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Abstract: The voltage and frequency stability issues of power systems are the main challenges that arise from high
penetration levels of wind energy systems. This paper presents an effective solution for voltage and frequency stability
problems by using a superconducting magnetic energy storage (SMES) system controlled with a fuzzy logic controller
(FLC). The proposed control system can suppress the voltage and frequency fluctuations due to the high variations of
wind speed. In addition, the proposed control system is suitable for both balanced and unbalanced distribution systems
with high penetration levels of wind turbines (W'Ts). A squirrel cage induction generator (SCIG) is selected in the case
study, which represents the worst scenario of WT generation from the voltage and frequency stability aspects. This is
due to the high reactive power consumed by the SCIG from the utility grid during steady state and voltage fluctuations
that may lead to harmful consequences for power system components. The proposed control method is validated using
the IEEE 33-bus radial distribution network (RDN), wherein the SMES and WT systems are connected to the weakest
points of the RDN. The obtained results demonstrate the superior performance of the proposed FLC-SMES system for

alleviating the voltage and frequency fluctuations of the distribution power system during high variations of wind power.

Key words: Fuzzy logic control, superconducting magnetic energy storage, distribution systems stability, wind power

generation

1. Introduction

Recently, new renewable energy resources (RERs) have become the most convenient sources in replacing fossil
fuels. RERs possess several merits over conventional generation sources, such as being clean and unpolluted,
renewability, and not requiring expensive maintenance [1-3]. The most vastly widespread RERs are wind, solar
photovoltaic (PV), biomass, hydropower, and geothermal energy systems. Wind energy has been given global
attention due to its high-power generations of up to 10 MW in a single wind turbine, the low cost of generated
kWh, and being environmentally friendly. Therefore, wind energy systems are suitable for high penetration
levels of RERs that may lead to full replacement of conventional energy sources [4-7].

However, high penetration levels of wind energy have led to frequency and voltage instabilities in utility
grids due to the intermittent nature of wind power [8, 9]. Furthermore, the high penetration levels of large
wind farms may act as adverse effects on the electrical grid under abnormal faulty conditions [10]. Thus,
voltage stability, frequency stability, and damping oscillations have been highlighted as critical challenges to the

integration of wind energy with high penetration levels in utility grids. Frequency stability is considered one
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of the major issues that face electrical power systems, wherein the knowledge of the frequency deviation (Af)
value is of prime importance for measuring the level of the system stability. Preserving the frequency stability
can be achieved through the power balance between the generation and the load-demand sides. In addition, the
existence of heavy loads and low power factor loads represents another challenge for voltage instability problems
in many electrical networks. These factors directly affect the power transfer capability and reliability of the

power system [11-13].

There are several attempts in the literature to provide solutions for solving voltage and frequency
instability issues. The flexible AC transmission systems (FACTS) controllers are considered the most popular
devices for supporting reactive power to enhance voltage stability [14, 15]. However, power system stabilizer
(PSS)-based FACTS devices are needed for damping the oscillations [16]. Moreover, several optimization
methods were employed in the literature for setting the parameters and locations of some FACTS devices,
such as the thyristor-controlled series capacitor (TCSC) and static var compensator (SVC). This, in turn, can
improve the voltage stability and minimize the active power losses [17]. Furthermore, on-load tap changing
(OLTC) transformers were utilized for preserving an acceptable range of voltage at consumers’ receiving points.
This, in turn, can guarantee satisfactory operation and lifetime of the client apparatus. However, OLTC and
FACTS strategies are not effective in the case of highly fluctuating wind generation systems, which may occur

faster than the equipment handling time [18].

From another perspective, energy storage systems (ESSs), such as batteries [19, 20], flywheels [21, 22],
pumped hydro [23, 24], etc., were employed in the literature for solving the frequency and voltage fluctua-
tion problems. This can be done through charging and discharging operations of the ESSs to balance the
power between RERs and loads. However, the battery and flywheel ESSs suffer from very slow responses in
compensating power fluctuation. Moreover, they also have low efficiency and short lifetimes compared to su-
perconducting magnetic energy storage (SMES) [25]. In addition, SMES systems have short time delay during
charging/discharging processes, high efficiency, and long lifetime [26-28]. There are several proportional inte-
gral (PI) control methods developed for SMES systems to alleviate voltage sag/swell events and wind power
generation transients [29]. However, these methods suffer from slow response and sensitivity to the system

parameters [30, 31].

