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Abstract: In recent times, much research is progressing forward in the field of speech emotion recognition (SER). Many
SER systems have been developed by combining different speech features to improve their performances. As a result, the
complexity of the classifier increases to train this huge feature set. Additionally, some of the features could be irrelevant
in emotion detection and this leads to a decrease in the emotion recognition accuracy. To overcome this drawback, feature
optimization can be performed on the feature sets to obtain the most desirable emotional feature set before classifying
the features. In this paper, semi-nonnegative matrix factorization (semi-NMF) with singular value decomposition (SVD)
initialization is used to optimize the speech features. The speech features considered in this work are mel-frequency
cepstral coefficients, linear prediction cepstral coefficients, and Teager energy operator-autocorrelation (TEO-AutoCorr).
This work uses k-nearest neighborhood and support vector machine (SVM) for the classification of emotions with a
5-fold cross-validation scheme. The datasets considered for the performance analysis are EMO-DB and IEMOCAP. The
performance of the proposed SER system using semi-NMF is validated in terms of classification accuracy. The results
emphasize that the accuracy of the proposed SER system is improved remarkably upon using the semi-NMF algorithm
for optimizing the feature sets compared to the baseline SER system without optimization.

Key words: Speech emotion recognition, spectral, Teager energy operator, feature fusion, semi-nonnegative matrix
factorization, k-nearest neighborhood, support vector machine

1. Introduction
Speech emotion recognition (SER) is the process of detecting the emotional state of a speaker from speech
signals. The field of emotion recognition has gained a lot of interest in human–computer interaction these
days, and much research is going on in this area using different feature extraction techniques and machine
learning algorithms. SER is used in a wide range of applications like call-center services, in vehicles to know the
psychological state of the person who is driving, as a diagnosing tool in medical services, in story-telling and in
E-tutoring applications, and so on. Basically, there are six archetypal emotions: anger, neutrality, happiness,
disgust, surprise, fear, and sadness [1,2]. In situations where only a person’s speech signals are available, SER
plays a prominent role.

A major challenge in SER is to identify the speech features that can effectively extract the emotional
characteristics from a speech signal. Speech features can be classified as continuous, voice quality, spectral, and
nonlinear Teager energy operator (TEO)-based features [1]. The categorical representation of a few of these
speech features is shown in Figure 1. The continuous prosodic features are pitch, zero crossing rate, energy,
formants, etc., which have an effect on the emotional variation of a speech signal. Among all these features,
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pitch has a huge variation for different emotions in humans and has been extensively used in the development of
an SER system to characterize emotions [3–5]. Voice quality features have a strong relationship with perceived
emotion [6]. These are categorized as voice pitch, voice level, temporal and feature boundary structures, jitter,
and shimmer [7], glottal waveforms and its variants [8–10], etc., which are useful for speech emotion recognition.
The spectral features are represented as the short-time representation of the speech signal. The spectral energy
distribution of a speech signal varies with its emotional content. Based on this, emotions are classified as high-
arousal and low-arousal emotions. High-arousal emotions have higher energies at high frequencies, like happiness
or anger, whereas low-arousal emotions have less energy in the same range of frequencies, like sadness. Compared
to other speech features, spectral features are able to characterize emotional contents more accurately [11–13].
It is well known that there is a nonlinear airflow during the speech production process in the vocal tract system
[14]. Under stressful conditions, the flow of air in the vocal tract system is affected by the muscle tension of the
speaker while producing sounds. These nonlinear speech features are highly affected when stressed emotional
speech signals are produced. The nonlinear TEO was developed by Teager and Kaiser to enhance the quality
of stressed speech signals [14,15]. Many TEO features were developed to characterize stressed emotions [16–
18]. The TEO features are also combined with glottal features to further improve the stressed speech emotion
recognition performance [19,20].

Speech Features

 

Vocal Quality  
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Spectral/ Vocal Tract  

Features 

MFCC, LPC, Cepstral,  
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Figure 1. Categorization of speech features.

