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Abstract: Most of the analytical design procedures yield controllers of almost the same order as that of the plant.
Resultantly, if the plant is of a high order, the controller obtained from these design procedures is also of a high order.
The order of the controller should be practically acceptable for easy implementation. There are two indirect methods
for designing a low order controller for high order plants: plant reduction and compensator reduction. In compensator
reduction, the order of the controller designed for the original higher order plant is reduced. In plant reduction, the
order of the plant is reduced for designing a lower order controller. The order of the controller or plant is reduced using
model order reduction techniques. In this paper, we propose a hybrid algorithm (plant-compensator reduction) based on
frequency-weighted singular perturbation approximation, which gives an improved performance as compared to existing
algorithms. The proposed hybrid technique can be used with H∞ , LQG, or any other loop shaping procedures to obtain
a lower order controller. The proposed technique is validated on benchmark control problems.
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1. Introduction
Most practical systems are usually described by several high order ordinary differential equations. This high
order model is an input to a controller design procedure, which resultantly yields a high order controller. The
high order controllers are practically not feasible for easy implementation and analysis. A lower order controller
for higher order plant can be obtained using model order reduction (MOR) techniques [1–3]. Since the plant
and compensator are parts of a closed-loop system, the MOR technique used for lower order controller design
should preserve some closed-loop performance criteria. In other words, the MOR technique must incorporate
both the plant and compensator in its approximation criteria [4, 5].

A higher order controller can be designed for the original full order plant. Then the order of this controller
can be reduced such that the reduced controller satisfies the closed-loop performance criteria with the original
plant. This is called compensator reduction [6]. Since both the plant and controller are known a priori, the
compensator reduction procedure results in a closed-form solution.

Alternatively, a lower order controller can be obtained by first reducing the higher order model of the
plant and designing a controller for this reduced model such that this reduced controller satisfies the closed-loop
performance criteria with the original plant. This is called plant reduction [7]. Since the compensator and
the reduced order plant are not known a priori, these cannot be incorporated in the approximation criteria of
the MOR procedure without some mathematical manipulation. Due to the unknown closed-loop components
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associated, generally, the plant reduction algorithms are iterative in nature. Also, in plant reduction, an
approximation is induced by the reduction before the controller design. Therefore, plant reduction is less
accurate than compensator reduction.

Compensator reduction is preferable due to its closed-form solution and superior accuracy [6]. However,
it may not be possible to design a controller for a significantly higher order plant due to the limitations of the
controller design package. Plant reduction is an important design tool in this scenario.

The approximation criteria for plant and compensator reduction are in fact the frequency weighted error
criteria. For instance, if the closed-loop stability needs to be preserved, the reduced order plant/compensator
must be accurate within the crossover region [8]. Similarly, to ensure good approximation in the actual operating
region of the controller, the frequencies in the controller input spectrum must be emphasized [9].

Balanced truncation (BT) [10] is a well-known MOR technique that is popular for its accuracy, stability
assurance, and error bound expression. In BT, the states with the least energy contributions are truncated. BT
tends to achieve accuracy over the infinite frequency range [10–12]. As discussed earlier, in plant/compensator
reduction, the accuracy of the reduced order model (ROM) in a certain desired frequency region is required. For
this purpose, Enns [13] proposed frequency-weighted BT (FWBT) by generalizing BT. In FWBT, the desired
frequency regions are emphasized using frequency weights [14, 15]. Several other frequency-weighted MOR
algorithms were reported in [16–19]. Enns proposed both plant and compensator order reduction algorithms
based on FWBT. The performance criterion considered by these algorithms is closed-loop stability. Several
other performance criteria for compensator reduction, like the closeness of the closed-loop transfer function and
controller input spectrum, were considered in the literature [20]. Despite the significance of plant reduction, it
has not received much attention in the literature.

In this paper, we consider the plant and compensator reduction problem and propose a modification of
the Enns plant reduction (EPR) algorithm based on frequency weighted singular perturbation approximation
(FWSPA), which gives better results than the EPR technique. The paper is organized as follows. Section 2
covers the necessary background material and the techniques for designing a lower order controller. Section 3
describes the proposed technique. Section 4 shows the experimental results for various control problems and
the comparison of the proposed algorithm with the existing algorithm. Section 5 concludes the paper.

2. Preliminaries
Let G(s) be the original full order stable and minimal system of order n :

G(s) = Cg(sI −Ag)
−1Bg +Dg,

with Ag ∈ Rn×n , Bg ∈ Rn×m , Cg ∈ Rp×n , Dg ∈ Rp×m . The input and output weights are defined as

Ŵi(s) = Cl(sI −Al)
−1Bl +Dl and Ŵo(s) = Cκ(sI −Aκ)

−1Bκ +Dκ,

respectively. The frequency weighted MOR problem is to find a ROM G̃(s) , i.e.