There are several control approaches for SMES systems in the literature. In [29], the conventional
proportional-integral (PI) control method was employed. However, the presented method using a PI controller
is not adaptive with the fluctuating behavior of wind generation and load demands. An improved self-tuning
control method for SMES was provided in [32]. However, this controller lacks simple implementation and safe
operation of SMES devices due to ignoring the state of charge (SoC) of the SMES system. Another model
predictive-based control method was developed in [33] considering the SoC of the SMES. This method suffers
from the complex implementation of its weighting factors and its dependency on the accurate power system
model and parameters. Table 1 summarizes the contribution of this paper with the most featured research in
the literature.

Motivated by the aforementioned drawbacks in the existing attempts in the literature, this paper proposes
a new robust control method based on a fuzzy logic-controlled SMES system. The proposed system and controller
can enhance the voltage and frequency instabilities of power systems with high penetration levels of wind energy.
Furthermore, the proposed system is validated using the IEEE 33-bus distribution system with 30% penetration

level (i.e. with respect to loading power) of the wind energy systems. A squirrel cage induction generator (SCIG)
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Table 1. Contributions of this paper with the most featured research in the literature.

Reference | Methodology Mitigating fluctuations | SMES SOC | Distribution system Complexity
Ref [29] PI control method X X Balanced Low

Ref [32] Self-tuning control method v X Balanced High

Ref [33] Model predictive control v v Balanced Very high
Proposed | SMES device controlled by FLC | v v Balanced/unbalanced | Low

is selected as a case study in this paper because it represents the worst wind generation scenario. This is because
it requires high reactive power during fluctuations in comparison with the other wind generators. The selected
case study includes both balanced and unbalanced radial distribution networks (RDNs). The validated system
shows a great enhancement of the voltage and frequency stability, which is obtained by installing the proposed
SMES system and controller in both balanced and unbalanced distribution systems. From the above discussion,

the main contributions of this paper can be summarized as follows:

o This paper presents an effective solution for mitigating voltage and frequency stability problems based on
employing the SMES system. The proposed system benefits from the advantage of enhancing the voltage

variation of the distribution system to a specified acceptable limit (i.e. £5% of the rated value).

e An improved controller design method for SMES systems is presented based on the FLC method for
damping the overshoot and undershoot spikes of the system frequency due to the transient speed variation

of the high penetration level of wind power generation.

¢ The proposed system and controller are capable of improving the performance of three-phase balanced and
unbalanced distribution systems considering the high wind speed variation and large unbalanced loading
conditions.

e The proposed solution has the advantage of reducing the grid reactive power required for the SCIG
excitation circuit by injecting the reactive power by the SMES. Therefore, the transmission line power

losses are reduced in accordance to the local supply of the reactive power.

The remaining part of the paper is organized as follows: Section 2 introduces the voltage and frequency
problems impacted by wind power fluctuations. Section 3 details the modeling of the selected case study,
including the studied system and the wind power generator. Section 4 presents the proposed SMES system and
FLC method. Comparative studies and results to validate the effectiveness of the proposed SMES system and

FLC method are presented in Section 5. Finally, Section 6 summarizes the obtained results and conclusions.