Most of the research related to the development of SER systems is mainly focused on identifying the speech
features that can characterize emotions effectively. Mel-frequency cepstral coefficients (MFCCs) [11,21,22],
linear prediction coefficients (LPCs) [23], relative spectral perceptual linear prediction (RASTA-PLP) [16], and
variants of these features like modified MFCC (M-MFCC) [13], feature fusion of MFCC, and short-time energy
features with velocity (∆) and acceleration (∆+∆) [23] are some of the well-known spectral features that are
used for speech emotion recognition. Apart from these, log frequency power coefficients (LFPCs) [24], Fourier
parameter features [25], time-frequency features with AMS-GMM mask [26], modulation spectral features [27],
and amplitude-based features [28] are some of the variants of spectral features that are now used in SER analysis.
Among all these features, MFCC is the most widely used feature for SER that gave promising results. Hence,
in most studies, the MFCC feature set is used as a benchmark feature set to analyze the performance of the rest
of the SER systems [11,12,25,26,29]. It is evident from the literature that the combination of speech features,
i.e. feature fusion, increases the classification accuracy of the SER system [6,23,28] and hence became the most
common practice in this field.

1.1. Motivation
Despite the fact that feature fusion increases the performance of SER systems in terms of classification accuracy,
it also increases the computational overhead on the classifier. This is because some of the features contribute
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in a better way, while some of them might not be useful at all in the emotion recognition process. Using the
irrelevant speech features leads to the curse of dimensionality and decreases the performance of the SER system
as shown in Figure 2, where the performance of the system in terms of classification accuracy is decreased after
a particular feature dimension threshold with an increase in the dimension of the feature set. By choosing an
appropriate feature dimension, optimal performance can be achieved. Another disadvantage of increasing the
number of speech features is that it will increase the computational complexity, and it also causes the overfitting
problem, i.e. the model achieves better accuracy while training but fails when tested on new data [30,31].
These drawbacks can be overcome by adopting feature optimization techniques before emotion classification.
Therefore, it is always preferable to perform feature selection or optimization of the feature sets before emotion
classification. There are several feature selection and optimization techniques for dimension reduction of the
feature set to overcome the disadvantages of having huge feature sets. In the feature selection, a subset of
the original features is selected, which retains the desired feature set. In the case of feature optimization, the
feature space is transformed into another domain and the discriminant feature information is concentrated in
a particular part of the coefficients in the transformed domain. Several feature selection techniques are being
used by researchers to select the most appropriate feature set [32,33].
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Figure 2. Curse of dimensionality.

Feature dimension reduction is the best way to solve the problem of high dimensionality, but the reduction
of the number of feature vectors causes an uncertain loss in the information and subsequently leads to instability
in the performance of the system. This problem can be overcome by using linear transformation techniques. If
an n-dimensional input feature vector x = [F1, F2, ...., Fn]

T is considered, then the transformed output vector
will be y = [b1, b2, ...., br]

T , where r<<n and r is the reduced dimension. For this purpose, many optimization
techniques are developed in machine learning to acquire the most optimal feature sets that improve the SER
accuracy. These techniques can be classified based on feature set labeling as supervised or unsupervised.
In supervised techniques, the feature sets are labeled, and in unsupervised techniques, feature sets are not
labeled [30,34]. These techniques are further classified based on feature transformation as linear and nonlinear
techniques, in which the high-dimensional feature sets are scaled down to a lower-dimensional space preserving
the locality and geometric structures. The taxonomy of the feature optimization techniques is shown in Figure
3. In linear transformation, the structure of a given feature set is determined using Euclidean distance based
on second-order statistics, whereas the nonlinear transformation techniques recover the useful and meaningful
submanifolds from high-dimensional datasets [34].
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In SER, principal component analysis (PCA) [3,32] is one of the important and most widely used feature
optimization techniques, which is based on feature selection. Many other feature optimization techniques such
as linear discriminant analysis (LDA), which is a supervised machine learning technique [3], and singular value
decomposition (SVD) [35], locally linear embedding (LLE) [36], and nonnegative matrix factorization (NMF)
[37] are unsupervised feature optimization techniques that are commonly used for speech emotion recognition. In
SVD and NMF, the complete set of features transforms with matrix factorization to obtain a lower-dimensional
feature set, acquiring an optimal feature set. In [38,39], variants of autoencoders, namely adversarial and
variational autoencoders, were used to transform huge feature sets into lower dimensions and this reduced
feature set was used for SER to acquire high performance.

Feature Optimization Techniques
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Figure 3. Taxonomy of feature optimization techniques.

