method for eliminating articles by
homonymous authors from the large number of articles retrieved by author search. Journal of the American Society
for Information Science and Technology 2011; 62 (4): 677-690. doi: 10.1002/asi.21491

[20] Imran M, Gillani S, Marchese M. A real-time heuristic-based unsupervised method for name disambiguation in
digital libraries. D-Lib Magazine 2013; 19 (9): 1. doi: 10.1045/september2013-imran

[21] Zhu J, Yang Y, Xie Q, Wang L, Hassan SU. Robust hybrid name disambiguation framework for large databases.
Scientometrics 2014; 98 (3): 2255-2274. doi: 10.1007/s11192-013-1151-0

[22] Louppe G, Al-Natsheh HT, Susik M, Maguire EJ. Ethnicity sensitive author disambiguation using semi-supervised
learning. In: International Conference on Knowledge Engineering and the Semantic Web 2016; Springer, Cham,
2016. pp. 272-287.

[23] Fan X, Wang J, Pu X, Zhou L, Lv B. On graph-based name disambiguation. Journal of Data and Information
Quality 2011; 2 (2): 10. doi: 10.1145/1891879.1891883

[24] Wang X, Tang J, Cheng H, Philip SY. Adana: Active name disambiguation. In: 2011 IEEE 11th International
Conference on Data Mining 2011 (ICDM); IEEE Vancouver, BC, Canada. pp. 794-803.

3680

HUSSAIN and ASGHAR/Turk J Elec Eng & Comp Sci

[25] Levin FH, Heuser CA. Evaluating the use of social networks in author name disambiguation in digital libraries.
Journal of Information and Data Management 2010; 1(2): 183.

[26] Pereira DA, Ribeiro-Neto B, Ziviani N, Laender AH, Gonçalves MA et al. Using web information for author name
disambiguation. In: Proceedings of the 9th ACM/IEEE-CS joint conference on Digital libraries 2009 (JCDL);
Austin, TX, USA. pp. 49-58.

[27] Veloso A, Ferreira AA, Gonçalves MA, Laender AH, Meira Jr W. Cost-effective on-demand associative author name
disambiguation. Information Processing & Management 2012; 48(4):680-697. doi: 10.1016/j.ipm.2011.08.005

[28] Wu J, Ding X H. Author name disambiguation in scientific collaboration and mobility cases. Scientometrics 2013;
96(3): 683-697. doi: 10.1007/s11192-013-0978-8

[29] Müller M C, Reitz F, Roy N. Data sets for author name disambiguation: an empirical analysis and a new resource.
Scientometrics 2017;111(3):1467-1500. doi: 10.1007/s11192-017-2363-5

[30] Kim J. Evaluating author name disambiguation for digital libraries: a case of DBLP. Scientometrics. 2018; 116(3):
1867-1886. doi: 10.1007/s11192-018-2824-5

[31] Abdulhayoglu MA, Thijs B. Use of ResearchGate and Google CSE for author name disambiguation. Scientometrics
2017; 111(3): 1965-1985. doi: 10.1007/s11192-017-2341-y

[32] Zhao Z, Rollins J, Bai L, Rosen G. Incremental author name disambiguation for Scientific Citation Data. In: IEEE
International Conference on Data Science and Advanced Analytics (DSAA) 2017; Tokyo, Japan 2017. pp. 175-183.

[33] Kim J, Kim J, Owen-Smith J. Generating automatically labeled data for author name disambiguation: an iterative
clustering method. Scientometrics 2018; 1-28. doi: 10.1007/s11192-018-2968-3

[34] Hellsten I, Lambiotte R, Scharnhorst A, Ausloos M. Self-citations, co-authorships and keywords: a new approach
to scientists’ field mobility?. Scientometrics 2007; 72(3): 469-486. doi: 10.1007/s11192-007-1680-5

[35] King MM, Bergstrom CT, Correll SJ, Jacquet J, West JD. Men set their own cites high: Gender and self-citation
across fields and over time. Socius 2017; 3: 2378023117738903. doi: 10.1177/2378023117738903

[36] Snyder H, Bonzi S. Patterns of self-citation across disciplines (1980-1989). Journal of Information Science 1998;
24(6): 431-435. doi: 10.1177/016555159802400606

[37] Porter MF. An algorithm for suffix stripping. PROGRAM 1980; 14(3): 130-137. doi: 10.1108/eb046814

[38] Jaro MA. Advances in record-linkage methodology as applied to matching the 1985 census of Tampa, Florida.
Journal of the American Statistical Association 1989; 84(406): 414-420. doi: 10.1080/01621459.1989.10478785

3681

	Introduction
	Related work
	The proposed system: CAND
	Indices creator
	Authors profile builder
	Data extractor
	Comparator

	Experiments and results
	Data sets and evaluation measures
	Baseline methods
	Experimental results and discussion

	Conclusions and future work