2. Problem description
2.1. Frequency stability problem

The frequency stability of the power system can be maintained according to the active power balance between the
generation and load demand sides. There are several additional factors that may affect the frequency stability,
such as sudden load variations in the power system in which the frequency fluctuates until the aggregate
generation in the system meets the new load condition. Furthermore, the increased installations of wind energy
sources are adversely affecting the frequency stability of the system, which results from the low inertia property
of wind systems. Hence, a power system with high penetration levels of wind energy generation is expected to

face more frequency stability challenges.
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2.2. Voltage stability issue

The voltage stability is related to the balance of reactive power loading and reactive power capability within a
power system. Voltage dips occur in the power system in the case of reactive power unbalance. In a similar way
to the frequency stability problem, the unbalanced loading can lead to unbalanced voltage drop. This in turn
increases the current drawn by inductive loads and the rotor heating due to the negative sequence magnetic
flux. This flux generated in the stator opposite to the rotor rotation induces negative sequence voltage on the
shorting bars. Thence, negative sequence short-circuit current flows in the rotor. Moreover, the false operation
of protective devices may trip the system due to the high resultant current flowing in the neutral line at earth

fault. These factors directly increase the required reactive power support.

2.3. Wind power fluctuations

The fluctuating nature of the wind power generation comes from its dependence on the weather situation
and the natural change of wind turbine speed. These fluctuations in wind speed impose serious challenges
to power system designers and operators. Fluctuations in the frequency and voltage of power systems, low
power system inertia, and accurate protective relays settings are the main consequences of the variable nature
of wind generation systems. In addition, wind energy is a noncontrollable energy source that causes problems
with voltage stability and transient stability. Consequently, several performance criteria of the power system
are influenced, such as the power system operation point, the power flow of active and reactive power, nodal

voltages, and power losses of the system.

3. Modeling of power system
3.1. Studied system model
Figure 1 shows the single-line diagram of the studied IEEE 33-bus distribution system. The selected case study

considers the system data of loads and line impedances as given in [34]. This case study of the power system is
studied under two conditions: balanced loading and unbalanced loading. The case study of unbalanced loading
is emulated by unequal division of the electrical loads on the three phases with 30%, 20%, and 50% of full
loading between phases A, B, and C, respectively. The designed SMES units and the wind power generation
system were placed at buses 18 and 33, which represent the weakest points of the distribution system. The
parameters of the SCIG and SMES model are summarized in Table 2 and Table 3, respectively. The initial SoC
of the SMES system is assumed to be 50% of its maximum value (320 kJ).

Table 2. Parameters of the SCIG system.

Component Symbol Value
Power rating MVA 0.6/0.9
Voltage Vims (V) | 480
Rotor resistance R, (pu) | 0.01909
Magnetizing reactance | X,, (pu) | 1.354
Stator resistance R, (pu) 0.01965
Stator reactance X; (pu) | 0.0397
Rotor reactance X, (pu) | 0.0397
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Figure 1. The selected case study of IEEE 33-bus radial distribution system.

Table 3. Parameters of the SMES system.

Component Value
SMES energy (Esyps) 160 kJ
SMES current (Isyes) 800 A
SMES inductance (Lsypes) | 0.5 H
DC link capacitor 20 mF

3.2. Modeling of SCIG wind power generation

The SCIG is selected as a wind turbine generation system in the studied case. Figure 2 shows the complete
system of the wind power generation. A capacitor bank is normally connected to the SCIG system in order to
inject the required reactive power for improving its power factor. The generated wind power of the turbine can
be determined using Eq. (1) as follows [35]:

Soft-starter

|

|

I
Capacitor Bank

Figure 2. Schematic diagram of the SCIG wind turbine system.

P, = 0.5C,()\, B)Apv®, (1)
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where A represents the area covered by the rotor, p is the air density, v denotes wind speed, C, is the
performance coefficient of the turbine, A represents the tip speed ratio of the rotor blade tip speed to wind
speed, and ( is the blade pitch angle (in degrees). The pitch angle control method can be employed for
stabilizing the generator output power to an acceptable limit during high wind speeds. In the pitch angle
control method, the pitch angle is preserved at zero degrees if the measured output power is lower than its
nominal value whereas the controller increases the pitch angle to maintain the measured output power to its
nominal limit if the output power is increased. The coefficient Cy, (A, 8) of SCIG wind power generation is given

using Eq. (2) as follows [36]:

C C
Cp(X ) = C1(52 = Cafp — Ca)e™ > + Coi, (2)
where \; can be computed as follows:
1 1 0.035
+— = Ci( ) ®3)

\; A+0.088 pB3+1

where the coefficients values of C; to Cg of the selected case study are given in [37].