G̃(s) = C̃g(sI − Ãg)
−1B̃g +Dg, (1)

of order r ≪ n such that
∥Ŵo(s)(G(s)− G̃(s))Ŵi(s)∥∞

is small.
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2.1. FWBT

Let the augmented systems G(s)Ŵi(s) and Ŵo(s)G(s) be represented as

G(s)Ŵi(s) = Ĉi(sI − Âi)
−1B̂i + D̂i, Ŵo(s)G(s) = Ĉo(sI − Âo)

−1B̂o + D̂o, (2)

where

{Âi, B̂i, Ĉi, D̂i} =

{[
Ag BgCl

0 Al

]
,

[
BgDl

Bl

]
,
[
Cg DgCl

]
, DgDl

}

{Âo, B̂o, Ĉo, D̂o} =

{[
Aκ BκCg

0 Ag

]
,

[
BκDg

Bg

]
,
[
Cκ DκCg

]
, DκDg

}
.

The controllability and observability Gramians of the augmented systems are defined as

Ui =

[
Ue U12

UT
12 Uv

]
, Yo =

[
Yw Y T

12

Y12 Ye

]
,

which satisfy the following Lyapunov equations:

ÂiUi + UiÂ
T
i + B̂iB̂

T
i = 0, ÂT

o Yo + YoÂo + ĈT
o Ĉo = 0. (3)

The blocks of Eq. (3) corresponding to Ag can be written as

AgUe + UeA
T
g + X̂ = 0, AT

g Ye + YeAg + Ŷ = 0, (4)

where

X̂ = BgClU
T
12 + U12C

T
l B

T
g +BgDlD

T
l B

T
g , Ŷ = CT

g B
T
κ Y

T
12 + Y12BκCg + CT

g D
T
κDκCg. (5)

The transformation matrix Ten is computed as T−1
en UeT

−T
en = TT

enYeTen = diag{σ1, σ2, ..., σn} where σm ≥ σm+1

and m = 1, 2, ..., n−1 . Here σm are the frequency weighted Hankel singular values and represent the quantitative
measure of the energy contribution of each state within the frequency region emphasized by the frequency weight.
The transformed realization is then obtained as

{At, Bt, Ct, Dt} =
{
T−1
en AgTen, T

−1
en Bg, CgTen, Dg

}
, (6)

At =

[
Ãg A12

A21 A22

]
, Bt =

[
B̃g

B2

]
, Ct =

[
C̃g C2

]
. (7)

The ROM can be obtained by truncating the transformed realization, i.e. {Ãg, B̃g, C̃g, Dg} .

2.2. Indirect techniques for lower order controller design
Consider a stable minimal realization of a plant of order n :

P (s) = C(sI −A)−1B +D,

with A ∈ Rn×n , B ∈ Rn×m , C ∈ Rp×n , D ∈ Rp×m .
The aim is to find a controller Kr(s),

Kr(s) = Ck(sI −Ak)
−1Bk +Dk,

of order r (r ≪ n) such that some closed-loop performance criteria with P (s) are achieved.
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2.2.1. Compensator reduction

Consider the closed-loop system Cl(s) shown in Figure 1, where K(s) is a stabilizing controller for P (s) . The
closed-loop transfer function can then be represented as

Cl(s) = P (s)K(s)[I + P (s)K(s)]−1.

Let Kr(s) be a ROM of K(s) of order r (r ≪ n) such that [K(s)−Kr(s)] is bounded on the imaginary
axis and Kr(s) have the same number of poles in the open right half plane as K(s) . If K(s) is replaced by
Kr(s) , it is equivalent to adding a perturbation

∆(s) = Kr(s)−K(s)

across K(s) . The new closed-loop system as shown in Figure 2 is

Cl,r(s) = P (s)Kr(s)[I + P (s)Kr(s)]
−1.

K(s) P(s)

Figure 1. Block diagram of closed-loop system Cl(s) .

K(s) P(s)

K
r
(s)   K(s)

Figure 2. Block diagram of closed-loop system Cl,r(s) .

According to the stability robustness theorem [7], Kr(s) is also a stabilizing controller for the original
full order plant P (s) if

E1 = ∥[K(s)−Kr(s)]P (s)[I +K(s)P (s)]−1∥∞ < 1 or E2 = ∥[I + P (s)K(s)]−1P (s)[K(s)−Kr(s)]∥∞ < 1.

Clearly, E1 and E2 are the frequency weighted error criteria, i.e.

E1 = ∥Ŵo(s)[K(s)−Kr(s)]Ŵi(s)∥∞ or E2 = ∥Ŵo(s)[K(s)−Kr(s)]Ŵi(s)∥∞,

with the following frequency weights:

Ŵi(s) = P (s)[I +K(s)P (s)]−1 , Ŵo(s) = I

or
Ŵo(s) = [I + P (s)K(s)]−1P (s) , Ŵi(s) = I,

respectively. Kr(s) is obtained by reducing K(s) using FWBT such that E1 < 1 or E2 < 1 is satisfied.

