
Turk J Elec Eng & Comp Sci
(2019) 27: 3994 – 4008
© TÜBİTAK
doi:10.3906/elk-1804-221

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A distributed load balancing algorithm for deduplicated storage

Prabavathy BALASUNDARAM1∗, Chitra BABU1, Pradeep RENGASWAMY2

1Department of Computer Science and Engineering, Anna University, Chennai, Tamil Nadu, India
2Department of Computer Science and Engineering, IIT Kharagpur, Kharagpur, West Bengal, India

Received: 30.04.2018 • Accepted/Published Online: 08.04.2019 • Final Version: 18.09.2019

Abstract: While deduplication brings the advantage of significant space savings in storage, it nevertheless incurs the
overhead of maintaining huge metadata. Updating such huge metadata during the data migration that arises due to load
balancing activity results in significant overhead. In order to reduce this metadata update overhead, this paper proposes
a suitable alternate index that tracks the data blocks even when they migrate across the nodes without explicitly storing
the location information. In addition, a virtual server-based load balancing (VSLB) algorithm has been proposed in
order to reduce the migration overhead. The experimental results indicate that the proposed index reduces the metadata
update overhead by 74% when compared to the existing index. Furthermore, VSLB reduces the migration overhead by
33% when compared to the existing ID reassignment-based load balancing approach.

Key words: Deduplicated storage, data deduplication, load balancing, chord protocol, gossip-based aggregation protocol

1. Introduction
In the past decade, there has been a tremendous explosion in data storage and retention needs of various
business sectors. This necessitates the usage of a sophisticated space-saving technique, namely deduplication
[1], for efficient utilization of the storage. This technique divides every incoming file into a set of blocks of either
fixed or variable size. Subsequently, a cryptographic algorithm, namely secure hash algorithm 1, is utilized to
find the hash values (also called fingerprints) corresponding to the blocks. These fingerprints are maintained
in a fingerprint index [2]. Each fingerprint entry holds the fingerprint of a specific block, the location of that
block, and a count indicating the number of files that share that block. Since every file is stored as a set of
blocks that are distributed across the cluster, in deduplicated storage, it is essential to maintain a file recipe to
reconstruct the file during the read operation.

In the present research work, deduplicated storage has been developed using commodity hardware. The
workload for the proposed deduplicated storage is non-backup and consists of individual files with no significant
locality among them. The deduplicated storage maintains the metadata and data blocks in separate clusters of
machines. Whenever the load of the deduplicated storage has to be balanced, data blocks need to be migrated
from heavily loaded nodes to suitable lightly loaded nodes. This would necessitate updating the location
information in the fingerprint entries corresponding to those blocks. This is referred to as metadata update
overhead (MUO) henceforth. Devising a load balancing solution with minimal MUO for non-backup workloads
in deduplicated storage is an important issue. Existing research solutions such as those in [3] and [4] have
utilized content similarity among the files for placing the data in a suitable node to balance the load in the
∗Correspondence: prabavathyb@ssn.edu.in

This work is licensed under a Creative Commons Attribution 4.0 International License.
3994



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

Figure 1. Working principle of distributed load balancing approach.

cluster. These techniques improve the performance of the cluster only when the workload comprises a large
number of files with highly similar content among them.

Another existing research work proposed an identifier (ID) reassignment-based distributed load balancing
solution [5] by utilizing a distributed hash table (DHT) for a data node cluster in the Hadoop distributed file
system (HDFS). In this solution, initially, the lightly loaded node sheds its load to its successor. Thereafter,
it rejoins as the predecessor for the heavily loaded node, with a new ID to receive load from it. However, the
shedding of data causes an additional overhead besides the overhead due to the migration of data blocks during
load balancing. This approach thus incurs a higher migration overhead.

Therefore, it is desirable to devise a load balancing strategy that will minimize both metadata updates
as well as migration overhead for the non-backup workload. To this end, this paper proposes the following
strategies:

• Location-independent fingerprint index and enriched file recipe to reduce metadata update overhead;

• A virtual server-based load balancing algorithm to reduce migration overhead, where the virtual server is
the unit of load balancing.