4. The proposed SMES system and FLC method
4.1. Proposed method for mitigating voltage/frequency fluctuations

This paper proposes an improved method and new application of a SMES system to mitigate the frequency
and voltage fluctuations in distribution systems with high penetration levels of wind energy. The existence of
the high penetration levels of wind power results in the shortage of real and reactive power controls. Indeed,
the control of active and reactive power is essential in order to preserve stable frequency and voltage within
limits, whereas the lack of reactive power can lead to voltage dip problems and no control in the active power
can cause frequency deviations. Therefore, this work proposes a performance improvement of distribution
networks in two different situations: a balanced distribution system and an unbalanced distribution system,

with controlling active and reactive powers of the SMES system.

4.2. SMES system and modeling

The SMES system consists of the superconducting coil (SC) as a magnet, cryogenic refrigerator, cryostat/vacuum
vessel to preserve the coil in the superconductivity state, and a cooling protection system. The power condition-
ing system of the SMES is shown in Figure 3. It contains a DC-DC chopper, DC-link capacitor, bidirectional
voltage source converter (VSC), and coupling transformer. The energy is stored as a magnetic field created by
the direct current flowing through the SC. In addition, the SC should be maintained within the superconductiv-
ity state by immersion in liquid helium at 4.2 K in an insulated vacuum cryostat. The proposed FLC method
is used to control the DC-DC chopper. SMES action is determined by adjusting the duty cycle command
(D), which is compared with 1 kHz sawtooth signal to switch ON/OFF the switches of the DC-DC chopper.
Moreover, the bidirectional VSC is employed to interface the SMES with the distribution system and to control
their energy exchange. The bidirectional VSC is controlled using the synchronous d-q reference frame, which

is detailed in [38, 39]. The stored energy and the output power of SMES are calculated using Eqgs. (4) and (5),
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respectively, as follows:

1
E = iLSMEslg’MESH (4)
dE dl
= E = LSMESLS‘MES% =VsmeslsmEs, (5)

where F, Isyes, Vsmes, and Lgyps represent the initial SMES energy, initial SMES current, voltage of the
SMES coil, and SMES coil inductance, respectively.

|
AC Vil | Vim |
System 25/1.25 KV | . &g
— |
Fos= [t
S

| =
Vabc fabe \ N J;ﬂ_. |
A ‘ \
Uy ! Switchs Gate |

|
L PWM N R L |

PLL 8 »labc/dq] v, I_':::::' ffffffffffff

Comparator

Sawtooth signal 1000 Hz
AN g -

— I
VSC Control DC-DC Chopper Control

Figure 3. The proposed SMES system and controller.

4.3. The proposed FLC method
The proposed FLC method is employed for improving the SMES control behavior so that the SMES can

smoothly perform the charging and discharging operations with the electrical distribution system. Moreover,
the proposed enhanced FLC method considers simple implementation using only two inputs and one output
membership function (MF). The first input is the variation of wind speed, which is the difference between
actual wind speed and the reference wind speed. The second input is the change of SMES current, which is
the difference between its reference value and its actual value. The output membership function of the FLC
method is the duty cycle (D) of the DC/DC SMES chopper converter.

Figure 4 shows the proposed FLC controller with the input and output membership functions. In addition,
Figure 4 includes the rules of the FLC and the 3D graph of the inputs-output relationship of the proposed FLC
method. The design process of the input and output membership functions is based on the Gaussian membership
function. The input MFs are represented using five different linguistic variables: big negative (BN), negative
(N), zero (Z), positive (P), and big positive (BP). The output membership function is represented by using five
linguistic variables: fast discharge (FD), discharge (D), no action (NO), charge (C), and fast charge (FC). The
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look-up rules-based proposed FLC method is shown in Figure 4. If-then rules of fuzzy logic are implemented

using the rule table. Then the maximum of the minimum composition scheme is utilized for the interference

stage. The center of gravity (COG) scheme is used for implementing the defuzzification process.
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3-D graph for inputs/output proposed FLC.