2.2.2. Plant reduction
Consider a ROM Pr(s) of a full order plant P (s) of order r (r ≪ n) . A stabilizing controller Kr(s) is designed
for Pr(s) such that the closed-loop transfer function as shown in Figure 3 is

Cl(s) = Pr(s)Kr(s)[I + Pr(s)Kr(s)]
−1.

3938



AZHAR et al./Turk J Elec Eng & Comp Sci

If Pr(s) is replaced with P (s) , it is equivalent to adding a perturbation

∆(s) = P (s)− Pr(s)

across Pr(s) . The new closed-loop transfer function Cl,r(s) as shown in Figure 4 is

Cl,r(s) = P (s)Kr(s)[I + P (s)Kr(s)]
−1.

K
r
(s) P

r
(s)

Figure 3. Block diagram of closed-loop system Cl(s) .

K
r
(s) P

r
(s)

P
r
(s)P(s)

Figure 4. Block diagram of closed-loop system Cl,r(s) .

According to the stability robustness theorem [7], Kr(s) is also a stabilizing controller for the original
full order plant P (s) if

E3 = ∥[I +Kr(s)Pr(s)]
−1Kr(s)[P (s)− Pr(s)]∥∞ < 1 or E4 = ∥[P (s)− Pr(s)]Kr(s)[I + Pr(s)Kr(s)]

−1∥∞ < 1.

Clearly, E3 and E4 are also frequency weighted error criteria, i.e.

E3 = ∥Ŵo(s)[P (s)− Pr(s)]Ŵi(s)∥∞ (8)

or

E4 = ∥Ŵo(s)[P (s)− Pr(s)]Ŵi(s)∥∞, (9)

with the following frequency weights:

Ŵo(s) = [I +Kr(s)Pr(s)]
−1Kr(s), Ŵi(s) = I (10)

or

Ŵi(s) = Kr(s)[I + Pr(s)Kr(s)]
−1, Ŵo(s) = I, (11)

respectively. Similarly, Pr(s) is obtained by reducing P (s) using FWBT such that E3 < 1 or E4 < 1 is
satisfied.

Ŵi(s) and Ŵo(s) depend both on Pr(s) and Kr(s) , which are not known a priori. The dependence on
the controller Kr(s) can be removed by using loop shaping design procedures because the loop transfer function
Lo(s) = Pr(s)Kr(s) or Li(s) = Kr(s)Pr(s) is known a priori. Let the desired closed-loop transfer function
H(s) be

H(s) = Lo(s)[I + Lo(s)]
−1 = Pr(s)Kr(s)[I + Pr(s)Kr(s)]

−1. (12)

Then Ŵi(s) can be represented as Ŵi(s) = P−1
r (s)H(s) . However, the weights still depend on Pr(s) , which

is not known a priori. Pr(s) is achieved by an iterative algorithm, i.e. the successive approximation given in
Algorithm 1.
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Remark 1 The loop shaping design procedures suggest a high loop gain in the lower frequency region where
good disturbance rejection is required and low loop gain at some higher frequency region where measurement
noise and uncertainty attenuation in the model is required. The actual frequency regions depend on the noise
and uncertainty profile of the specific design problem.

Algorithm 1 EPR algorithm.
Input: P (s) = C(sI −A)−1B +D , r and Lo(s) .
Output: Pr(s) = Cr(sI −Ar)

−1Br +D and Kr(s) .
1: Solve ATY + Y A+ CTC = 0 to find observability Gramian Y .
2: Perform eigenvalue decomposition of Y , i.e. Y = V ΛV T , and set transformation matrix T = V Λ− 1

2 .
3: Apply similarity transformation T to obtain An = T−1AT, Bn = T−1B, and Cn = CT .
4: Select the desired loop transfer function Lo(s) = Pr(s)Kr(s) according to the design requirements described

in Remark 1.
5: The desired closed-loop is H(s) = Lo(s)[I + Lo(s)]

−1 .
6: Initialize Pr(s) as P (s) .
7: while the relative change in the eigenvalues of Ue is greater than a tolerance δ do

set Ŵi(s) = P−1
r (s)H(s) .

8: Compute the stable spectral factor W ′
i (s) of the possibly unstable Ŵi(s) , i.e. Ŵi(s)Ŵ

T
i (−s) =

W ′
i (s)W

′T
i (−s) .

9: Compute the state-space realization of Ŵ ′
i (s) , i.e. Ŵ ′

i (s) = Cl(sI −Al)
−1Bl +Dl .

10: Compute frequency-weighted controllability Gramian Ue from Eqs. (4) and (5) (by replacing
(Ag, Bg, Cg, Dg) with (An, Bn, Cn, D)).

11: Perform eigenvalue decomposition of Ue = WΛWT .
12: Select r columns of W corresponding to the largest eigenvalues, Λ = diag{λi} , where λ1 ≥ λ2 ≥ λn > 0

and W = [W1 W2] .
13: Update Pr(s) as Pr(s) = Cr(sI −Ar)

−1Br +D = CnW1(sI −WT
1 AnW1)

−1WT
1 Bn +D .

