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Abstract: In a day-ahead electricity market, competitive bidding strategy plays a vital role for power suppliers to
maximize their profit. In this type of market, each power supplier submits a set of hourly production prices and offers
capacity for the next period. The market operator, after receiving this data along with forecasted hourly load from the
demand side, allocates production output to each unit. Power suppliers face the problem in trading their offers in the
market, due to the uncertain behavior of competitive power suppliers and power demand. Therefore, the power supplier
requires a suitable bidding strategy for handling uncertainty in the market to maximize their profits. Moreover, the
considerations of ramp rates are necessary for the precise representation of practical power system. Thus, in the present
work, a modified gravitational search algorithm based on oppositional learning concept is used to solve strategic bidding
problem for power suppliers considering six generators with ramp rates, 24-h load data and rivals behavior. The total
hourly profits of generators with and without considering ramp rates have been compared.
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1. Introduction
Global electricity markets are continuously being restructured, which introduces fair competition among par-
ticipants for the trading of their product and maximizing economic productivity. In restructured electricity
markets, generation companies (GENCOs) own generation facilities and participate in the market with the
sole objective of profit maximization, overlooking system concerns like security and reliability unless there is an
incentive. In microeconomics theory, GENCOs take benefits of market uncertainty to raise their profits through
bidding [1]. Theoretically, they raise their profit through bidding a price equal to their marginal production
cost, whereas in practice they have higher prices of bidding over the marginal cost. However, power suppliers
face a problem when they try to develop the best optimum bid based on the knowledge of their expenses,
technical restrictions, market behavior, and their expectation of rivalry. This is known as a strategic bidding
problem [2, 3].

In a day-ahead electricity market, strategic bidding mechanism is a very vital research area. In the last
few decades, many researchers have carried out their research over strategic bidding problem. A conceptual
optimal bidding strategy problem was solved firstly by dynamic programming (DP)-based method [4]. The
authors in this work show that there are several factors which may affect the bidding strategies. The uncertain
demand, supplier’s production cost, operating constraints, and bidding behavior of other competitors are few
of them. Among these, the most uncertain is the bidding behavior of rival generators that can intensify the
∗Correspondence: satyendagur@gmail.com
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difficulties in strategic bidding decision process [5] due to the natural behavior of participants who aim for profit
maximization. The effectiveness of dynamic programming is investigated in [6] to find the optimal strategies
for single power plants or groups of power plants under various electricity prices and fuel cost forecasts. In
[7–20], the problem of optimal bidding strategies has been studied to maximize the profits of GENCOs while
considering rival behavior. In this process, GENCOs first recognize their rival’s behavior and then solve the
profit maximization problem using different optimization methods such as particle swarm optimization (PSO)
[7], fuzzy adaptive PSO [8], decomposition-based PSO [9], PSO combined with simulated annealing (SA) [10],
self-organizing hierarchical PSO [11], genetic algorithm [12, 13], bat-inspired algorithm [14], gravitational search
algorithm (GSA) [15], fuzzy adaptive GSA [16], shuffled frog leaping algorithm [17], temporal difference learning
method [18], hybrid SAGA [19], and differential evolution [20]. The normal probability distribution functions
are used to model the competitive behavior of rivals. The generation limit constraints have also been considered
in strategic bidding problem. This consideration is not pragmatic as real-time generation is limited by ramp
rates; this would affect the operation of generating units [21, 22].

In the literature, strategic bidding problem with ramp rates constraints has been given less attention,
which is critical to ensure practical optimal results. Therefore, without ramp rates, dispatch of generation
is optimal but it does not represent the practical situation of generation unit. Thus, to obtain the practical
optimal solution, in this paper, the generators with ramp rates have been considered. However, if ramp rates
are considered a constraint, the number of decision variables involved in the problem will increase, and hence
increases the complexity of the problem which requires an effective solution process. Classical and heuristic
methodologies have been implemented to solve strategic bidding problems. As the size of the system increases
with the number of decision variables, the classical approaches face problems in finding the global optimal
solution. On the other hand, the heuristic approaches take lower computation time [12] and find the global
optimal solution.