Figure 1 explains the sequence of steps involved in the proposed distributed load balancing strategy. In
this context, every incoming file is divided into a set of fixed or variable sized blocks. They are deduplicated
and forwarded to the data node cluster. The data node cluster consists of commodity machines organized in
a DHT network where every node implements the chord protocol [6,7]. The deduplicated blocks are placed in
the data node cluster as per the chord protocol. Once the cluster is in use over a period of time, there may
possibly be some level of load imbalance in the cluster. Hence, it is necessary to balance the cluster periodically
to improve its performance. As a part of load balancing, initially, the load information is collected by utilizing

3995



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

the gossip-based aggregation protocol [8]. Subsequently, every node possesses the load information of the entire
cluster. Based on the load status of the individual nodes, data are migrated from the heavily loaded to the
lightly loaded nodes. The rest of the paper is organized as follows. Section 2 discusses research works related to
deduplication and load balancing. Sections 3 and 4 describe the proposed location-independent fingerprint index
and the virtual server-based load balancing algorithm, respectively. Section 5 discusses the implementation in
detail and substantiates the proposed strategies with detailed performance analysis. Section 6 concludes the
paper.

2. Related work
Two existing strategies, namely content-aware load balancing and probabilistic deduplication, place the blocks
of every incoming stream into a suitable node that hosts a large number of similar blocks. These approaches
maximize the deduplication efficiency and minimize the network bandwidth utilization while retaining the
balance in the cluster. However, these approaches are suitable only for workloads that comprise a large number
of similar files.

Xu et al. [9] proposed a scalable hybrid hash cluster to maintain the fingerprint index using a DHT. This
reduces the latency of the hash lookup process during duplicate detection. Scalable dedupe [10] partitions the
incoming data stream based on the k-least significant bits of their corresponding fingerprints. These partitioned
blocks and the fingerprints are mapped to the respective nodes using a DHT. This enables the deduplicated
storage to identify the duplicate blocks by searching the fingerprints in parallel. However, these solutions have
utilized the DHT either to improve the deduplication process by searching in parallel or to reduce the latency
of the hash lookup process. More importantly, DHT was not utilized in this work for load balancing.

Bhagwat et al. [11] utilized a hierarchical index to maintain the fingerprint entries for the blocks corre-
sponding to similar files. This approach facilitates faster detection of duplicates. Fu et al. [12] applied different
chunking mechanisms for different types of files in the workload. Furthermore, they suggested maintaining
separate indices for different types of files. In these approaches, the fingerprint index and the data blocks are
maintained separately. In addition, every fingerprint entry in the fingerprint index involves location informa-
tion corresponding to a block. Hence, adopting these solutions in deduplicated storage will incur substantial
MUO during load balancing. Hsiao et al. proposed an ID reassignment-based load rebalancing approach in
a distributed environment that was implemented over HDFS. In this approach, all the data nodes are placed
in a peer-to-peer (P2P) fashion, with each of them implementing the chord protocol. This work exploits the
self-configurable and self-healing characteristic of the chord protocol to implement the distributed load balanc-
ing algorithm. However, this approach did not employ the deduplication technique. Xu et al. [13] proposed a
mechanism to build a reliable deduplicated storage. They proposed an even data placement (EDP) algorithm
for the fair distribution of deduplicated blocks. Furthermore, they utilized an erasure coding mechanism to
improve the reliability of the storage.

The works in [14] and [15] proposed a data routing algorithm that aims to route the new data blocks to
the data server, which already hosts more similar data blocks. In this approach, every data server maintains a
set of representative fingerprints corresponding to the segments of the files. Whenever a new segment has to be
written, its representative fingerprint will be first checked against the set that is present in every data server to
calculate its similarity value. In order to balance the load, the new segment will be moved to the data server
for which it has a higher similarity value.

It becomes clear from the above discussion that the existing deduplicated storage, which caters to non-

3996



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

backup workloads, maintains the fingerprint index and the data blocks separately. Two shortcomings of these
approaches are that the fingerprint index is location-dependent and that ID reassignment-based load balancing
requires considerable migration overhead. Hence, a location-independent fingerprint index and a virtual server-
based load balancing algorithm have been proposed for deduplicated storage to minimize both the metadata
update and the data migration overheads.

3. Proposed location-independent fingerprint index and enriched file recipe
The proposed deduplicated storage consists of a dedupe engine, a metadata node, and a data node cluster. The
dedupe engine divides every incoming file into a set of fixed or variably sized blocks and finds their fingerprints.
These fingerprints are compared against the entries in the index available in the metadata node to detect
duplicates. The unique blocks corresponding to that file alone are sent to the data node cluster for storing
them. This process is illustrated in Figure 2.

Figure 2. Design of deduplicated storage.

The nodes in the data node cluster are organized as a DHT network, in which each of these nodes
implements a DHT protocol, namely Chord. In the data node cluster, the IP address of each physical node is
hashed to obtain the node identifier. This identifier is mapped onto an address in the logical N-address space
chord ring. Similarly, the hash value of the file path of any incoming file is found out and is labeled as the file
identifier. The unique blocks of every incoming file are appropriately placed by mapping the file identifier to
a corresponding node identifier using the lookup table. This lookup table keeps track of the locations of the
blocks by periodical updates.