Figure 4. The complete schematic diagram of the proposed FLC method for the SMES system.

The SMES system is managed through the control signal from the proposed FLC method according to

the output power of the wind generation and load demand. The SMES system possesses three main operating

modes in the distribution system, as follows:

e Charging mode: The SMES operates in charging mode when the wind-generated output power is larger
than the load demanded power until the SMES reaches the full charge situation. In this mode, the SMES
DC/DC converter operates with duty cycle D in the range of 0.5 > D > 1.0.

¢ Discharging mode: The SMES operates in discharging mode when the load demanded power exceeds the

wind generated output power until the SMES reaches the full discharge situation. In this mode, the SMES
DC/DC converter operates with duty cycle D in the range of 0.0 > D > 0.5.

e Standby mode: The SMES operates in standby mode when the SMES does not have any charging or

discharging operations and it is kept in the standby mode. In this mode, the SMES DC/DC converter

operates with duty cycle D in the range of D = 0.5.

5. Results and discussion

The proposed SMES system and FLC method were implemented using the MATLAB program. The selected
case study is based on the IEEE 33-bus system as shown in Figure 1. The SMES and SCIG wind turbine
were installed at the weak buses of the system (buses 18 and 33). The impacts of the SMES system for

smoothing power generated and enhancing frequency/voltage fluctuations were studied with intermittent 30%

wind penetration with respect to system load power. Table 2 and Table 3 summarize the developed system
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parameters for the selected case study. The system was tested at enormous variations of wind speed, which
is shown in Figure 5. Voltage profiles of other buses have not been mentioned in the results as they possess
better profiles than the selected weak buses. Moreover, the study is implemented considering both balanced

and unbalanced distribution systems.

5.1. Balanced distribution system analysis

This section presents the results of frequency fluctuations and voltage profiles at buses 18 and 33 taking into
consideration wind speed variations as shown in Figure 5, and the loads are equally distributed between the
three phases. The voltage profiles at buses 18 and 33 are shown in Figure 6a and Figure 6b, respectively,
considering three cases: (1) without installing wind or SMES systems, (2) installing wind generation only, and
(3) installing both wind generation and SMES systems. It is clear that the voltage profiles are significantly
improved by using the SMES. The voltage magnitude at bus 18 has increased from lower than 0.92 pu in the
case of no SMES to about 1.02 pu with installing the proposed SMES and controller. In addition, the voltage
magnitude has been improved at bus 33 to nearly 1.0 pu with installing the SMES system. Furthermore, the
effectiveness of the proposed enhanced design of the FL.C method has become clear as the frequency deviations
have been damped rapidly to the steady-state value.

16

14

12 ¢

10+

Wind speed (m/s)

0 10 20 30 40 50 60 70
Time (s)
Figure 5. The profile of wind speed for the selected case study.

The ability of the proposed system and controller to damp the power system overshoot and undershoot
spikes is shown in Figure 7. It can be seen that the proposed FLC method has smaller overshoots and undershoots
than that without using the SMES. This can be interpreted due to the high and fast response of the SMES
system. Moreover, the proposed system and controller are able to stabilize the power system faster than the
traditional power system not using the SMES. Therefore, enhanced frequency stability is achieved by installing
the designed SMES and the proposed FLC method.

Figure 8a shows the active and reactive power exchange of the installed SMES for the selected case study.
The proposed SMES system charges real power at high wind speed and discharges real power during low wind
speed. Hence, it is capable of compensating the variation of the frequency profile of the selected case study.
Additionally, the SMES system can inject/absorb reactive power to regulate the voltage profiles for all buses
of the distribution system during wind speed variation. The charging/discharging of real/reactive powers are

controlled so that the voltage at all buses remains at acceptable values (5% of rated value) during wind speed
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Figure 7. Performance of the frequency profile of the selected case study with balanced distribution system.

variation. The corresponding stored energy in the SMES system is shown in Figure 8b. The stored energy

increases/decreases around its rated value to compensate the fluctuation in the voltage and frequency profiles.