In this regard, a heuristic technique, namely the GSA is used. This technique is based on the law of
gravity and interactions of masses. GSA implementation for optimization problem provides high-quality results
[14, 23–26]. As this algorithm has the best tunable parameters, its most important feature is adjustment of
gravitational constant for improvement of the search accuracy. It provides fast solution with high-quality results
[27]. The initialization of population parameter is configured randomly in the GSA, and the activity approach
of reinforcement agents is at first dependent on randomness [28]. If the random guess is not far away from the
optimal result, it can be solved in a quick convergence. Notwithstanding, it is normal to express that on the
off chance that we start with a random guess, which is exceptionally far from the existing result, let us say
in the most pessimistic scenario, it is in the opposite area. At that point, the guess, search, or enhancement
will take impressively additional time, or in the most pessimistic scenario, it ends up immovable. Obviously, in
nonappearance of any from the earlier information, it is not conceivable that we can make the best introductory
guess. Coherently, we ought to be looking every way all the while, or more solidly, the opposite way. In this
context, this paper has the following contributions:

1. In the modified gravitational search algorithm (MGSA), the oppositional-based learning concept is incor-
porated to generate the population opposite to the initial population. This feature will further exploit the
search space more appropriately, which will lead to optimal solution in lesser number of iterations.

2. The optimal bidding strategy with the aim of profit maximization of power suppliers considering ramp
rates is formulated, and solved by using a MGSA.
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The rest of this paper is organized as follows: Section 2 describes a strategic bidding problem formulation
considering ramp rates. Section 3 discusses modified gravitational search algorithm. Section 4 demonstrates
simulation results and discussion. In Section 5, conclusion is given.

2. Problem formulation
In a pool-based day-ahead electricity market, sealed bid and uniform market clearing price (MCP) are consid-
ered. It is assumed that the individual power supplier submits a bid to the market operator (MO) as a linear
supply bid function in a pool-based electricity market. The linear supply bid of nth supplier can be expressed
as:

Bnt(Gnt) = Xnt + YntGnt n = 1, 2, ......, S, (1)

where t ∈ T is the interval of time, T is the number of time intervals, S is number of power suppliers, Gnt is
the active power generation at tth hour, Xnt and Ynt are bidding coefficients which must be nonnegative.
After receiving bid from the power suppliers, MO sets generation output of active power that meets the total
demand of the system. It ensures that (2) to (5) must satisfy the dispatch of the generation when the load flow
balance (3), generation limits (4), and ramp rates constraints (5) are considered.

Xnt + YntGnt = Rt n = 1, 2, ......, s (2)

s,T∑
n=1,t=1

Gnt = Q(Rt) (3)

Gmin,n ≤ Gnt ≤ Gmax,n n = 1, 2, ......, s (4)

−RDn ≤ Gnt −Gn,t−1 ≤ RUn, (5)

where Gmin,n and Gmax,n are lower and upper limits of the active power output of nth supplier respectively.
Rt is the MCP, RDn and RUn is the ramp down and ramp up limits of generators. Q(Rt) is the forecasted
load by the MO at hour t .
The solution of equality constraints (2) and (3) when inequality constraints (4) and (5) is ignored, are:

Rt =

Q (Rt) +
s,T∑

n=1,t=1

Xnt

Ynt

s,T∑
n=1,t=1

1
Ynt

(6)

Gnt =
Rt −Xnt

Ynt
n = 1, 2, ......, s. (7)

If the solution of Gnt in (6) exceeds the maximum limits, Gnt is set to Gmax,nt . If Gnt < Gmin,nt , Gnt is set
to zero.
The production cost function of the nth supplier is

Cn(Gnt) = xnGnt + ynG
2
nt, (8)

3870



SINGH and FOZDAR/Turk J Elec Eng & Comp Sci

where xn and yn are cost coefficients of the nth supplier.
For the nth power supplier, the objective function for profit maximization can be defined as:

Maximize :F (Xnt, Ynt) = RtGnt − Cn(Gnt) (9)

Subject to: (6) and (7).
The overall objective of the supplier is to determine Xnt and Ynt so as to maximize F (Xnt, Ynt) subject to (6)
and (7).
In a day-ahead electricity market bidding data of next duration is confidential because sealed bid is submitted by
the suppliers to the pool. Therefore, rival bidding behavior information is hidden from the suppliers. However,
the last bidding information is available, based on this information calculation of MCP is possible. Thus, the
estimation of bidding coefficients of rivals is difficult for individual supplier.
Let Xnt and Ynt follow the joint normal distribution with following probability density function (pdf)

pdfnt(Xnt, Ynt) =
1

2πσnt
(X)σnt

(Y )
√

1−ρ2
nt

exp
{
− 1

2(1−ρ2
nt)

[(
Xnt−µ

(X)
nt

σ
(X)
nt

)2

+

(
bnt−µ

(Y )
nt

σ
(Y )
nt

)2

− 2ρnt(Xnt−µnt
(X))(Ynt−µnt

(Y ))
σ
(X)
nt σ

(X)
nt

]} (10)

This approximation can be indicated in the form of

(Xnt, Ynt) ∼ N

{[
µ
(X)
nt

µY
nt

]
,

[
(σ

(X)
nt )

2
ρntσ

(X)
nt σ

(Y )
nt

ρntσ
(X)
nt σ

(Y )
nt (σ

(Y )
nt )

2 ,

]}
(11)

where ρnt is correlation coefficient between Xnt and Ynt at hour t , parameters of the joint distribution is µ
(X)
nt ,

µ
(Y )
nt , σ

(X)
nt , and σ

(Y )
nt . The marginal distributions of Xnt and Ynt are both normal with mean values of µ

(X)
nt

and µ
(Y )
nt , and standard deviations σ

(X)
nt and σ

(Y )
nt respectively.

Based on the data from the last bidding, these distributions can be determined [5]. Probability distribution
function which represents the combined distribution of Xnt and Ynt along with the objective function (9),
equality constraint (6), and inequality constraints (7) forms a stochastic optimization problem.
In the next section, a modified gravitational search algorithm is presented, which is used to solve the above
stochastic optimization problem.

3. Modified gravitational search algorithm

Solution of the nondifferentiable and nonlinear optimization problems by GSA has been proposed in [29]. In
GSA, individual agents provide a better solution to the problem. The solution procedure of MGSA in the form
of flowchart is given in Figure 1.

3.1. Population initialization

Consider that a system has N agents (masses), the position of ith agent is denoted by:

λi = (λ1
i , ......, λ

B
i , ......., λ

A
i ) for i = 1, 2, ........, N, (12)

where λB
i ∈ [LB

i , U
B
i ] ,B = 1, 2......., A is the ith agent position in the Bth dimension and A is search space

dimension, UA
i and LB

i are upper bound and lower bound limits of ith agents in Bth dimension.

3871



SINGH and FOZDAR/Turk J Elec Eng & Comp Sci

Figure 1. Solution procedure of MGSA.

3.2. Opposition phenomenon in GSA

Oppositional-based learning approach has been presented in [30]. In this work, opposite and current agents are
considered in order to get a better approximation of current agent solution. It is established that an opposite
agent provides improved optimal results compared to that of random agent result. The opposite agent’s position
(Oλi) is completely denoted by components of λi .

Oλi = [Oλ1
i , ......, OλB

i , ....., OλA
i ], (13)

where OλB
i = LB

i + UB
i − λB

i with OλB
i ∈ [LB

i , U
B
i ] is the position of ith opposite agent Oλi in the Bth

dimension of oppositional population.

3.3. Fitness evaluation
Here the total profit of suppliers is designed as the fitness function fiti . At the modified gravitational search
algorithm for starting an iterative method, a combined population of {λ,Oλ} is created with all the constraints
satisfied. Selection approach is used to select the N number of suitable agents from the combined population
set of {λ,Oλ} to create current population λ .