14: end while
15: Design Kr(s) such that Pr(s)Kr(s) = Lo(s) using any loop shaping technique.

Remark 2 The above algorithm satisfies the error criterion E4 < 1 . In order to satisfy the error criterion
E3 < 1 , a similar algorithm can be written by analogy using the frequency weighted observability Gramian (see
[7] for details).

Remark 3 If An is Hurwitz then the frequency weighted controllability Gramian Ue in Algorithm 1 can be
represented in integral form as

Ue =
1

2π

∫ ∞

−∞
(jωI −An)

−1BnŴi(jω)Ŵ
H
i (jω)B

T

n (−jωI −A
T

n )
−1dω.

Hence, the plant reduction problem as a stationary point problem takes the form of finding Ue such that
Ue = f(Ue) (see [7] for details).

3. Main work
The successive approximation algorithm for finding a stationary point solution only converges if the first
derivative of the function f(Ue) has eigenvalues with magnitudes strictly less than unity in the close proximity
of the solution. It is a very conservative condition for convergence and is usually not achieved. The actual
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interest is to satisfy the error criteria and not to achieve convergence. As will be shown in Section 4, the E3 < 1

or E4 < 1 condition is achieved even before the stationary point solution converges. Therefore, we suggest
making E3 < 1 or E4 < 1 a criterion for the convergence of the plant reduction algorithm.

EPR focuses on constructing a reduced order controller Kr(s) , which ensures closed-loop stability with
P (s) . This performance criterion does not incorporate whether Kr(s) also ensures good closed-loop performance
in terms of actual control design objectives. In [20], the closeness of the closed-loop transfer function was
considered as a performance criterion in the compensator reduction context to ensure that the reduced order
controller gives a similar closed-loop performance. Therefore, we also consider the closeness of closed-loop
criteria in our plant reduction algorithm to ensure that Kr(s) gives a similar loop shape P (s) as with Pr(s) .

It is critical for closed-loop stability that the reduction error in plant/compensator reduction be less within
the low and medium frequencies, as this is the frequency region where the crossover region lies [21]. BT and its
family are more accurate within the high frequencies than the low and medium frequencies. In contrast to BT
[10], singular perturbation approximation (SPA) [22] is more accurate within the low and medium frequencies
than the high frequencies. SPA, however, does not tend to minimize a weighted error and hence is not applicable
for the controller reduction problem. Therefore, we propose to use frequency-weighted SPA (FWSPA) instead
of FWBT for the plant/compensator reduction problem. FWSPA ensures good accuracy within the low and
medium frequencies like SPA and tends to minimize a weighted error like FWBT. Moreover, we also generalize
FWSPA using Zhou’s approach [23] to incorporate an unstable system and weights, i.e. the original system and
the weights can be unstable.

Since compensator reduction is more accurate than plant reduction, we suggest reducing the plant model
to an order that the controller design package can handle easily and then designing a controller for that reduced
plant model. The controller obtained may not be compact but it can be further reduced using compensator
reduction. We also suggest using FWSPA instead of FWBT for compensator reduction as it gives good accuracy
in low and medium frequency ranges, which is good for preserving closed-loop stability [21].

3.1. Hybrid plant/compensator reduction (HPCR)

In this section, a hybrid approach for plant and compensator reduction is presented to obtain a compact and
accurate lower order controller for high order plants. Let Kr(s) be a stabilizing controller for Pr(s) designed
via a loop shaping procedure where Lo(s) = Pr(s)Kr(s) is known a priori. The performance of Kr(s) is similar
to P (s) as with Pr(s) if ∥H(s)− Cl(s)∥∞ is small, where

H(s) = Pr(s)Kr(s)[I + Pr(s)Kr(s)]
−1 and Cl(s) = P (s)Kr(s)[I + P (s)Kr(s)]

−1, (13)

||H(s)− Cl(s)||∞ = ||Pr(s)Kr(s)[I + Pr(s)Kr(s)]
−1 − P (s)Kr(s)[I + P (s)Kr(s)]

−1||∞, (14)

≈ ||[I + Pr(s)Kr(s)]
−1

[
Pr(s)− P (s)

]
Kr(s)[I + Pr(s)Kr(s)]

−1||∞, (15)

≈ ||[I + Lo(s)]
−1

[
Pr(s)− P (s)

]
P−1
r (s)H(s)||∞. (16)

We have used the same approximation (i.e. Eq. (14) ≈ Eq. (15)) as in [20] in deriving the performance
criterion for the closeness of the closed-loop transfer function (see chapter 3 of [20]). Here, Lo(s) and H(s)

are known a priori in loop shaping controller design procedures. Thus, the problem becomes a double-sided
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frequency-weighted MOR problem with the following weights:

˜̄Wo(s) = [I + Lo(s)]
−1 and Ŵi(s) = P−1

r (s)H(s). (17)

The above error index is derived for loop transfer function Lo(s) = Pr(s)Kr(s) . A similar error index can
be derived for the desired loop transfer function Li(s) = Kr(s)Pr(s) by analogy; however, it is not considered for
brevity. Ŵi(s) depends on Pr(s) , which is not known a priori; therefore, we present a similar iterative algorithm
as EPR wherein Ŵi(s) is initialized as Ŵi(s) = P−1(s)H(s) and then updated with Ŵi(s) = P−1

r (s)H(s) in
each iteration. It is pertinent to mention that Ŵi(s) in this criterion is the same as in EPR. Therefore, the
closed-loop stability criterion is also incorporated in the closeness of the closed-loop transfer function criterion.