The major contribution of this paper is to optimize the MFCC, LPCC, and TEO-AutoCorr features using
the semi-NMF algorithm with SVD initialization so as to improve the performance of the proposed SER system.
The rest of the paper is organized as follows: the proposed SER system using the semi-NMF optimization
technique with SVD initialization is introduced in Section 2. The experimental analysis and simulation results
of the proposed SER system compared with the existing ones are discussed in Section 3, and Section 4 concludes
the paper.

2. Proposed speech emotion recognition system
A conventional SER system consists of only three stages: speech preprocessing, feature extraction, and classi-
fication [40]. Most of the existing SER systems use the entire set of speech features for emotion recognition so
far. This increases the computational overhead on the classification model. In order to overcome this drawback,
the semi-NMF optimization technique is incorporated in the development of the SER system before classifying
the features for obtaining the emotions, as shown in Figure 4.
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Figure 4. Proposed speech emotion recognition system.
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2.1. Preprocessing
The speech signal is preprocessed before feature extraction and the stages involved are filtering, framing, and
windowing [40]. The preemphasis filter performs as a first-order high-pass filter to boost the energy of the
speech signal in the higher frequencies, which are attenuated in the speech signal production process. If s[n] is
the speech signal, the time domain and z-domain representations of a preemphasis filter are given as:

h[n] = s[n]− αs[n− 1] (or)H(z) = S(z)[1− αz−1]. (1)

Here α is the filter coefficient and its value must be between 0.9 and 1 [40]. It is well known that the
speech signal is not stationary; hence, it is difficult to analyze speech signals. To overcome this problem, the
preemphasized speech signal is framed into an equal number of samples so that each frame can be considered as
stationary so that the signal processing techniques can be applied. Each frame consists of an equal number of
samples, which is also called frame length. The number of frames varies from one speech signal to another
depending on the length of the speech signal. When the signal is divided into frames, there exist some
discontinuities at the edges of the frames of the input speech signal. In order to avoid these discontinuities,
each frame is passed through a tapered window. There are different types of windows used in the speech
preprocessing, like Hamming, Hanning, Barlett, etc. Among these, the Hamming window is chosen in this
work, as it provides less spectral leakage at the edges of the frames. The window size is chosen based on the
frame length (‘N’). The Hamming window is given by [40]:

w[n] = 0.54− 0.46 cos(2π n
N

) where 0 ≤ n ≤ N. (2)

Here, N is the window size and n is the speech signal length. An overlap between the frames is allowed so
that there is no loss in the speech signal information. In this paper, the frame length is considered to be 256 and
the overlap allowed between the frames is chosen as 80. Later, preemphasized speech signal ‘h [n ]’ is multiplied
by this window function by allowing a frame overlap to obtain the resultant signal. After preprocessing, the
speech frames are fed to the feature extraction block:

x[n] = h[n]× w[n] (3)

2.2. Feature extraction
Feature extraction in SER is the process of extracting the specific speech features that portray the emotion-
relevant information. Instead of using the speech signal directly to classify emotions, a particular set of features
can be extracted using various signal processing techniques with which the emotions can be classified using
different classification techniques. MFCC, LPCC, and TEO-AutoCorr features are extracted in the development
of the proposed SER system.

MFCC features contribute mostly in SER system development, as these features are designed based on the
human ear speech perception. In MFCCs, initially the speech signal frames are transformed into the frequency
domain using DFT and the transformed frames are fed to the mel-filter bank to convert the log frequency-scale
to the mel-frequency scale, which mimics the perception of a human ear [40]:

mel(f) = 2595× log10(1 + f/700) (or) mel(f) = 1127 ∗ ln(1 + f/700) (4)

Here, f is the frequency of the transformed speech signal. These transformed mel-frequency domain features
are further converted to the cepstrum domain using the discrete cosine transform (DCT). A total of 12 MFCC
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features are extracted in this process. It is well known that the difference between the consecutive MFCC
features, which are termed as ∆ (delta) features, contributes efficient emotion recognition. Hence, a total of 24
features with 12 MFCC and 12 ∆ (delta) features are extracted.

