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Abstract: In this work, a no-reference framework is proposed for the video quality estimation streamed through the
wireless network. The work presents a comprehensive survey of the existing full reference (FR), reduced reference
(RR), and no-reference (NR) algorithms. A comparison has been made among existing algorithms, i.e. in terms of
subjective correlation and feasibility to use these algorithms in wireless architecture, to describe the necessity of the
proposed framework to overcome the limitations of the existing algorithms. A brief summary of our previously published
algorithms, i.e. NR blockiness, NR blur, NR network, NR just noticeable distortion, and RR, has also been presented.
These algorithms have also been used as function modules in the proposed framework. The proposed framework is able
to measure the video quality by taking into account major spatial, temporal, network impairments, and human visual
system effects for a comprehensive quality evaluation. The proposed framework is able to measure the video quality
compressed by different codecs, i.e. MPEG x / H.264x, Motion JPEG/Motion, and JPEG2000, etc. The framework
is able to work with two different kinds of received data, i.e. bit streams and decoded pixels. The framework is an
integration of the RR and NR method, and can work in three different modes depending on the availability of the RR
data, i.e. 1) only RR measurement, 2) hybrid of RR and NR measurement, and 3) only NR estimation. In addition,
any individual function block, i.e. blurring, can also be used independently for particular specific distortion. A new
subjective video quality database containing compressed and distorted videos (due to channel induced distortions) is also
developed to test the proposed framework. The framework has also been tested on publicly available LIVE Video Quality
Database. Overall test results show that our framework demonstrates a strong correlation with subjective evaluation of
the two separate video databases as compared with other existing algorithms. The proposed framework also shows good
results while working only in NR mode as compared with existing RR and FR algorithms. The proposed framework is
more scalable and feasible to use in any kind of available network bandwidth as compared with other algorithms, as it
can be used in different modes by using different function modules.
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1. Introduction
The development and growth of digital video systems (becoming an essential part of today’s lifestyle) are
replacing most of the analog video services, i.e. HDTV, high-definition video conferencing, etc. [1]. Video quality
evaluation is very important for the development of the digital video systems. Digital video data suffers various
kinds of distortions during acquisition, compression, transmission, decoding and reproduction [2]. Compression
techniques used in the digital video system introduce many visual artifacts, i.e. blocking, blurring, etc., in videos
which degrade its quality. Similarly, video data transmitted over wireless networks may be received incorrectly
due to transmission impairments, i.e., packet losses, jitter, flickering, etc. Furthermore, human visual system
(HVS) effects play an important role in determining the quality of the received video. Therefore, all of the
video processing, i.e. compression, transmission and postprocessing, etc., produce distortions/artifacts in the
reconstructed video. The nature of the artifacts also depends on the compression methods, e.g., MPEG x,
H.26x, and on the position of the error and decoder implementation [3]. It is therefore very important for a
video communication system to measure the received video quality for further processing, i.e. maintenance,
enhancement. Therefore, an image and video quality metric is required, which can assess the video quality by
measuring all kinds of distortions in a real time scenario [2]. Video quality can be measured by using either
subjective or objective approach. Full reference (FR), reduced reference (RR), and no reference (NR) are three
kinds of objective methods of evaluating video quality.

1.1. Challenges and limitations

Many quality metrics are presented by the research community, but these metrics have many limitations as
described below:

• Existing metrics are generally distortion-specific, and are not able to measure different kinds of distortion.

• Existing FR metrics are not applicable in wireless transmission due to the bandwidth constraints.

• Existing HVS-based metrics are very complex.

• Existing RR and NR metrics show good results, but fail to capture network and temporal losses efficiently.

• Existing compression distortions measuring metrics do not measure network, temporal, and HVS effects.

1.2. Research motivation
There is a need for a quality metric/framework that should be able to cover the above mentioned limitations.
The goal of this research is to develop a quality framework which should have the following characteristics:

• It should be inclusive rather than specific to a particular kind of distortion.