Figure 3a shows an 8-node chord ring where three nodes are mapped onto the logical ring with the
addresses 1, 4, and 6. For every node, there is a successor and a predecessor. For example, nodes 4 and 6 are
the successor and predecessor, respectively, for node 1. Nodes 1, 4, and 6 are responsible for the address spaces
(7, 0, 1), (2, 3, 4), and (5, 6), respectively. Any incoming file is placed in a relevant node based on its file
identifier. In order to locate the data in such a cluster, every node maintains a lookup table.

In a 2m logical ring, a lookup table contains information about m entries where an entry corresponds
to a node identifier, (n+ 2k) mod 2m , 0 ≤ k < m , and its successor. For example, the lookup table of node 1
has 3 entries, namely [((1 + 20) mod 23), 4], [((1 + 21) mod 23), 4], and [((1 + 22) mod 23), 6], as shown in
Figure 3b. Let us assume that the user requests a file with file identifier ‘7’ from node 4. Node 4 first searches

3997



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

Figure 3. Chord example.

for the file within itself. As it is not available, it consults the resident lookup table for an entry closer to the
file identifier (circled entry) to get its successor node. As the file is not available in node 6 also, the node to be
searched (i.e. node 1) is obtained through its lookup table. At this point, the file with file identifier ‘7’ is found
in node 1. This is depicted in Figure 4.

Figure 4. Location of data in chord ring.

If a node ‘j’ joins the chord ring, it is mapped to an address. Let us assume that, after node ‘j’ joins the
chord ring, it is responsible for holding the files corresponding to the address space ‘a’. The files that belong
to address space ‘a’ would have been placed in the successor of node ‘j’ previously. Once node ‘j’ joins, the
successor of ‘j’ moves these files to node ‘j’. Similarly, if node ‘k’ leaves the ring, it sheds the files that it is
currently responsible for to its successor.

Such frequent arrival and departure of the nodes in a P2P network is referred to as churn. This kind of
churn is more pronounced in general P2P networks because these networks are formed using voluntary nodes.
As the set of voluntary nodes keeps changing dynamically in these networks, there is a significant overhead
associated with the movement of data. However, the nodes utilized for building the deduplicated storage are
dedicated for this purpose. Hence, this churn will be minimal in the context of deduplicated storage.

In the chord protocol, nodes contact each other periodically to update the status of the cluster dynam-

3998



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

Figure 5. Location-independent fingerprint index and enriched file recipe.

ically. Hence, the lookup table in each node is always up-to-date. To cater to the deduplicated storage, this
protocol is suitably modified to place only the unique blocks of any incoming file.

A traditional deduplication system maintains metadata, namely the fingerprint index and file recipe.
Fingerprint information in the fingerprint index is utilized to detect duplicates. Similarly, both the location
information corresponding to the data blocks in the fingerprint index and the order of the data blocks that is
available in the file recipe are required to reconstruct any specific file in the deduplicated storage. However, as
the data node cluster of the deduplicated storage built in this paper utilizes the DHT, the file identifier, which
is maintained in the lookup table, is responsible for placing and retrieving the unique blocks corresponding to
a file. Furthermore, even when the blocks migrate from one node to another due to an addition or a deletion of
a node, the lookup table is suitably updated to reflect the changes periodically. Hence, it can be deduced that
it is no longer necessary to maintain location information in the fingerprint index to keep track of the location
of data blocks.

Based on this inference, a location-independent fingerprint index (LIFI) that exploits the availability of
the lookup table in the Chord protocol is proposed in the present work. Every block has an entry in the LIFI
that consists of a fingerprint, its file identifier, and the reference count, which indicates the number of files
sharing this block. Since the blocks are placed in the data node cluster using file identifiers, they are required
to retrieve a file. Though the information pertaining to the file identifiers can be retrieved from LIFI, the
computational overhead is quite high owing to the large size of the LIFI. Hence, an enriched file recipe (EFR)
has been designed to maintain the fingerprints and file identifiers corresponding to each file for reconstructing
the file. These index structures are maintained in the metadata node of the deduplicated storage.