5.2. Analysis of unbalanced distribution system

The performance of the proposed SMES system and FLC method is also investigated with the unbalanced
distribution system. The unbalanced condition is emulated through the unequal distribution of loads among
the phases with 30%, 20%, and 50% of the total loads for phases A, B, and C, respectively. The comparison of
three-phase voltage profiles between a traditional power system without SMES and with installing the SMES
for buses 18 and 33 is shown in Figure 9 and Figure 10, respectively.

The superior performance of the distribution power system with the proposed SMES and controller in
maintaining the voltage profiles of both buses at the system limits of 5% tolerance is clear. For the voltage
profile at bus 18, voltage magnitude has increased from 0.93, 0.94, and 0.89 pu to 1.03, 1.03, and 1.0 pu for
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Figure 12. Performance of SMES with unbalanced distribution system scenario: (a) real and reactive power profiles;
(b) stored energy.

phases A, B, and C, respectively. In addition, the voltage magnitude at bus 33 has improved from 0.93, 0.95,
and 0.89 pu to 1.02, 1.02, and 0.98 pu for phases A, B, and C, respectively. Thus, the proposed system and
controller are suitable for balanced and unbalanced distribution systems operations.

Furthermore, Figure 11 compares the behavior of frequency fluctuation between traditional power systems
without SMES and the proposed controlled SMES system for unbalanced distribution systems. It can be seen
that the proposed SMES and FLC controller are able to effectively damp the frequency fluctuations in the
system. Additionally, the steady-state value with installing the SMES is stabilized faster than in traditional
power systems without SMES. Therefore, the proposed FLC-SMES is feasible under unbalanced distribution
systems operation and the enhanced damping of frequency fluctuations of the power system is obtained.

The real and reactive power profiles of the SMES system are shown in Figure 12a, and the associated
SMES energy profile is presented in Figure 12b. It can be seen that the SMES can rapidly exchange power to
stabilize the system in comparison with the other ESSs. The proposed SMES can discharge/charge real power
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at low/high wind speeds to improve the frequency variations. Moreover, the proposed SMES and FLC method
can inject/absorb reactive power to support the voltage profiles and regulate it within the acceptable limits. It
is clear from Figure 12b that the SMES energy has not exceeded its maximum rated value during the charging
and discharging operations. Thus, the proposed SMES system can compensate the variation of the frequency
profile of the selected case study in unbalanced distribution systems. The proposed FLC can also preserve
reliable operation of the SMES device according to its safe thermal and electrical constraints.

Therefore, it can be concluded from the previous results and discussion that the proposed SMES system
and controller are capable of suppressing various voltage and frequency fluctuations resulting from the high

variations of wind speed and load demands. The main benefits of the proposed controller are as follows:

e The proposed control system is suitable for both balanced and unbalanced distribution systems with high

penetration levels of wind turbines.

e The proposed controller is capable of suppressing the various types of voltage and frequency variations,

which result from the highly fluctuating nature of wind generation and load demands.

e The proposed SMES system and controller are capable of mitigating voltage and frequency stability
problems. The proposed system preserves the specified acceptable limit (i.e. 5% of the rated value) for
the PCC voltage variation of the distribution system.

e The proposed system and controller are beneficial for both balanced and unbalanced loads, which verifies

the generality of the proposed system.

6. Conclusions

This paper presented an improved SMES system and FLC method for mitigating voltage and frequency stability
problems associated with the fluctuating nature of wind energy systems. The proposed system and controller can
enhance the voltage and frequency instabilities of distribution power systems with high levels of wind energy
penetration. Moreover, the proposed system and controller can be applied to various types of wind energy
generation systems and to both balanced and unbalanced distribution systems. The proposed system is validated
using the IEEE 33-bus distribution system with 30% penetration level of wind power generation. The results
proved the superiority of the proposed FLC-SMES method in various operating modes and conditions. The
effectiveness of the proposed system and controller in suppressing the existing voltage and frequency fluctuations
in the traditional distribution power systems has become clear. Furthermore, the proposed FLC method is
advantageous in preserving the reliable operation of the SMES system and protecting it from overloading and

thermal stresses conditions.
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