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Abstract: The feature extraction process is a fundamental part of speech processing. Mel frequency cepstral coefficients
(MFCCs) are the most commonly used feature types in the speech/speaker recognition literature. However, the MFCC
framework may face numerical issues or dynamic range problems, which decreases their performance. A practical
solution to these problems is adding a constant to filter-bank magnitudes before log compression, thus violating the
scale-invariant property. In this work, a magnitude normalization and a multiplication constant are introduced to make
the MFCCs scale-invariant and to avoid dynamic range expansion of nonspeech frames. Speaker verification experiments
are conducted to show the effectiveness of the proposed scheme.
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1. Introduction
Feature extraction is one of the main processes in automatic speech/speaker recognition. Despite numerous
feature types found in the literature, spectral-based techniques such as mel frequency cepstral coefficients
(MFCCs) [1] remain popular due to their ease of implementation and high performance in clean conditions.
Conventional MFCC extraction schemes include windowing speech frames, taking their Fourier transform,
filtering the spectrum with a filter bank linearly spaced in mel-scale, log compression, and taking the discrete
cosine transform. MFCCs are scale-invariant except the zeroth coefficient, which is related to the signal energy.
However, if a filter bank magnitude is zero, the logarithm goes to negative infinity, hence causing numerical
problems. On the other hand, if filter bank magnitudes are close to zero, the dynamic range of the log compressed
values increases, which decreases the recognition performance.

To overcome this issue, several methods have been proposed by researchers, such as adding a constant
value (i.e. one) to filter bank magnitudes as in the HTK toolkit [2], replacing log compression with root
compression [3], and dithering the clean signal by adding a small amount of noise [4]. Although these methods
increase the recognition performance, they also introduce some handicaps. Speech signals with low magnitudes
may be lost in the noise in the dithering. Cepstral mean normalization cannot be used with root compression.
Adding a constant value to filter bank magnitudes or a ceiling to keep the smaller values to a constant before
log operation violates the scale-invariant property of MFCCs.

In this work, we focused on making the MFCCs completely scale-invariant by adding a magnitude
normalization scheme to the filter bank magnitudes. Previously, dynamic range normalization was proposed
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only for the zeroth coefficient [5]. In this work our main concern is the coefficients other than the zeroth. There
are many energy normalization techniques in the literature, such as in [6] and [7]; however, it is unclear whether
a normalization step is added in many speech/speaker recognition studies. We utilized a recently proposed voice
activity detection algorithm [8] to detect speech regions in each filter of the filter bank separately and apply
energy normalization based on these regions.

2. Normalization and scaling

The conventional MFCC extraction scheme includes a logarithmic compression step, as given by Eq. (1):

M = log(x), (1)

where x denotes the filter bank magnitude and M denotes its compressed form. Eq. (1) has two problems.
First, if x is zero, the logarithm goes to negative infinity, hence causing numerical problems. Second, Eq.
(1) will compress big values of x , which represent the speech signal, and will expand the small values of x

(i.e. x << 1), which represent the nonspeech signal. Expanding the dynamic range of the nonspeech parts of
utterances may degrade the recognition performance of the systems.

To overcome the numerical problems, a constant (usually 1) is added to x as given in Eq. (2):

M = log(1 + x). (2)

However, Eq. (2) does not offer a solution to the second problem since log(1 + x) will generate the
same values as Eq. (1) if the average value of x is sufficiently big. In addition to this, Eq. (2) creates two
new problems. First, it may create a mismatch between training and test signals, because log(1 + x) is not
scale-invariant. MFCCs for the same word recorded with different volume levels will vary. MFCCs obtained
using log(1 + x) will be different than the ones obtained by log(1 + ax) where x is the original signal and ax

is the scaled version. The second problem is that for the small values (i.e. x << 1) the log compression loses
its effect since log(1 + x) = x .