λi(j) =

{
Oλi(j) if fit(Oλi(j) > fit(λi(j))

λi(j) otherwise
(14)

The algorithm simultaneously evaluates the fitness of an agent and its opposite agent. The agent with better
fitness value is used in further computation and the other agent is discarded.
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3.4. Acceleration of agents

The fitness of an individual agent is used to estimate its mass. The estimation of individual agent mass is as
follows: 

Mi(j) =
mi(j)

N∑
l=1

ml(j)

mi(j) =
fiti(j)−worst(j)
best(j)−worst(j)

(15)

where Mi(j) is the normalized mass of ith agent at jth iteration, and best(j) and worst(j) are the best and
worst fitness of all agents at jth iteration.
The acceleration aBi (j) acting on ith agent at iteration j is evaluated as follows:

aBi (j) =
∑

l ∈ Gbest, l ̸= i

randl G(j) Mi(j)
Ril(j)+E (λB

l (j)− λB
l (j)) (16)

where set of first 2% agents is Gbest with best value of fitness and greatest mass randl is the uniform random
number within the interval [0,1], Ril(j) is the Eculidean distance between two agents ith and lth at jth iteration
and E is a small positive constant. The gravitational function G(j) in (15) is represented by:


G(j) = G×

(
1− iteration

Total iteration

)
G = c max

B∈{1,2,.....,A}

(
λB
U − λB

L

) (17)

where c is search space.

3.5. Update the position and velocity of agents

In next (j + 1)th iteration, the position and agents velocity are calculated as follows:

{
vBi (j + 1) = randi × vBi (j) + aBi (j)
λB
i (j + 1) = λB

i (j) + vBi (j + 1)
(18)

where randi is a random number within the interval [0,1], vBi (j) is the velocity of ith agent at Bth dimension
during jth iteration, and λB

i (j) is the position of ith agent at Bth dimension during jth iteration.

3.6. The solution procedure of MGSA for bidding strategy problem

The main steps of the MGSA for bidding strategy problem are explained in detail as follows:

Step 1. Set input data of considered test system for bidding strategy and parameters of the proposed MGSA.

Step 2. Randomly generate initial population (λ) for Ynt in the interval between yn and M × yn and M is set
to be 10.

Step 3. Determine the market clearing price and dispatch of each generator.

Step 4. Set power generation limits and system load balance, and then calculate profit of each generator.
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Table 1. Six generators data with ramp rates.
Generator x y Gmin (MW) Gmax (MW) RD (MW) RU (MW)
1 4.10 0.00028 50 680 80 85
2 4.50 0.00312 30 150 45 60
3 4.10 0.00048 50 360 60 65
4 3.74 0.00324 60 240 45 80
5 3.82 0.00056 60 300 70 80
6 3.78 0.00334 40 160 35 40

Table 2. Load data for 24 h.
Time 1 2 3 4 5 6 7 8 9 10 11 12
Load 1033 1000 1013 1027 1066 1120 1186 1253 1300 1340 1313 1313
Time 13 14 15 16 17 18 19 20 21 22 23 24
Load 1273 1322 1233 1253 1280 1433 1273 1580 1520 1420 1300 1193

Step 5. Generate oppositional population (Oλ) , and then determine the market clearing price and dispatch of
each generator.

Step 6. Set power generation limits and system load balance, and then calculate profit of each generator.

Step 7. Evaluate the fitness function for all random and oppositional population.

Step 8. Select N fittest agents from current and oppositional population as current population.

Step 9. Determine the mass of every agent and gravitational constant respectively.

Step 10. Calculate all agents’ acceleration.

Step 11. Update the velocity and the position of the agent, respectively.

Step 12. If the maximum number of iterations is not exceeded go to Step 3, otherwise the procedure will be stopped
and the optimum bidding strategy will be printed.