In the extraction of LPCCs, initially, linear predictive analysis is performed on the speech signal. The
basic idea behind the linear predictive analysis is that the nth speech sample can be estimated by a linear
combination of its previous p samples as shown in the following equation:

x[n] ≈ a1x[n− 1] + a2x[n− 2] + a3x[n− 3] + ....+ apx[n− p] (5)

Here, a1 , a2 , a3 , . . . ap are assumed to be constants over a speech analysis frame. These are known as
predictor coefficients or linear predictive coefficients. These coefficients are used to predict the speech samples.
The difference between actual and predicted speech samples is known as an error. It is given by:

e[n] = s[n]− ŝ[n] = s[n]

p∑
i=1

[aix[n− i]] (6)

Here, e[n] is the error in prediction, s[n] is the original speech signal, ŝ[n] is a predicted speech signal, and ai

for i=1,2 ,……p are the predictor coefficients. Later, the cepstral coefficients are derived from the LPCCs derived
using the following recursion [41]:

C0 = loge[p]

Cm = am +

m−1∑
i=1

i

m
Ciam−i, for 1 < m < p

Cm =

m−1∑
i=m−p

i

m
Ciam−i, for m > p (7)

The resultant [C0, C1, ...Cm] are the LPCCs with k = m+1 features. The LPCC feature extraction is
designed to obtain 21 features and is used in this analysis.

Even though MFCCs and LPCCs are widely used for SER, a few of the stressed emotions like anger or
anxiety could not be analyzed properly. Therefore, TEO features are also used in this work. The TEO-AutoCorr
feature extraction is shown in Figure 5.
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Figure 5. TEO-AutoCorr feature extraction.

Teager [14,15] proposed an energy operator, i.e. a measure of speech signal energy, based on his
experiments known as the TEO. In the experiments, Teager showed that the flow of air in the vocal tract
is separated and follows the vocal tract walls. Later, Teager conducted several experiments on the hearing
process and came up with a measurement of the energy parameter to find proof of speech modulation patterns.
The energy operator is as follows [15,16]:

ψ(x(t)) =

(
d
dtx(t)

)2

− x(t)( d2

dt2x(t)) or ψ(x[n]) = x2[n]− x[n]x[n+ 1] (8)
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Here, x(t) and x[n] are the speech signals in the continuous and discrete domain.
The autocorrelation function is the correlation of a signal with a delayed copy of itself as a function of

delay. Informally, it is the similarity between observations as a function of the time lag between them:

Rxx(k) =

M−1∑
n=k

s[n]s[n− 1] (9)

Here, x(t) is the input signal to the function and τ is the delay parameter. When the frames of the Teager
energized signal are given to the autocorrelation function, the correlation between the adjacent frames is
obtained. If the correlation is high, the energy of the speech signal is further increased, resulting in the TEO-
AutoCorr features. All the extracted features, e.g., [F1, F2, ...., Fk] , are further fed to the feature optimization
block.

2.3. Semi-NMF using SVD initialization
The semi-NMF technique is a variant of the NMF algorithm and can be used for speech feature optimization.
In this paper, the semi-NMF algorithm using SVD initialization is employed to optimize the speech features.
Semi-NMF has been widely used in many data processing applications like data analysis and clustering [42]. The
data matrix, i.e. a feature matrix M = [F1, F2,………Fk] with k as the feature vectors that are unconstrained
(i.e. it may have mixed signs), is considered. A factorization that is referred to as semi-NMF in [42], in which
V is restricted to be nonnegative while placing no restriction on the signs of U , is proposed. Semi-NMF can
be defined as follows: Given a matrix MϵRm×k and a factorization rank r, solve

minUϵRm×r,V ϵRr×k∥M−UV ∥2
F
such that V ≥ 0 (10)

where ∥.∥F is the Frobenius norm and V ≥ 0 means that V is component-wise nonnegative. The concept
of semi-NMF is motivated from the perspective of k-means clustering that can be applied to an input feature
vector M to obtain cluster centroids, U = u1, u2, ...., ur , where V is the cluster indicator [42]:

V =

{
1 ifFi ϵ clustercr
0 otherwise

(11)

However, there are convergence issues in this method, due to which a different initialization technique rather
than k-means can be used, since the initialization of U and V matrices is important to obtain an optimal
solution for the factorization problem. The semi-nonnegative rank of matrix M can be denoted by M = UV
with UϵRm×r , V ϵRr×k , and V ≥ 0 . To summarize,

NMF → X+ ≈ U+V
T
+ & Semi−NMF → X+ ≈ U±V

T
+ (12)

In other words, NMF has both U and V with nonnegative values, whereas semi-NMF has U consisting
of both positive and negative values without any restriction and V with only nonnegative values. Accordingly,
a singular value decomposition (SVD) and linear programming-based method are proposed to overcome the
drawbacks of the basic semi-NMF for finding the optimal solution [43].