The following example illustrates the proposed indices LIFI and EFR. When a File3, which consists of
blocks C1, C2, C9, and C10, needs to be written into the data node cluster of the deduplicated storage, the
file identifier (i.e. F3) for File3 is found. Since these blocks are unique to File3, new entries are created in the
LIFI and EFR with their corresponding file identifiers as shown in Figure 5a. After the updating of the LIFI
and EFR, these unique blocks are written into the data node cluster using file identifier F3. Similarly, when
another file, File2, that consists of the blocks C9, C10, C11, and C12 arrives, the updates in the LIFI and EFR
are as shown in Figure 5b.

3999



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

Whenever there is a read request for File2, the file identifiers are first obtained from the EFR of that file.
Subsequently, these file identifiers are used to retrieve the blocks from the data node cluster to reconstruct the
file. Let us assume that the blocks of File2 are placed in two nodes, namely nodes 4 and 6. For example, C9 and
C10 are placed in node 4 using file identifier F3 and C11 and C12 are placed in node 6 using file identifier F2.
A read request for File2 first gets the file identifiers (F3, F2) from its corresponding EFR. These file identifiers
are used to retrieve the blocks from the data node cluster using the lookup table. These blocks are assembled
later based on the order indicated in the EFR to reconstruct File2.

4. Proposed virtual server-based load balancing algorithm
In general, a cluster will be made up of several nodes. The load of a particular node in the cluster is referred
to as the amount of current usage of physical storage that belongs to that node. The overall capacity (λ) and
overall load (µ) refer to the aggregation of the maximum physical storage and the amount of current usage
of storage across all the nodes in the cluster respectively. Over a period of utilization, load imbalance might
probably arise among the nodes that belong to the cluster. Hence, it is essential to find the ideal load that a
node can handle with respect to the cluster to which it belongs. The ideal load of a node can be found using
the following equation:

Υ =
µ

λ
∗ C, (1)

where λ is the overall capacity, µ is the overall load of a cluster, κ is the current load, and C is the maximum
physical storage capacity of a node.

In a load balancing process, it is essential for each node to know whether it is lightly or heavily loaded at
any specific time in order to maintain balance in the cluster. This can be found using the following formula:

θ =


Lightly loaded, if κ < 0.8 ∗Υ
Moderately loaded, if κ ≥ 0.8 ∗Υ and κ < 1.2 ∗Υ
Heavily loaded, if κ ≥ 1.2 ∗Υ

(2)

As there is no centralized process in the data node cluster to collect the load information about every
node, a distributed gossip-based aggregation protocol has been used. It has several aggregate functions, namely
summation, average, mean, and median. The data node cluster utilizes the sum aggregate function of this
protocol for finding the overall load (µ) of the cluster as illustrated in Figure 6.

Consider an 8-node cluster as shown in Figure 6. Here, a square represents a node, letters represent the
names of nodes, and integer values inside the squares represent the current load pertaining to each node. First,
a node randomly selects another node. For example, node ‘A’ selects node ‘G’ randomly to exchange current
load information between them. Hence, nodes ‘A’ and ‘G’ are represented by the same color. Similarly, the same
colored nodes (B, H), (C, F), and (D, E) communicate with each other for exchanging their load information as
shown in Figure 6a. At the end of the first cycle, the same colored nodes are updated with the aggregated load
information and this is shown in Figure 6b. Figure 6c depicts that nodes with the same color are not allowed
to communicate with each other in the next cycle.

In the second cycle, a node once again chooses another node that it did not contact earlier. For example,
node A can contact any other node other than G. Let us assume that node A chooses node F, and they both

4000



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

Figure 6. Gossip-based aggregation.

exchange their current load information. As nodes G and C were contacted by A and F in the previous cycle,
respectively, the nodes (A, C, F, G) are updated with the new sum 28. Similarly, nodes B, D, E, and H are
updated with the sum 15. In the next cycle, all the nodes are updated with the value of 43 as shown in
Figure 6d. The overall capacity (λ) of the cluster also has been determined in a similar fashion. While nodes
exchange their current load, other information such as the node capacity and available network bandwidth are
also exchanged.

In DHT-based load balancing, a load is balanced based on two methods. In one approach, the lightly
loaded node initiates the transfer of data. In this case, first, the lightly loaded node sheds its data to its
successor and rejoins the chord ring as a predecessor of the heavily loaded node. This is equivalent to the node
join operation in the chord. Hence, the predecessor gets the load of the successor, which is a heavily loaded
node. Similarly, a change in the location of the data is automatically updated in the lookup table during periodic
exchange of information in the chord. This approach is referred to as ID reassignment-based load balancing.
However, as it involves data shedding, it results in considerable migration overhead.