Hence, E4 < 1 is used as a stopping criterion for the iterative algorithm. Let Ŵi(s) , ˜̄Wo(s) , P (s)Ŵi(s) , and
˜̄Wo(s)P (s) have the following state-space realizations:

Ŵi(s) = Cl(sI −Al)
−1Bl +Dl,

˜̄Wo(s) = Cκ(sI −Aκ)
−1Bκ +Dκ, (18)

P (s)Ŵi(s) = Ĉi(sI − Âi)
−1B̂i + D̂i,

˜̄Wo(s)P (s) = Ĉo(sI − Âo)
−1B̂o + D̂o,

where

{Âi, B̂i, Ĉi, D̂i} =

{[
A BCl

0 Al

]
,

[
BDl

Bl

]
,
[
C DCl

]
, DDl

}

{Âo, B̂o, Ĉo, D̂o} =

{[
Aκ BκC
0 A

]
,

[
BκD
B

]
,
[
Cκ DκC

]
, DκD

}
The controllability and observability Gramians of P (s)Ŵi(s) and ˜̄Wo(s)P (s) cannot be computed if

either the plant or weights are unstable. Ŵi(s) may be unstable if Pr(s) has the transmission zeros in the
right half of the s -plane. We adapt Zhou’s co-prime factorization-based approach to handle the cases where

P (s) , Pr(s) , ˜̄Wo(s) , and/or Ŵi(s) are unstable. If (Âi, B̂i) is stabilizable and (Âo, Ĉo) is detectable, the
controllability and observability Gramians can be defined for unstable augmented systems. Let Uδ and Yδ

solve the following Ricatti equations:

ÂT
i Uδ + UδÂi − UδB̂iB̂

T
i Uδ = 0, (19)

ÂoYδ + YδÂ
T
o − YδĈ

T
o ĈoYδ = 0. (20)

Uδ and Yδ can be partitioned according to Âi and Âo respectively as

Uδ =

[
Uδ,11 Uδ,12

Uδ,21 Uδ,22

]
, Yδ =

[
Yδ,11 Yδ12

Yδ,21 Yδ,22

]
,

and the matrices Âi,f , Âo,s , Af , and As are defined accordingly as

Âi,f = Âi − B̂iB̂
T
i Uδ =

[
Af ⋆
⋆ ⋆

]
, Af = A−BDlD

T
l B

TUδ,11 −BDlB
T
l Uδ,12, (21)

Âo,s = Âo − YδĈ
T
o Ĉo =

[
⋆ ⋆
⋆ As

]
, As = A− Yδ,21C

T
κ DκC − Yδ,22C

TDT
κDκC. (22)
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The frequency weighted controllability Gramian Ue and the frequency-weighted observability Gramian Ye for
the realization (A,B,C,D) of P (s) can be computed by solving the following Lyapunov equations:

Âi,f

[
Ue ⋆
⋆ ⋆

]
+

[
Ue ⋆
⋆ ⋆

]
ÂT

i,f + B̂iB̂
T
i = 0, (23)

ÂT
o,s

[
⋆ ⋆
⋆ Ye

]
+

[
⋆ ⋆
⋆ Ye

]
Âo,s + ĈT

o Ĉo = 0. (24)

The balancing transformation matrix Tsp is computed as T−1
sp UeT

−T
sp = TT

spYeTsp = diag{σ1, σ2, ..., σn} , where
σj ≥ σj+1 and j = 1, 2, ..., n − 1 . The transformation matrix Tsp is applied on {A,B,C,D} to obtain a
transformed realization of P (s) , i.e.{

ÂT , B̂T , ĈT , D̂T

}
=

{
T−1
sp ATsp, T

−1
sp B,CTsp, D

}
(25)

where

ÂT =

[
A11 A12

A21 A22

]
, B̂T =

[
B1

B2

]
, ĈT =

[
C1 C2

]
, D̂T = D,

and A11 ∈ Rr1×r1 , B1 ∈ Rr1×m , and C1 ∈ Rp×r1 . Now we use residualization instead of truncating to achieve
good approximation in the low and medium frequency region, i.e.