The semi-NMF technique with SVD initialization is discussed in Algorithm. In step 1, we apply SVD on
the data or feature matrix to obtain the left singular matrix (A), diagonal matrix (S), and right singular matrix
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Algorithm Semi-NMF using SVD initialization.
Input: A matrix Mϵ Rm×k , a factorization rank r.
Output: A rank-r semi-NMF (U,V) of M ≈ UV with V ≥ 0

1: [A,S,BT ]=svds(M,r); ‘svds’ is a MATLAB function
2: For each 1 ≤ i ≤ r : multiply B(i,:) by –1 if minj B(i,j)≤ minj(−B(i, j)) ;
3: Let (y∗, ε∗) be the optimal solution of the following optimization problem:

minyϵRr,εϵR+ ε such that (B(:, j) + εe)T y ≥ 1 ∀ j
% if ϵ∗=0 (⇔ B is semi-nonnegative) then the heuristic is optimal

4: x = (B + ε∗1r×k)
T y∗ ≥ 1 ;

5: αi = max(0,maxj
−B(i,j)
x(j) ) for all 1 ≤ i ≤ r

6: V=B+αxT ;
7: U← argminxϵRm×r ∥M −XV ∥2F

(B) considering rank-r approximation. Among these, matrix B is considered for further analysis. In step 2, the
rows of matrix B are flipped. Further, in step 3, the actual optimization takes place, i.e. a heuristic for finding
the optimal solution (y∗, ε∗) with r,

minyϵRrεϵR+
ε such that (B(:, j) + εe)T y ≥ 1∀j such that (B(:, j) + εe) ̸= 0 (13)

Here e is the vector of all ones. If the value of ϵ∗ is too small the probability of B being a semi-nonnegative
matrix is high. Eq. (13) is solved using a bisection method on variable ϵ∗ . In this method, if ϵ∗ = 0 initially,
then an optimal semi-NMF can be obtained. Once the optimal solution (y∗, ε∗) is obtained, the matrices V
and further the desired optimal solution U can be obtained in the consecutive steps.

In this work, the rank-r of the semi-NMF is chosen so as to acquire optimum performance. The MFCC,
LPCC, and TEO-AutoCorr features will be scaled down to r number of features each. Using semi-NMF, the
m×24 feature matrix is factorized into Umel and Vmel matrices with m× r1 and r1×24 . Likewise, the LPCC
feature vector with m× 21 dimensions, using semi-NMF, is factorized into Ulp and Vlp feature and coefficient
matrices with m × r2 and r2 × 21 . Similarly, in the case of TEO-AutoCorr features, using semi-NMF, the
m× 20 feature vector matrix is factorized into Uteo and Vteo feature and coefficient matrices with m× r3 and
r3 × 20 . Here, the matrices Umel , Ulp , and Uteo are the desired optimal MFCC, LPCC, and TEO-AutoCorr
feature vectors consisting of both the positive and negative data. The ranks r1, r2 , and r3 are chosen based on
the type of the classifier (SVM or k-NN) and the feature set chosen (i.e. MFCC or LPCC or TEO-AutoCorr)
by validating the performance of the SER system.

2.4. Classification
There are many pattern recognition algorithms that are used for emotion classification [1,2]. In this paper,
k-nearest neighborhood (k-NN) with k = 6 folds and support vector machine (SVM) classification techniques
with Gaussian kernel are used to classify the emotions. The optimized feature set [O1, O2, ....., Or ] is given to
the classification model for classifying the emotions. The classification techniques considered are supervised
and hence the optimized feature sets are labeled with their corresponding emotions. The k-fold cross-validation
is a resampling method employed to evaluate machine learning models on a limited dataset. The dataset is
randomly divided into k groups or folds of nearly equal size. The first fold is used as a validation set, and the
model is fit on the remaining k–1 folds. Cross-validation is basically applied to the machine learning algorithms
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in order to estimate the skill of the developed model on unseen data. It is the most commonly used method
because it is easy to understand and results in a less biased or less optimistic estimate of the model’s skill than
other techniques, such as a simple train/test split. In this work, a 5-fold cross-validation schema is used to train
the classifiers, in which the training and testing are carried out in 5 folds.