The second approach, namely virtual server-based load balancing, uses the idea of maintaining multiple
partitions of a DHT’s address space in a single node. Within the chord system, one virtual server is responsible
for maintaining data with respect to a specific interval of address space. In this context, each virtual server is
viewed as an independent node. Furthermore, the displacement of virtual servers among the arbitrary nodes
is similar to the standard join or leave operations in a chord ring. Hence, there is a periodical exchange of
information between the virtual servers residing in the physical nodes that constitute the chord ring to reflect
the current updates. During the load balancing process, a suitable virtual server from a heavily loaded node
is migrated to a lightly loaded node along with its data. However, if the number of virtual servers increases
in a node, it might adversely affect the performance of that node due to the increase in bandwidth utilization

4001



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

Algorithm: Data migration algorithm initiated by heavily loaded node.
Input:

Aggregated load information (info) about all the
nodes by Gossip Protocol
ToMigrateLoad corresponds to the load of a virtual server

Output: Suitable lightly loaded node is chosen
1 w1 = 0.2 // Weight corresponding to load
2 w2 = 0.3 // Weight corresponding to capacity
3 w3 = 0.5 // Weight corresponding to
4 network bandwidth
5 // Calculation of weights for each lightly loaded node
6 for every node do
7 Retrieve load, capacity, n/w bandwidth from Info
8 Assign the load status to every node as light, moderate, or heavy
9 Calculate weight as w1*load+w2*capacity+w3*n/w bandwidth

10 Sort both the lightly and moderately loaded nodes in descending order
11 for every lightly loaded node do
12 if (currentLoad+ToMigrateLoad) <idealLoad then
13 currentLoad = currentLoad + ToMigrateLoad
14 Transfer data to lightly loaded node

15 if there are no lightly loaded nodes then
16 Find the average weight (AV) of moderately loaded nodes
17 while ToMigrateLoad ≥ 0 do
18 for every moderately loaded node do
19 if (currentLoad+(AV*ToMigrateLoad)) <idealLoad then
20 currentLoad = currentLoad + AV*ToMigrateLoad
21 Transfer data to moderately loaded node

22 ToMigrateLoad = ToMigrateLoad− (AV ∗ ToMigrateLoad)

arising from the periodic exchange of information. Hence, the choice of a lightly loaded node must be made
with respect to network utilization also in addition to its current load and capacity.

In the context of deduplicated storage, each node has the information regarding the current load, capacity,
and network utilization of every other node since the gossip-based aggregation protocol has been utilized. Hence,
it is possible for every node to find the load status (lightly, moderately, or heavily loaded) of every other node in
the system. Based on this, a data migration algorithm, illustrated in Algorithm, is proposed in the present work.
In this algorithm, each node finds the ideal load of all the other nodes by using the expression in Eq. (1). Lightly
and moderately loaded nodes are identified by using Eq. (2) and their weights are then determined. Once this
is completed, both the lightly and moderately loaded nodes are arranged in descending order according to their
weights. A heavily loaded node paired with a suitable lightly loaded node is used to transfer a virtual server
without making that light node heavy. In case no lightly loaded nodes are available, suitable virtual servers can
be moved from heavily loaded nodes to one or more moderately loaded nodes.

4002



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

5. Implementation
The distributed load balancing technique has been implemented in the deduplicated storage that has been built
using commodity machines (Intel Core i7 2.93GHZ, 8GB RAM DDR3, 500 GB HDD). One of these machines
acts as both dedupe engine and metadata server. The proposed LIFI has been implemented using an on-disk
hash table in the metadata server. Furthermore, an open source chord GUI implementation has been utilized
to implement the data node cluster of the deduplicated storage. The existing chord implementation has been
suitably modified to receive only the unique blocks with respect to any incoming file. Furthermore, a gossip-
based aggregation protocol and Algorithm 1 have been incorporated to ensure load balance in the cluster.

A workload of size 50 GB consisting of different types of files (.pdf, .mp3, .avi, .doc, and .ppt, to name
a few) with sizes varying from several KBs to a few MBs has been kept in the input folder. The files from this
folder are deduplicated and the blocks are written into the nodes organized in a P2P fashion in the deduplicated
storage for a certain predetermined time, and relevant experiments have been conducted.

5.1. Evaluation
This section describes the performance of the proposed LIFI and the virtual server-based load balancing
algorithm. It also provides a comparison with the existing fingerprint index and ID reassignment-based load
balancing approach using a set of common evaluation metrics.

5.2. Metrics for evaluation
Three performance metrics, namely metadata update overhead, migration overhead, and load status have been
utilized to analyze the behavior of the proposed index and the load balancing technique.