Ar = A11 −A12A
−1
22 A21, Br = B1 −A12A

−1
22 B2, Cr = C1 − C2A

−1
22 A21, Dr = D − C2A

−1
22 B2. (26)

Then the r1 th order reduced plant can be obtained as Pr(s) = Cr(sI − Ar)
−1Br + Dr . When P (s)

and/or Ŵi(s) are unstable, E4 is unbounded. In that case,
(
P (s) − Pr(s)

)
Ŵi(s) can be decomposed into a

stable and unstable part and then E4 for the stable part can be used for the stopping criterion. In MATLAB,
the function ‘‘stabsep” separates the stable and unstable parts. If E4 < 1 , then Pr(s) is the desired ROM of
the plant. If not, then Ŵi(s) is set as Ŵi(s) = P−1

r (s)H(s) and the above process is repeated. Once Pr(s) is
obtained, which ensures that E4 < 1 , a controller Kr(s) is designed for Pr(s) using any loop shaping procedure
such that the loop shape, i.e. Lo(s) = Pr(s)Kr(s) , is achieved. Kr(s) thus achieved is a stabilizing controller
for both P (s) and Pr(s) . The achievement of the criterion E4 < 1 is guaranteed when the first derivative of the
function f(Ue) has eigenvalues with magnitudes strictly less than unity in the close proximity of the stationary
point, i.e. Ue = f(Ue) . Although the theoretical assurance on the convergence of the proposed algorithm is
similar to that of EPR, the actual convergence is achieved even when there is no theoretical assurance of the
convergence. This is because, unlike in EPR, E4 < 1 is chosen as the stopping criterion of the algorithm instead
of the stagnation in the change of eigenvalues of Ue as explained at the start of this section. Kr(s) can further
be reduced to an r th order K̃r(s) such that K̃r(s) is also a stabilizing controller for P (s) if

E5 = ∥[Kr(s)− K̃r(s)]P (s)[I +Kr(s)P (s)]−1∥∞ < 1. (27)

Again E5 is the closed-loop stability criterion and we suggest to use the closeness closed-loop transfer function
criterion E6 of [20], which also incorporates E5 , i.e.

E6 = |[I +Kr(s)P (s)]−1[Kr(s)− K̃r(s)]P (s)[I +Kr(s)P (s)]−1∥∞, (28)
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which is a double-sided criterion with the following weights:

W̃i(s) = P (s)[I +Kr(s)P (s)]−1, W̃o(s) = [I +Kr(s)P (s)]−1.

Although there exists no theoretical guarantee on E5 , the compensator reduction is quite accurate and its
fulfillment is practically not an issue. Let Kr(s) , W̃i(s) , W̃o(s) , Kr(s)W̃i(s) , and W̃o(s)Kr(s) be represented
as the following state-space realizations:

Kr(s) = Ĉk(sI − Âk)
−1B̂k + D̂k, W̃i(s) = C̃l(sI − Ãl)

−1B̃l + D̃l, W̃o(s) = C̃κ(sI − Ãκ)
−1B̃κ + D̃κ,

Kr(s)W̃i(s) = C̃i(sI − Ãi)
−1B̃i + D̃i, W̃o(s)Kr(s) = C̃o(sI − Ão)

−1B̃o + D̃o,

where

{Ãi, B̃i, C̃i, D̃i} =

{[
Âk B̂kC̃l

0 Ãl

]
,

[
B̂kD̃l

B̃l

]
,
[
Ĉk D̂kC̃l

]
, D̂kD̃l

}
,

{Ão, B̃o, C̃o, D̃o} =

{[
Ãκ B̃κĈk

0 Âk

]
,

[
B̃κD̂k

B̂k

]
,
[
C̃κ D̃κĈk

]
, D̃κD̂k

}
.

If (Ãi, B̃i) is stabilizable and (Ão, C̃o) is detectable, Uρ and Yρ solve the following Ricatti equations:

ÃT
i Uρ + UρÃi − UρB̃iB̃

T
i Uρ = 0, (29)

ÃoYρ + YρÃ
T
o − YρC̃

T
o C̃oYρ = 0. (30)

Uρ and Yρ can be partitioned according to Ãi and Ão respectively as

Uρ =

[
Uρ,11 Uρ,12

Uρ,21 Uρ,22

]
, Yρ =

[
Yρ,11 Yρ12

Yρ,21 Yρ,22

]
,

and the matrices Ãi,f , Ão,s , Akf , and Aks are defined accordingly as

Ãi,f = Ãi − B̃iB̃
T
i Uρ =

[
Akf ⋆
⋆ ⋆

]
, Akf = Âk − B̂kD̃lD̃

T
l B̂

T
k Uρ,11 − B̂kD̃lB̃

T
l Uρ,12, (31)

Ão,s = Ão − YρC̃
T
o C̃o =

[
⋆ ⋆
⋆ Aks

]
, Aks = Âk − Yρ,21C̃

T
κ D̃κĈk − Yρ,22Ĉ

T
k D̃

T
κ D̃κĈk. (32)

The frequency weighted controllability Gramian Uke and the frequency weighted observability Gramian Yke

for the realization (Âk, B̂k, Ĉk, D̂k) of Kr(s) can be computed by solving the following Lyapunov equations:

Ãi,f

[
Uke ⋆
⋆ ⋆

]
+

[
Uke ⋆
⋆ ⋆

]
ÃT

i,f + B̃iB̃
T
i = 0, (33)