3. Results
The database considered in the development of a SER system is one of the most important challenges faced
by researchers. This is because of the variation of classification accuracy of the SER system with different
language datasets because of different speaking styles. The EMO-DB and IEMOCAP datasets are considered
in this work to analyze the performance of the proposed SER system. EMO-DB, a German database [44], is
widely used in SER analysis by many researchers. The recording for emotional data was done in an anechoic
chamber with 5 male and 5 female actors between the ages of 25 and 35. A total of 535 speech signals were
recorded at 48 kHz with anger, boredom, disgust, anxiety/Fear, happiness, sadness, and neutrality. Later these
were downsampled to 16 kHz. The Interactive Emotional Dyadic Motion Capture (IEMOCAP) database is in
English [45]. It is an acted, multimodal, and multispeaker database comprising 12 h of audiovisual data that
include video, speech, text transcriptions, and motion capture of the face. The speech data with emotions of
anger, excitement, frustration, happiness, neutrality, and sadness are considered in this work, with a total of
7112 utterances.

Table 1. Simulation parameters of the proposed SER system.

Parameters Specifications
Preemphasis filter Coefficients, a = 0.97
Frame size/length 256 samples
Frame overlap 80 samples
Type of window Hamming
Mel-filter banks 20
Semi-NMF SVD Initialization

k-NN k-Folds = 6
Euclidean distance measure

SVM Gaussian kernel

As discussed in Section 2, the 24 MFCC, 21 LPCC, and 20 TEO-AutoCorr features are extracted. The
simulation parameters used in the development of the proposed speech emotion recognition system, i.e. for
speech preprocessing, feature extraction, optimization, and classification, are shown in Table 1. In the proposed
SER system, the 24 MFCC, 21 LPCC, and 20 TEO-AutoCorr features are optimized using the semi-NMF
algorithm using SVD initialization and the k-NN and SVM classifiers are used for emotion classification. The
performance of the proposed SER system is evaluated using the machine learning performance metric, i.e.
classification accuracy. All the simulations are carried out on a computer with Intel Xeon CPU E3-1220 v3 of
a 3.10 GHz 64-bit processor with 16 GB RAM.

The entire set of emotional data of both the datasets is considered in this analysis and the corresponding
results are shown in Figures 6 and 7 and Tables 2 and 3. In this work, the 5-fold cross-validation schema is used
to train and test the accuracy of the proposed SER system. Hence, the entire dataset is randomly split into
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5 parts, among which 4 parts are used for training the classifier (k-NN or SVM) and testing is carried out on
the remaining or test data, i.e. the fifth part. This process is repeated in 5 folds, i.e. 5 times, until the entire
dataset is completely trained. The evaluated score (i.e. the classification accuracy) at each fold is retained
and, finally, the mean of these scores is calculated to obtain the overall classification accuracy of the proposed
system.

The number of features into which the features get optimized depends on the rank of the semi-NMF.
The choice of choosing the rank of the semi-NMF algorithm for optimizing the features in order to achieve high
performance is very important. In order to decide the optimal rank, the optimization is performed individually
on MFCC, LPCC, and TEO-AutoCorr features using different ranks of semi-NMF and these optimized features
are classified using the classification models.