The result and hence the effectiveness of the log operation depend on the average of the filter bank
magnitudes. This explains why MFCCs are not really scale-invariant. To make the MFCCs scale-invariant
and reduce the deteriorative effects of the log operation, a constant multiplier (c) to the normalized filter bank
magnitudes is introduced in this work as in log(1+c(x/x̂)) , where x̂ is the average filter bank magnitude for the
given filter bank over all speech frames. Dividing x by x̂ normalizes the filter bank magnitudes. The dynamic
range expansion of the nonspeech parts of the utterances will be avoided by choosing an optimum c value.

The constant multiplier and magnitude normalization offer a straightforward solution to the aforemen-
tioned problems. The crucial point is normalizing the filter-bank magnitude values. In this work, a recently
proposed [8] voice activity detector is utilized to detect speech regions for the normalization. For each filter,
average speech magnitude is calculated by using these regions. Finally, filter bank magnitudes of the given
band are divided into its average magnitude to achieve magnitude normalization.

It should be noted that the normalization is done to the entire utterance, not only the detected speech-
dominant frames. The reason is that there is no ideal voice activity detector (VAD), so silence/noisy frames
may be misclassified as speech frames. Along with this, to show that the proposed multiplication effectively
avoids the dynamic range problem mentioned before, all utterances (training and testing) are used as a whole
(i.e. speech/silence regions were not separated).
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Table 1. Baseline results (EERs) for conventional MFCC features.

3 s 10 s 30 s

GMM-UBM log(1+X) 9.32 5.42 4.20
log(X) 9.86 5.65 3.74

i-vector log(1+X) 11.31 5.81 3.21
log(X) 11.39 5.50 3.36

3. Experiments
The proposed modification is tested in text-independent speaker verification experiments using the male portion
of the NIST SRE 1998 database. A total of 250 male speakers with training data of about 5 min for each speaker
are available. Test data durations are 3, 10, and 30 s. There are 1308 test speech files for each duration. The
extracted features are 13 MFCCs, excluding the zeroth coefficient, and their deltas. For the back end, the
conventional GMM-UBM system and the more recent i-vectors are used. A 1024-mixtures UBM is trained by
pooling all training data. The speaker models are then adapted from the UBM with a relevance factor of 16.
The same UBM is used in the i-vector extraction scheme, which also includes linear discriminant analysis and
PLDA scoring. The toolbox provided in [9] is used for all of the back end processes.

Before providing the results for the proposed method, the baseline scores are given in Table 1 for conven-
tional MFCCs with log(X) and log(1 +X) . X indicates the traditional features without any normalization.

Table 2 shows the equal error rates (EERs) obtained with the conventional GMM-UBM back end. Note
that x denotes the normalized filter bank magnitude, as explained previously. The percent increase in the
relative error for the given c value is calculated as:

Ec =
EERc − EERb

EERb
× 100, (3)

where EERc is the EER for the given test duration and c . EERb is the smallest EER for each test data
duration (e.g., 7.18 for 3 s, 4.28 for 10 s, and 3.21 for 30 s in Table 2). Ec is the relative change for the given
c value against the best case. EERb is used to examine the relative change between the results of different
c values. This relative change may indicate trends towards an optimal c value. In practice, the length of
an incoming utterance may vary, and hence it is more desirable to find the c value that can show sufficient
performance under different data lengths. Therefore, the average of the relative changes are calculated and given
in the last column of Table 2 as percent increase in the relative error for the given c value. The performance of
the system decreases as the c values move away from an optimal area, as expected.

Similarly, Table 3 shows the EERs obtained with the state-of-the-art i-vector back end. Column infor-
mation is the same as in the previous table. Compared to the baseline results, the proposed method achieved
better performances for several c values around an optimal point.

For the small multiplication constants, the negative effects of the lower magnitudes may not be eliminated.
As the constants increased, the lower magnitudes successfully moved to a range in which the log operation can
effectively compress them.