4. Simulation results & discussion
In this section, the proposed algorithm, the MGSA, is tested on a system of six generators having a load
demand of 1033 MW for a single-hour trading period of power suppliers’ profit maximization as a base study.
Furthermore, it is analyzed with other well-known established methods such as GA [12], PSO [7], and GSA [29]
using the statistical results. Then, a proposed bidding strategy for profit maximization of power supplier of six
generators with the consideration of ramp rate for 24-h trading period is investigated using the MGSA. The
results are presented without and with ramp rates using the MGSA. The generator data for six generators with
ramp rates are given in Table 1 and load data for 24 h is given in Table 2. The simulations are carried out using
MATLAB R2014a with a 3.20 GHz, i5 processor, 4GB RAM PC. The schematic diagram of the considered test
system is given in Figure 2 and the best tuned parameters for the proposed MGSA, GSA [29], PSO [7], and GA
[12] are given in Table 3.

The bidding coefficients Xnt and Ynt cannot be considered separately in order to maximize the profit of
generators. As the coefficients Xnt and Ynt are interdependent parameters [31], where one coefficient has been

3874



SINGH and FOZDAR/Turk J Elec Eng & Comp Sci

Table 3. Best tuned parameters.
Parameters GSA [29] and MGSA PSO GA
Size of population 50 50 50
Iterations 1000 1000 1000
Gravitational constant (G) 100
Learning factors (c1 = c2) 2.0
inertia constant (w) 0.9 to 0.4
Length of chromosome 12
Elitism probability (Pe) 0.15
Crossover probability (Pc) 0.85
Mutation probability (Pm) 0.005

Figure 2. Schematic diagram of the six-generator system.

known as a priori, and the other is determined using an optimization approach. These parameters are used to
maximize the GENCO’s profit. Therefore, in this work, the considered value of coefficient Xnt is kept fixed.
The optimal values of bidding coefficients Ynt is searched from the interval between yn and M × yn , and M

is set to be 10. This assumption is kept unchanged for single and 24 h.

Table 4. Optimal bidding coefficients for single-hour trading period

Generators Xnt
Ynt

GA [12] PSO [7] GSA [29] MGSA
1 4.10 0.003359 0.003409 0.003440 0.003539
2 4.50 0.034909 0.018594 0.021818 0.035696
3 4.10 0.005428 0.005616 0.005368 0.005467
4 3.74 0.028061 0.038421 0.038694 0.035635
5 3.82 0.005037 0.006140 0.006722 0.006149
6 3.78 0.035641 0.030983 0.032325 0.040405

Here first, the optimal bidding strategy for a system of six generators with load demand of 1033 MW is
investigated using the proposed MGSA, standard GSA [29], PSO [7], and GA [12] in single-hour trading period
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for power suppliers’ profit maximization. The MCP and net profits evaluated at corresponding optimal bidding
coefficients as given in Table 4 obtained using GA [12], PSO [7], GSA [29], and MGSA are 5.35 $/MW, 5.43
$/MW, 5.46 $/MW, 5.48 $/MW, and $ 1265.21, $ 1328.61, $ 1362.6, and $ 1394.67, respectively. The optimal
coefficient values and net profit using the proposed MGSA and other methods for comparison are presented in
Tables 4 and 5, respectively. It can be observed from Table 5 that MGSA is getting higher MCP and highest
profit amongst all the methods, showing the effectiveness of the MGSA.

Table 5. Optimal bidding results for single-hour trading period.

Generators
GA [12] PSO [7] GSA [29] MGSA

Gnt Profit Gnt Profit Gnt Profit Gnt Profit
(MW) ($) (MW) ($) (MW) ($) (MW) ($)

1 371.48 426.25 385.58 469.4 392.2 490.3 387.1 493.5
2 30 22.74 46.54 36.31 40.88 34.03 30 26.69
3 229.53 261.96 232.78 282.5 250.2 310.2 249.2 315.0
4 60 85.02 60 89.46 60 91.53 60 92.94
5 298.95 407.79 258.22 377.2 240.8 362.5 266.7 403.7
6 43.04 61.45 49.88 73.76 48.86 74.1 40 62.79