Figures 6 and 7 show the variation of classification accuracy of the proposed SER system with the
EMO-DB and IEMOCAP databases for different ranks of semi-NMF with which the MFCC, LPCC, and TEO-
AutoCorr features are optimized using SVM and k-NN classifiers. From the results, it is clearly understood that
the performance of the SER system not only varies with the type of database used but also the classification
model considered. From these figures, it can also be observed that the SER classification accuracy is increased
with the rank of the semi-NMF considered, i.e. with an increase in the number of features, whereas after a
particular rank of semi-NMF, the classification accuracy of the SER system is decreased, thus implying the curse
of dimensionality. The rank at which utmost accuracy is obtained is considered to be the optimal rank. From
Figures 6a and 6b, for the EMO-DB database the highest accuracy is achieved for MFCCs, when optimized with
Rank-20 and Rank-22 for SVM and k-NN classifiers, as 67.76% and 85.6%, respectively. In the case of optimized
LPCC and TEO-AutoCorr features using the SVM classifier, the highest accuracy is achieved with Rank-18
as 73.65% and 68.56%, respectively. Using the k-NN classifier, 88.2% and 83.7% classification accuracies are
obtained for LPCC and TEO-AutoCorr features optimized at Rank-19. Therefore, the optimal ranks for MFCCs
are 20 and 22 for SVM and k-NN, respectively. Similarly, for LPCCs and TEO, the optimal ranks are 19 and
18 using SVM and k-NN. From Figures 7a and 7b, for the IEMOCAP database the highest accuracy is achieved
for MFCCs, when optimized with Rank-19, as 72% and 74.1% for SVM and k-NN classifiers, respectively. In
the case of optimized LPCCs, the highest accuracy is achieved with Rank-17 as 79.6% for the SVM classifier
and with Rank-12 as 75% for the k-NN classifier. Likewise, for TEO-AutoCorr features, the highest accuracy is
achieved with Rank-17 as 67.7% using the SVM classifier and with Rank-19 as 71% using the k-NN classifier.
The optimal rank for MFCC is 19 for both SVM and k-NN. Likewise, using SVM and k-NN classifiers, for
LPCCs the optimal ranks are 17 and 12, whereas in the case of TEO features the optimal ranks are 17 and 19.

Tables 2 and 3 show the results of the performance comparison of MFCCs, LPCCs, TEO-AutoCorr, and
their combinations without optimization and with the semi-NMF optimization technique validated using SVM
and k-NN classifiers. From these results, it is clearly evident that by combining the features the performance is
improved. This is the reason behind the extensive usage of huge feature sets for SER development.

From Table 2 for the EMO-DB database, it is observed that the highest accuracy is achieved with the
feature fusion of the optimized MFCC, LPCC, and TEO-AutoCorr features with 56 features obtaining 90.12%
accuracy using SVM and 89.3% accuracy using the k-NN classifier with 60 features. The minimum number of
features at which the highest accuracy is obtained for the proposed system is 73.65% for SVM and 88.2% for
k-NN, with LPCC features optimized at Rank-18 and Rank-19, respectively. Similarly, from Table 3 for the
IEMOCAP database, the highest accuracy is achieved with the feature fusion of the optimized MFCC, LPCC,
and TEO-AutoCorr features with 53 features obtaining 83.2% accuracy using SVM and 78% accuracy using the
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Figure 6. Performance variation of the proposed SER system with different ranks of semi-NMF for MFCC, LPCC, and
TEO-AutoCorr features using a) SVM and b) k-NN for EMO-DB database.

Table 2. Performance Comparison of Baseline and Proposed SER system with Semi-NMF for EMO-DB Database using
SVM & k-NN Classifiers for Different Feature Sets.

Optimization
techniques

Features SVM k-NN
No. of
features

Classification
accuracy

No. of
features

Classification
accuracy

Baseline

MFCC 24 47% 24 53%
LPCC 21 45% 21 40.8%
TEO-AutoCorr (TEO) 20 31.8% 20 27.3%
MFCC+LPCC 45 64.2% 45 70.5%
MFCC+TEO 44 62.5% 44 74.6%
LPCC+TEO 42 46.47% 42 51.7%
MFCC+LPCC+TEO 65 55.36% 65 69.9%

Semi-NMF
with SVD

MFCC 20 67.76% 22 85.6%
LPCC 18 73.65% 19 88.2%
TEO-AutoCorr (TEO) 18 68.56% 19 83.7%
MFCC+LPCC 38 85% 41 89%
MFCC+TEO 38 81.54% 41 87.8%
LPCC+TEO 36 84.13% 38 88.7%
MFCC+LPCC+TEO 56 90.12% 60 89.3%
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Figure 7. Performance variation of the proposed SER system with different ranks of semi-NMF for MFCC, LPCC, and
TEO-AutoCorr features using a) SVM and b) k-NN for IEMOCAP database.

Table 3. Performance comparison of baseline and proposed SER system with semi-NMF for IEMOCAP database using
SVM and k-NN classifiers for different feature sets.