ÃT
o,s

[
⋆ ⋆
⋆ Yke

]
+

[
⋆ ⋆
⋆ Yke

]
Ão,s + C̃T

o C̃o = 0. (34)

The balancing transformation matrix Tspa is computed as T−1
spaUkeT

−T
spa = TT

spaYkeTspa = diag{σ1, σ2, ..., σn}

where σj ≥ σj+1 and j = 1, 2, ..., n − 1 . The transformation matrix Tspa is applied on {Âk, B̂k, Ĉk, D̂k} to
obtain a transformed realization of Kr(s) :{

ÂKT , B̂KT , ĈKT , D̂KT

}
=

{
T−1
spaÂkTspa, T

−1
spaB̂k, ĈkTspa, D̂k

}
, (35)
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where

ÂKT =

[
Ak11 Ak12

Ak21 Ak22

]
, B̂KT =

[
Bk1

Bk2

]
, ĈKT =

[
Ck1 Ck2

]
, D̂KT = D̂k

and Ak11 ∈ Rr×r , Bk1 ∈ Rr×m , and Ck1 ∈ Rp×r . Then K̃r(s) = Ckr(sI − Akr)
−1Bkr + Dkr can be obtained

as

Akr = Ak11 −Ak12A
−1
k22Ak21, Bkr = Bk1 −Ak12A

−1
k22Bk2,

Ckr = Ck1 − Ck2A
−1
k22Ak21, Dkr = D̂k − Ck2A

−1
k22Bk2. (36)

Algorithm 2 HPCR algorithm.
Input: P (s) = C(sI −A)−1B +D , r1 , r , and Lo(s) .
Output: K̃r(s) = Ckr(sI − Akr)

−1Bkr + Dkr .
1: Select the desired loop transfer function Lo(s) = Pr(s)Kr(s) according to the design requirements described

in Remark 1.
2: The desired closed-loop is H(s) = Lo(s)[I + Lo(s)]

−1 and ˜̄Wo = [I + Lo(s)]
−1 .

3: Initialize Pr(s) as P (s) .
4: while E4 > 1 do
5: Set Ŵi(s) = P−1

r (s)H(s) = Cl(sI −Al)
−1Bl +Dl .

6: Find Uδ and Yδ from Eqs. (19) and (20), respectively.
7: Compute Âi,f and Âo,s from Eqs. (21) and (22), respectively.
8: Compute Ue and Ye from Eqs. (23) and (24).
9: Compute singular value decomposition of Ue as Ue = SuDuVu and set T1 = SuD

1
2
u .

10: Set Q1 = TT
1 YeT1 and compute singular value decomposition of Q1 as Q1 = SyDyVy .

11: Set T2 = SyD
− 1

4
y and compute Tsp as Tsp = T1T2 .

12: Compute Pr(s) using Eqs. (25) and (26).
13: Compute E4 using Eqs. (9) and (11).
14: end while
15: Design Kr(s) using any loop shaping technique such that the loop shape Pr(s)Kr(s) = Lo(s) is achieved.
16: while E5 > 1 do
17: Compute Uρ and Yρ from Eqs. (29) and (30).
18: Compute Ãi,f and Ão,s from Eqs. (31) and (32).
19: Compute Yke and Uke from Eqs. (33) and (34).
20: Compute singular value decomposition of Uke as Uke = SkuDkuVku and set Tk1 = SkuD

1
2

ku .
21: Set Qk1 = TT

k1YkeTk1 and compute singular value decomposition of Qk1 as Qk1 = SkyDkyVky .
22: Set Tk2 = SkyD

− 1
4

ky and compute Tspa as Tspa = Tk1Tk2 .
23: Compute K̃r(s) using Eqs. (35) and (36).
24: Compute E5 using Eq. (27).
25: r = r + 1 .
26: end while

4. Numerical examples
In this section, the HPCR algorithm is tested for different benchmark control problems and its efficacy is shown
by comparison with the EPR technique. For a fair comparison, we change the stopping criterion of EPR and
make it E4 < 1 as in HPCR and we use E4 for error comparison as well. Moreover, we further reduce the
controller obtained using EPR for a fair comparison with HPCR. The H∞ controllers Kr(s) are designed for
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the reduced plants Pr(s) using the loop shaping procedure in [24–26] and their loop shape with the original
plant P (s) is shown in figures.

Example 1 Consider the 270th order international space station model [27]. A 26th order reduced plant model
is sought using the EPR and HPCR algorithms. For stopping criterion E4 < 1 , EPR and HPCR converge in
the seventh and third iterations, respectively. For the stopping criterion, the convergence of a stationary point
solution, EPR converges in the 12th iteration. Table 1 shows a comparison between EPR and HPCR in terms of
the weighted error [P (s)− Pr(s)]Ŵi(s) by setting r = r1 in the HPCR algorithm. Figure 5 shows the weighted
error [P (s) − Pr(s)Ŵi(s)] . The H∞ controllers are designed for the reduced plants using the loop shaping
procedure in [24–26]. Figure 6 shows the loop shape P (s)Kr(s) achieved using both algorithms. The orders of
the controllers obtained for 26th order reduced plants using EPR and HPCR are 70 and 83 , respectively. A
more compact controller K̃r(s) of order 25 is obtained using FWBT for EPR and FWSPA for HPCR. Table 2
shows an error comparison in terms of the weighted error [Kr(s)− K̃r(s)]Ŵi(s) for the 25th order controller.
Figure 7 shows the loop shape P (s)K̃r(s) achieved with this 25th order controller.