The number of location information updates in the fingerprint index is the metadata update overhead.
Since this parameter impacts the performance of the deduplicated storage, the proposed location-independent
fingerprint index and the existing fingerprint index have been evaluated using this performance metric.

Migration overhead is the amount of data transferred from a heavily loaded to a lightly loaded node.
Furthermore, the load status for every node in the cluster has been observed. Since these parameters affect
the performance of any storage system, the virtual server-based and ID reassignment-based load balancing
approaches have been assessed using these parameters.

5.3. Results and discussion
Multiple experiments have been conducted to provide a thorough comparison of the various load balancing
approaches with respect to the chosen evaluation metrics.

5.3.1. Impact of the proposed LIFI on metadata update overhead
In order to study the impact of metadata update overhead, the cluster has been populated with the files from the
dataset for a certain duration. Furthermore, an ideal load threshold has been suitably set to simulate the load
imbalance in the cluster. In the existing fingerprint index, the metadata will be updated for every block that
is migrated. A variable count has been incremented for every block that is migrated to measure the metadata
update overhead.

In the proposed work, the fingerprint index is made location-independent due to the presence of lookup
table in the chord protocol. Hence, when there are migrations of files between the nodes, the lookup table will
be updated as it maintains file identifiers with respect to files. The fixFingers() method of chord protocol is

4003



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

responsible for updating the lookup table. A variable in this method is used to keep track of the metadata update.
The metadata updates with respect to the existing fingerprint index and location-independent fingerprint index
were measured and plotted as shown in Figure 7. Since the metadata maintained for the files are less when
compared to that of blocks of files, the metadata update overhead incurred by the LIFI is comparatively less
than that of the existing fingerprint index.

The metadata of this proposed work include the LIFI and EFR. These were maintained in only one
machine in our testbed environment. Hence, there is no duplication of metadata. Since there are no duplications,
there will not be any possibility of inconsistency in the metadata updates. Hence, whenever the metadata server
is contacted, it will always give the correct updated metadata, which will be used for the file access.

5.3.2. Computational load of chord protocol

The proposed LIFI of deduplicated storage capitalizes on the lookup table of the chord protocol to eliminate
the location information from the fingerprint index. Hence, it involves time for sending management messages
across the nodes. These messages are responsible for the detection of liveness of nodes and also the update of
the lookup table due to the addition or deletion of nodes in the topology. It sends log n heartbeat messages
periodically across the nodes for managing the network. The notify() method of the chord protocol is responsible
for sending the heartbeat messages. In the present experiments, the periodicity has been set to 1 min.

In order to study the computational load, the cluster has been populated with the files from the dataset
for a certain duration. Furthermore, an ideal load threshold has been suitably set to simulate the load imbalance
in the cluster. In order to bring load balance in the cluster, a few nodes may leave and join. The time taken for
sending the liveness and update messages is measured in the notify() method. Whenever this method is called,
this measured time is aggregated and plotted for every hour as shown in Figure 8. These same management
messages are utilized also for sending gossip messages. Hence, there is no separate computational overhead that
is incurred for the execution of gossip protocol.

1 2 3 4 5

0

0.5

1

1.5

· 10 5

Time (in hours)

N
o

. o
f 

m
et

ad
at

a 
u

p
d

at
es

FI

LIFI

1 2 3 4 5

7

8

9

10

11

Time (in hours)

C
o

m
p

u
ta

ti
o

n
al

 l
o

ad
 o

f 
ch

o
rd

 (
in

 m
in

u
te

s)

Chord Protocol

Figure 7. Metadata update overhead Figure 8. Computational load for chord protocol.

4004



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

5.3.3. Scalability of gossip-based aggregation protocol

In order to study the scalability of the gossip-based protocol, P2P networks with varying numbers of nodes
have been created. In each network, files from the dataset are populated and an ideal load threshold is suitably
set to simulate the load imbalance scenario. The gossip-based protocol consumes log n cycles to retrieve the
aggregated load information of all the ‘n’ nodes. The time taken to propagate the load information is measured
in the notify() method and plotted in Figure 9. It can be seen that the propagation time is less than 1 h even
when the number of nodes is as high as 100.

5.3.4. Impact of the virtual server-based load balancing algorithm on migration overhead

In order to measure the migration overhead, both the virtual server-based and ID reassignment-based load
balancing approaches have been implemented. Both these approaches have utilized the gossip-based aggregation
protocol to collect the information about every node. This incurs no additional overhead as it utilizes only the
periodic exchange of chord management messages.