Optimization
techniques

Features SVM k-NN
No. of
features

Classification
accuracy

No. of
features

Classification
accuracy

Baseline

MFCC 24 44% 24 50.57%
LPCC 21 41.1% 21 39.95%
TEO-AutoCorr (TEO) 20 31.2% 20 29.2%
MFCC+LPCC 45 45.2% 45 52.36%
MFCC+TEO 44 43.4% 44 47.24%
LPCC+TEO 42 42.3% 42 35.4%
MFCC+LPCC+TEO 65 50.34% 65 55.63%

Semi-NMF
with SVD

MFCC 19 72% 19 74.1%
LPCC 17 79.6% 12 75%
TEO-AutoCorr (TEO) 17 67.7% 19 71%
MFCC+LPCC 36 82.88% 31 74.98%
MFCC+TEO 36 79.23% 38 75%
LPCC+TEO 34 82.6% 31 74.32%
MFCC+LPCC+TEO 53 83.2% 50 78%
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k-NN classifier with 50 features. The minimum number of features at which the highest accuracy is obtained
for the proposed system is 79.6% for SVM and 75% for k-NN, with LPCC features optimized at Rank-17 and
Rank-12, respectively.

Table 4. Comparison of the proposed SER system with the existing methods for EMO-DB database.

Approaches No. of optimized features Classification accuracy
Chen et al. [46] 72 77.74%
Zhang et al. [47] 9 80.85%
Zhang et al. [48] 11 73.9%
Yan et al. [49] 13 79.23%
Kuchibhotla et al. [50] 12 88.1%
Daneshfar et al. [51] 20 79.22%
Gudmalwar et al.[52] 36 75.32%
Özseven [53] 304 84.07%
Sun et al. [54] 500 86.86%

Proposed

SVM 18 73.65%
k-NN 56 90.12%
SVM 19 88.2%
k-NN 60 89.3%

Furthermore, the performance of the proposed SER system is compared with different works in the Table
4 for EMO-DB and Table 5 for IEMOCAP in terms of the number of optimized features and classification
accuracy performance measures.

Table 5. Comparison of the proposed SER system with the existing methods for IEMOCAP database.

Approaches No. of optimized features Classification accuracy
Sahu et al. [38] 100 58.38%
Latif et al. [39] 128 56.42%

Proposed
SVM 17 79.6%

53 83.2%

k-NN 12 75%
60 78%

In [46], semi-NMF with k-means clustering initialization was used to transform feature sets, which
were further combined with the original dataset to obtain a total of 72 features for SER obtaining 77.74%
accuracy. In [47–52], different optimizing and feature selection techniques, namely enhanced kernel isometric
mapping, the modified supervised locally linear embedding algorithm, sparse partial least squares regression,
sequential floating forward selection, the scaled conjugate gradient, and principal component analysis, were
used for improving the classification accuracy by reducing the feature set dimension. However, the classification
accuracy obtained with the proposed SER system is higher than the other methods with 90% (approx.) using
both classification techniques for the EMO-DB database. In [38,39], a new statistical feature selection and
Fisher feature selection were used to select the most optimal feature sets, but still these techniques [38,39] have

3753



BANDELA and KUMAR/Turk J Elec Eng & Comp Sci

lower performance both in terms of complexity, i.e. number of features, and classification accuracy compared to
the proposed SER system. Likewise, in [44,45], variational and adversarial autoencoders were used for feature
optimization and the performance was lower than that of the proposed SER system for the IEMOCAP database
with classification accuracy of 79.6% for 17 features and 83.2% for 53 features using the SVM classifier and 75%
for 12 features and 78% for 60 features using the k-NN classifier.

4. Conclusion
In the proposed SER system, the semi-NMF feature optimization technique with SVD initialization is employed
to optimize the MFCC, LPCC, and TEO-AutoCorr features. The performance of the proposed SER system
is analyzed with the EMO-DB and IEMOCAP databases using k-NN and SVM classifiers. A five-fold cross-
validation scheme is used to train the feature sets so as to consider the entire dataset for both training and
testing to avoid overfitting problems. The optimal rank is chosen for semi-NMF depending on the database
and classification technique used for MFCC, LPCC, and TEO-AutoCorr features. The combination of these
optimized feature sets is used in the proposed SER system to achieve highest classification accuracies using SVM
and k-NN classifiers with 90.12% and 89.3% for the EMO-DB database and 83.2% and 78% for the IEMOCAP
database, respectively. It is clearly evident from the results that the proposed SER system outperforms the
baseline, i.e. the SER system without optimization, and also the existing literature works. The proposed SER
system is language-dependent and it can be further improved to be language-independent with cross-corpus
analysis.
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