MCP ($/MW) 5.35 5.43 5.46 5.48
Total Profit ($) 1265.21 1328.61 1362.6 1394.67

Total Generation (MW) 1033 1033 1033 1033

Table 6. Performance comparison of the considered algorithms for the six-supplier system.
Total Profits ($) GA [12] PSO [7] GSA [29] MGSA
Best ($) 1265.21 1328.61 1362.60 1394.66
Worst ($) 1117.81 1200.75 1268.19 1287.44
Mean 1166.54 1234.83 1297.44 1313.86
SD 31.85 29.60 28.15 24.40

Furthermore, to compare the algorithms’ robustness, quality solutions of 100 trials for all the considered
algorithms are obtained and presented in Table 6. It can be observed from Table 6 that the proposed MGSA is
getting better results in terms of mean and standard deviation showing its strength.

On the basis of this, the proposed bidding strategy for profit maximization of power suppliers with and
without ramp rate is evaluated using the MGSA for a trading period of 24 h. The values of bidding coefficient
Xnt given in Table 4 are kept constant for 24 h and optimal values of bidding coefficient Ynt are obtained
using the MGSA. Finally, using these coefficients Xnt and Ynt , MCPs are calculated for every hour. These
procedures are systematically estimated for both with and without ramp rates and bidding coefficients for all
six generators are plotted for with and without ramp rates shown in Figure 3.

Similarly, MCPs with and without ramp rates are shown in Figure 4 for each hour. From figure 4, it can
be assessed that in case of ramp rates, MCP values vary dynamically for each hour in contrast to without ramp
rates which exhibit sudden variation while operating at the same levels for many hours, showing the inadequacy
of the method to apprehend the realistic state of generators operation. Thus, ramp rate is essential to measure
the dynamics of generator operation which is here correlated with obtained MCPs.

Based on the obtained bidding coefficients and MCP values, generator dispatch and their corresponding
profit are evaluated. The individual generator power dispatch and their profits are shown in Figures 5 and 6
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Figure 3. Values of Ynt for different generators with and without ramp rates

Figure 4. MCP with and without ramp rates.

and Table 7, respectively. Graphical representation of Table 7 is shown in Figure 7.
From Figure 3, it can be observed that with ramp rates, lower values of the bidding coefficients are

obtained than without ramp rates in the majority of hours contemplating the higher values of MCPs. Thus,
results in increased profit of generators by $ 1612 in comparison to without ramp rates. This is shown in Figure
8. This profit may be further increased for a larger system and for longer bidding duration.

The convergence characteristics of the MGSA are shown in Figure 9. It is deduced that the MGSA
provides fast convergence characteristics at initial stage and reaches to the better optimum solution with the
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Figure 5. Generation dispatch with ramp rates.

Table 7. Profit of individual generators with and without ramp rates.

Hours Profit of generators without ramp rates Profit of generators with ramp rates
1 2 3 4 5 6 1 2 3 4 5 6