Table 1. Comparison of weighted error
(
[P (s) −

Pr(s)]Ŵi(s)
)

between EPR and HPCR techniques.

Iterations EPR technique HPCR technique
1 125.1216 1.9540
2 20.6332 1.9466
3 24.4122 0.7258
4 8.2248
5 21.5544
6 3.2291
7 0.7268

Table 2. Comparison of weighted er-
ror

(
[Kr(s)−K̃r(s)]

)
W̃i(s) between EPR

and HPCR techniques.

EPR technique HPCR technique
1460.1 0.0206

Example 2 Consider a 4th order model:

A =


−11 9 3 6
1 −18 9 4
2 −37 −8 9
3 6 4 −25

 , B =


7 8
5 2.5
1.2 2
5 3.9

 , C =

[
3 7 5 6
9.1 6 1 3

]
, D =

[
0 0
0 0

]
.

A 2nd order reduced plant model is sought using the EPR and HPCR algorithms. For stopping criterion
E4 < 1 , EPR and HPCR converge in the ninth and second iterations, respectively. For the stopping criterion,
the convergence of a stationary point solution, EPR converges in the tenth iteration. Table 3 shows a comparison
between EPR and HPCR in terms of the weighted error [P (s) − Pr(s)]Ŵi(s) by setting r = r1 in the HPCR
algorithm. Figure 8 shows the weighted error [P (s) − Pr(s)Ŵi(s)] . The H∞ controllers are designed for the
reduced plants using the loop shaping procedure in [24–26]. Figure 9 shows the loop shape P (s)Kr(s) achieved
using both algorithms. The orders of the controllers obtained for 2nd order reduced plants using EPR and
HPCR is 6 . A more compact controller K̃r(s) of order 3 is obtained using FWBT for EPR and FWSPA for
HPCR. Table 4 shows an error comparison in terms of the weighted error [Kr(s) − K̃r(s)]Ŵi(s) for the 3rd

order controller. Figure 10 shows the loop shape P (s)K̃r(s) achieved with this 3rd order controller.
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Figure 5. Sigma plot of the weighted error [P (s) −
Pr(s)]Ŵi(s) .
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Figure 6. Sigma plot of P (s)Kr(s) .
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Figure 7. Sigma plot of P (s)K̃r(s) .

5. Discussion
Tables 1 and 3 show that HPCR is not only more accurate than EPR but also converges quickly. Moreover,
it can be seen in Figures 5 and 8 that HPCR is more accurate in the low and medium frequency regions,
wherein the crossover frequencies lie. Figures 6 and 9 show that the loop shape achieved using HPCR is also
better than that achieved by EPR. Also, it can be noted from Figures 7 and 10 that the controller obtained
using HPCR still maintains good loop shape while being compact at the same time. In Examples 1 and 2, it
is interesting to note that E4 < 1 is satisfied before the EPR algorithm achieves convergence of a stationary
point solution. Moreover, it can be seen from Tables 2 and 4 that the controllers achieved using HPCR are not
only more compact but also satisfy the error criterion for closed-loop stability to ensure a superior loop shape.
However, HPCR is computationally more expensive than EPR owing to the computation of the Gramians of
larger dimensions due to double-sided weighting.

6. Conclusion
HPCR is more accurate than EPR, particularly in the low and medium frequency ranges, and it also converges
quickly. A significant lower order controller for high order plants can be achieved using HPCR with a slight
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Table 3. Comparison of weighted error
(
[P (s) −

Pr(s)]Ŵi(s)
)

between EPR and HPCR techniques.

Iterations EPR technique HPCR technique
1 11.6486 2.2485
2 23.8913 0.4711
3 2.4143
4 2.6785
5 9.3986
6 6.5679
7 13.8549
8 3.8749
9 0.9579

Table 4. Comparison of weighted er-
ror

(
[Kr(s)−K̃r(s)]

)
W̃i(s) between EPR

and HPCR techniques.

EPR technique HPCR technique
6.7156 0.1034
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Figure 8. Sigma plot of the weighted error [P (s) −
Pr(s)]Ŵi(s) .
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Figure 9. Sigma plot of P (s)Kr(s) .
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Figure 10. Sigma plot of P (s)K̃r(s) .

increase in the computational cost. The performance criterion of “closeness of closed-loop” ensures a good loop
shape for the final designed controller, despite being compact. Also, the algorithm is generalized to extend the
applicability to unstable systems.
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