Similar results can be obtained from both tables. This situation confirms that the performance of the
MFCCs can be enhanced with the proposed modification, regardless of the back end used in the system. The
best performance for the i-vector method is achieved when the multiplier is 200. For the GMM-UBM method,
the best performance is yielded with 300.
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Table 2. Verification results (EERs) for different c values with GMM-UBM back end.

log(1+x*c) 3 s 10 s 30 s Average Ec

log(1+x*1) 19.34 12.99 7.64 170.27
log(1+x*10) 14.29 8.86 5.81 95.67
log(1+x*20) 11.54 7.18 4.81 59.36
log(1+x*30) 10.39 6.49 4.28 43.15
log(1+x*40) 9.48 5.88 3.9 30.23
log(1+x*50) 9.09 5.42 3.59 21.62
log(1+x*100) 8.02 4.6 3.36 8.46
log(1+x*200) 7.49 4.43 3.28 3.40
log(1+x*300) 7.41 4.28 3.21 1.06
log(1+x*400) 7.34 4.28 3.28 1.50
log(1+x*500) 7.18 4.43 3.36 2.77
log(1+x*600) 7.35 4.35 3.36 2.92
log(1+x*700) 7.35 4.43 3.44 4.28
log(1+x*800) 7.49 4.43 3.36 4.19
log(1+x*900) 7.26 4.51 3.44 4.52
log(1+x*1000) 7.41 4.58 3.51 6.62
log(1+x*2000) 7.41 4.51 3.59 6.81
log(1+x*2500) 7.33 4.58 3.59 7.05
log(1+x*10000) 7.26 4.58 3.66 7.49

Table 3. Verification results (EERs) for different c values with i-vector back end.

log(1+x*c) 3 s 10 s 30 s Average Ec

log(1+x*1) 12.31 5.5 3.44 51.94
log(1+x*10) 9.93 4.51 2.82 23.84
log(1+x*20) 10.85 4.58 2.9 29.69
log(1+x*30) 10.93 4.58 2.6 26.08
log(1+x*40) 10.78 4.58 2.6 25.41
log(1+x*50) 10.85 4.58 2.6 25.72
log(1+x*100) 8.02 3.89 2.67 7.51
log(1+x*200) 7.79 3.59 2.6 2.76
log(1+x*300) 7.41 3.89 2.9 7.81
log(1+x*400) 7.95 3.97 2.75 8.99
log(1+x*500) 8.02 3.74 2.9 9.16
log(1+x*600) 8.1 4.05 2.82 11.34
log(1+x*700) 7.87 4.05 2.75 9.38
log(1+x*800) 7.95 4.2 2.82 12.06
log(1+x*900) 7.79 4.12 2.52 6.63
log(1+x*1000) 9.32 4.96 2.75 24.35
log(1+x*2000) 9.71 4.74 2.6 22.08
log(1+x*2500) 7.56 3.82 2.82 6.77
log(1+x*10000) 9.32 4.74 2.52 19.26

For small constants, log operation loses its compression ability. Therefore, the performance degrades
drastically. On the other hand, when the constant becomes much bigger than its optimum value, log operation
increases the dynamic range of nonspeech parts. However, the performance drop is not dramatic as in the small
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constant cases. The performance is more sensitive to the smaller constants than the bigger ones, relative to the
optimum value of the constant as seen in the tables. It should also be noted that the constant 1 is added to
avoid numerical problems in the event that a zero magnitude occurs somehow.

4. Conclusion
In this study, a modification to the conventional MFCC extraction scheme was proposed. The main purpose of
this scheme is to overcome a fundamental problem in the log compression step, which degrades the recognition
performance. The log operation compresses the frames with high magnitudes/energies. On the other hand,
it expands the range of noisy/low-energy frames, hence creating a dynamic range expansion, or numerical
problems. This unintentional result especially occurs in practical applications.

The proposed modification consists of magnitude normalization, followed by multiplication with a con-
stant. Normalization was utilized to reduce the magnitude variation between the utterances. The constant
multiplication is applied to the normalized filter bank outputs in order to scale them into a range where the log
operation can effectively compress them. By this scaling, the mismatch due to the expanded range of the low
magnitude frames is easily reduced.

The experiments showed that the proposed modification is effective for both GMM-UBM and i-vector
methods. Similar performance progress can be observed for both modeling methods. Compared to the
conventional MFCCs, the proposed method offers simple yet effective performance increments. This could
be support for choosing the modified MFCCs over the conventional ones.
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