1 543.56 27.92 251.19 95.39 459.53 64.42 497.32 66.42 201.07 163.46 469.96 66.41
2 641.52 27.92 313.2 95.39 214.07 64.42 359.77 67.47 288.72 165.51 472.59 66.41
3 668.3 27.92 250.3 98.7 189.34 134.95 346.68 67.55 298.16 165.68 475.78 85.45
4 508.81 36.9 236.69 110.61 460.85 80.55 271.69 29.41 460.06 185.93 448.32 66.41
5 495.28 27.92 424.24 157.24 263.16 80.62 494.67 29.41 418.85 107.31 407.3 66.41
6 838.03 27.92 229.24 95.39 227.75 64.42 672.01 52.71 212.82 121.41 458.7 66.41
7 386.43 55.35 450.49 153.98 416.61 135.48 635.82 29.41 412.05 98.37 406.74 93.72
8 413.1 56.69 450.49 180.19 460.85 118.74 502.57 69.89 406.59 170.37 475.78 116.78
9 469.65 80.86 450.49 139.48 374.1 162.02 872.8 37.19 455 111.2 193.71 79.98
10 445.74 57.64 450.49 237.52 391.51 137.92 670.46 33.02 468.41 104.29 475.78 120.62
11 420.06 82.31 299.19 210.04 460.85 193.56 520.93 62.86 349.1 241.5 475.78 134.56
12 659.32 61.98 240.54 157.09 460.85 168.54 678.46 57.89 334.31 147.31 475.78 137.82
13 545.86 55.28 396.59 143.86 460.85 115.86 774.29 49.23 268.61 131.78 433.14 118.78
14 652.72 37.3 436.93 111.3 460.85 81.28 872.8 39 416.03 114.24 250.13 102.81
15 735.55 27.92 429.85 95.39 286.48 64.42 547.71 63.64 468.41 126.18 430.22 75.69
16 634.73 55.86 184.16 213.5 460.85 117.03 434.08 72.01 468.41 174.72 475.78 105.73
17 506 49.09 450.49 132.26 460.85 128.89 543.15 78.3 468.41 154.42 393.47 109.62
18 497.71 78.75 450.49 197.09 404.69 193.56 872.8 82.21 233.01 161.08 429.72 139.41
19 838.96 50.62 197.18 135.07 355.9 106.51 649.52 29.41 467.03 98.37 474.05 66.41
20 838.96 74.28 302.11 170.03 432.25 193.56 631.01 89.92 468.41 253.52 475.78 103.99
21 657.61 59.85 450.49 190.73 460.85 165.96 861.59 53.27 393.17 189.03 475.78 94.91
22 640.15 71.35 361.92 177.5 460.85 151.78 780.44 39.82 468.41 110.87 475.78 83.73
23 574.27 62.46 450.49 158.08 341.32 131.01 443.27 85.9 468.41 207.57 463.62 74.75
24 644.34 30.8 298.32 100.73 460.85 101.69 598.96 35.68 446.03 98.37 414.95 86.88

lapse of time, thereby not trapped in local minima. The reason for obtaining better results using the MGSA is
that the gravitational constant maintains search accuracy in the GSA [29], which drops with time resulting in
a rapid convergence rate. In addition, in the standard GSA [29], the opposition operator provides the search
space beyond the reach of agents and thus enhances the GSA’s [29] exploration capacity.
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Figure 6. Generation dispatch without ramp rates.

Figure 7. Profit of individual generators for each hour with and without ramp rates.

5. Conclusions
In this paper, the bidding strategy problem for profit maximization of power generators in a day-ahead electricity
market is formulated considering ramp rate constraints and solved by using the MGSA. The profit obtained
by a supplier in this formulation is not only related to its price-energy curve but also to its ramp rate. This
work investigates the ramp rate effect on the profit of the power supplier. A standard is established for the
estimation of the outcome of the competition between suppliers for commitment. Moreover, the process for
optimizing the profit of an individual power supplier while ensuring its success in competition with its rivals
are proposed by fine-tuning the ramp rate and bidding coefficients. The results obtained indicate that the
participation of generators in a day-ahead electricity market bidding process without considering ramp rate
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Figure 8. Comparative total profit assessment of generators with and without ramp rates.

Figure 9. Convergence characteristics for the MGSA.

limits will cause economic loss to the generators as this extra cost is beared by generators. Consideration of
hourly ramp rates provides practically feasible values of generation dispatch for each unit. The net profit of
generators is also increased by incorporation of hourly ramp rate limits because the market clearing price for
each hour is changed. The possible advantages cannot be ignored, and that bidding strategy can provide an
opportunity for an individual power supplier to enhance their profit by adjusting their bid to the ramp rates
and bidding coefficients. Therefore, the proposed bidding strategy considering ramp rate constraints is valuable
for the market operator to recognize the effect of ramp rate constraints on the market outcomes and for the
power supplier to develop bidding strategy in the light of operational results.
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