The cluster has been populated with a random load at a specific time. These algorithms have been
executed 5 times and the average number of data blocks migrated between the heavily and the lightly loaded
nodes is plotted in Figure 10. In the ID reassignment-based load balancing algorithm, a lightly loaded node
initiates the transfer of data migration. In this case, the lightly loaded node sheds its data blocks to its successor
and rejoins as the predecessor of the heavily loaded node to receive the load from it. Subsequently, the actual
data transfer happens to maintain the balance. However, in the virtual server-based load balancing algorithm,
each node knows the status of every other peer in the cluster as it utilizes the gossip-based aggregation protocol.
It selects the best suited lightly loaded node to transfer the virtual server in order to lighten the heavy node
without any additional shedding. Hence, it involves less migration overhead.

20 40 60 80 100

10

20

30

40

Number of nodes

T
im

e 
(i

n
 M

in
u

te
s)

1 2 3 4 5

0.5

1

1.5

2

2.5

3
· 106

Time (in hours)

N
o

. o
f 

b
lo

ck
s 

m
o

ve
d

Virtual Server Based

ID Reassignment

Figure 9. Information propagation time. Figure 10. Migration overhead.

5.3.5. Impact of virtual server-based load balancing algorithm on load status

In order to study the impact of the existing and the proposed load balancing algorithms on load status, a cluster
has been set up with 25 nodes. Each node has been assumed to have the capacity of 2 GB. The deduplicated

4005



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

blocks are sent to the cluster from the workload. Further, the above-mentioned algorithms have been executed
and the load status for every node is recorded. The current load in the cluster is found to be 12 GB. The ideal
load for every node in the cluster is calculated as 500 MB using Eq. (1). If the load of a node is greater than
600 MB, then that node is considered as a heavily loaded node. Similarly, if the load of a node is less than 400
MB, then such a node is considered as a lightly loaded node. If the load of a node is between 400 MB and 600
MB, it is viewed as a moderately loaded node. The lightly, moderately, and heavily loaded nodes are shown in
blue, black, and red, respectively. The load status of the cluster before and after the load balancing process for
the two algorithms are plotted in Figures 11 and 12, respectively.

0 5 10 15 20 25

200

400

600

800

1.000

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

1718

19

20

21

22

23

24

25

Load (inMB)

N
u

m
b

er
 o

f 
N

o
d

es

Lightly Loaded

Heavily loaded

Moderately loaded

(a) Before balancing

0 5 10 15 20 25

400

500

600

700

800

1
2

3

4

5

6

7
8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Load (inMB)

N
u

m
b

er
 o

f 
N

o
d

es

Moderately loaded

Heavily loaded

(b) A"er balancing

Figure 11. Load status of the cluster using ID reassignment-based load balancing approach.

0 5 10 15 20 25

200

400

600

800

1.000

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

1718

19

20

21

22

23

24

25

Load (inMB)

N
u

m
b

er
 o

f 
N

o
d

es

Lightly Loaded

Heavily loaded

Moderately loaded

(a) Before balancing

0 5 10 15 20 25

400

500

600

700

1
2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

25

Load (inMB)

N
u

m
b

er
 o

f 
N

o
d

es

Heavily Loaded

Moderately loaded

(b) A"er balancing

Figure 12. Load status of the cluster using virtual server-based load balancing approach.

4006



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

Since the proposed algorithm takes care of migrating the load to moderately loaded nodes in the absence
of lightly loaded nodes, the number of heavily loaded nodes is reduced in Figure 12 when compared to Figure
11. Hence, the load status of the cluster for the virtual server-based load balancing approach is comparatively
better than that for the ID reassignment-based load balancing approach.

6. Conclusions
A deduplicated cloud storage has been built using commodity machines. A dedupe engine and the proposed
LIFI have been implemented in one of the commodity machines. Furthermore, an open source implementation
of a GUI-based chord protocol has been utilized to build the data node cluster. The existing chord protocol
has been suitably modified to store only the unique blocks of every incoming file. The gossip-based aggregation
protocol and the virtual server-based load balancing algorithm have been implemented over the chord protocol.

The data node cluster is populated with a random number of documents, which are of random sizes at
specific time intervals. The proposed LIFI and the existing fingerprint index have been evaluated with respect
to the metadata update overhead. Virtual server-based and ID reassignment-based load balancing algorithms
have been evaluated with respect to the migration overhead. The results clearly demonstrate that the proposed
LIFI reduces the metadata update overhead by 74% as opposed to the existing fingerprint index. Furthermore,
the virtual server-based load balancing algorithm reduces the migration overhead by 33% when compared to
the ID reassignment-based load balancing algorithm.

References

[1] Zeng W, Zhao Y, Ou K, Song W. Research on cloud storage architecture and key technologies. In: Proceedings of
2nd IEEE International Conference on Interaction Sciences: Information Technology, Culture, and Human; Seoul,
Korea; 2009. pp. 1044-1048.

[2] Wu J, Hua Y, Zuo P, Sun Y. Improving restore performance in deduplication systems via a cost-efficient
rewriting scheme. IEEE Transactions on Parallel and Distributed Systems 2019; 30 (1): 119-132. doi:
10.1109/TPDS.2018.2852642

[3] Douglis F, Bhardwaj D, Qian H, Shilane P. Content-aware load balancing for distributed backup. In: Proceedings
of 25th Conference on Large Installation System Administration; Boston, MA, USA; 2011. pp. 1–18.

[4] Frey D, Kermarrec AM, Kloudas K. Probabilistic deduplication for cluster-based storage systems. In: Proceedings
of ACM Cloud Computing Symposium; San Jose, CA, USA; 2012. pp. 1–17.

[5] Hsiao HC, Liao H, Chen ST, Huang KC. Load rebalancing for distributed file systems in clouds. IEEE Transactions
on Parallel and Distributed Systems 2013; 24 (5): 951–962. doi: 10.1109/TPDS.2012.196

[6] Stoica I, Morris R, Liben-Nowell D, Karger DR, Khaashoek MF et al. Chord: A scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Transactions on Networking 2003; 11 (1): 17–32. doi:
10.1109/TNET.2002.808407

[7] Brunel J, Chemouil D, Tawa J. Analyzing the fundamental liveness property of the chord protocol. In: Proceedings
of IEEE International Conference on Formal Methods in Computer Aided Design; Austin, TX, USA; 2018. pp. 1-9.

[8] Jelasity M, Montresor A, Babaoglu O. Gossip-based aggregation in large dynamic networks. ACM Transactions on
Computer Systems 2005; 23 (3): 219–252. doi: 10.1145/1082469.1082470

[9] Xu L, Hu J, Mkandawire S, Jiang H. SHHC: A scalable hybrid hash cluster for cloud backup services in data
centers. In: Proceedings of 33rd IEEE International Conference on Distributed Computing System Workshops;
Philadelphia, PA, USA; 2013. pp. 61–65.

4007



BALASUNDARAM et al./Turk J Elec Eng & Comp Sci

[10] Santos W, Teixeira T, Machado C, Meira W Jr, Ferreira R et al. A scalable parallel deduplication algorithm. In:
Proceedings of 19th IEEE International Symposium on Computer Architecture and High Performance Computing;
Rio Grande do Sul, Brazil; 2007. pp. 79–86.

[11] Bhagwat D, Eshghi K, Long DDE, Lillibridge M. Extreme binning: scalable, parallel deduplication for chunk-based
file backup. In: Proceedings of IEEE International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems; London, UK; 2009. pp. 1–9.

[12] Fu Y, Jiang H, Xiao N, Tian L, Liu F. Aa-dedupe: An application-aware source deduplication approach for cloud
backup services in the personal computing environment. In: Proceedings of IEEE International Conference on
Cluster Computing; Austin, TX, USA; 2015. pp. 112–120.

[13] Xu M, Zhu Y, Lee PP, Xu Y. Even data placement for load balance in reliable distributed deduplication storage
systems. In: Proceedings of 23rd IEEE International Symposium on Quality of Service; Portland, OR, USA; 2015.
pp. 349-358.

[14] Huang Z, Li H, Li X, He W. SS-dedup: A high throughput stateful data routing algorithm for cluster deduplication
system. In: Proceedings of IEEE International Conference on Big Data; Washington, DC, USA; 2016. pp. 2991-2995.

[15] Luo S, Zhang G, Wu C, Khan S, Li K, Boafft: Distributed deduplication for big data storage in the cloud. IEEE
Transactions on Cloud Computing 2018; 61 (11): 1-13. doi: 10.1109/TCC.2015.2511752

4008


	Introduction
	Related work
	Proposed location-independent fingerprint index and enriched file recipe
	Proposed virtual server-based load balancing algorithm
	Implementation
	Evaluation
	Metrics for evaluation
	Results and discussion
	Impact of the proposed LIFI on metadata update overhead
	Computational load of chord protocol
	Scalability of gossip-based aggregation protocol
	Impact of the virtual server-based load balancing algorithm on migration overhead
	Impact of virtual server-based load balancing algorithm on load status


	Conclusions