• In order to work in real time, it should not require original frames for comparison at any stage.

• The metric should be able to measure major compression, network, temporal, and HVS distortions.

• The metric should be able to predict accurately and efficiently as compared to existing metrics.

• It should correlate strongly with subjective scores as compared with existing metrics, and it should also
be feasible according to the demand and application.
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In this work, we first present a detailed survey and comparison of the existing FR, RR, and NR algorithms
in terms of their performance and feasibility in the wireless environment. Based on the survey, a hybrid
(RR+NR) framework is proposed to predict the video quality for different kinds of distortions. The proposed
framework can work in three different modes. The proposed framework also uses two different kinds of data
to predict quality. For transmission distortion, the framework works only with the received bit stream. For
compression-induced artifacts, i.e. blocking, blurring, temporal, RR, and just noticeable distortion (JND),
the framework works on the decoded video. A video database is also developed in this work to measure the
performance of the proposed framework. The framework was tested with developed database, and was also
further verified with the H.264 compressed database provided by the LIVE Video Quality Database. The
results show that the proposed framework demonstrates a strong correlation with subjective evaluation of the
two separate video databases.

The remainder of this paper is organized as follows: Section 2 presents a detailed review of the previously
presented objective quality metrics and their performance and feasibility over wireless networks. Section 3
presents the proposed system framework for video quality evaluation. Section 4 presents a brief summary of
our previously published works which are used in the proposed framework. Section 4 also presents a new NR
algorithm for the temporal distortion measurement. Section 5 describes the details of the new developed video
database for this work. An overall final quality metric is also defined in this section. Section 6 presents the
conclusion and future work.

2. Related work
This section presents a literature survey of the existing objective quality metrics, i.e. FR, RR and NR.

2.1. HVS-based metrics
Many quality metrics have been presented in the literature by using the anatomy and psycho-physical features
of the HVS. HVS-based models can be divided into two groups: single-channel models, and multiple-channel
models. Single-channel models process all inputs in the same way, i.e. by taking the HVS as a single spatial
filter. Schade designed the first vision-based model on the assumption that the cortical representation is a
shift invariant transformation of the retinal image [4]. Mannos and Sakrison designed an HVS-based model
for luminance images [5]. Multichannel models divide the image into multiple channels, where each channel is
sensitive to different spatial frequency and orientation. In another approach, three-dimensional wavelet filters [6]
were used to estimate the video quality. Although the above-mentioned approaches show good correlation with
subjective data, but all of these approaches are rather complex and computationally intensive. Therefore, an
algorithm/model is really necessary to predict the quality for any kind of distortion. The model should also be
simple and computationally efficient.

2.2. Full reference methods
FR metrics can be divided into simple pixel-based and similarity metrics.

2.2.1. Pixel-based metrics
Pixel-based metrics predict video quality by directly working with the pixels of the original and received images.
The mean square error and peak signal-to-noise ratio (PSNR) are two pixel-based quality metrics. These metrics
are simple, but they do not correlate well with the subjective evaluation. The structural similarity index
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measurement (SSIM) is another FR method which measures the quality by evaluating structural distortion.
The multistructural similarity index measurement (MSSIM) [7] metric has also been developed providing more
flexibility as compared to the SSIM by incorporating the variety of image resolutions and view conditions.

2.2.2. Similarity metrics

Similarity metrics use different mathematical techniques to convert the intensity value of an image into another
format by performing their calculation from pixel to block level. These new transformed values are compared
between the original and degraded frames. One of the techniques [8] uses difference of the singular value
decomposition (SVD), while another uses projected value [9], and the approach defined in [10] uses radon
transform measurement to evaluate the quality. Although these FR algorithms show strong correlation with
subjective data, they do not take HVS effects into account. Moreover, FR methods are not feasible for real-time
applications due to the current bandwidth constraint wireless environment.

2.3. Reduced reference metrics
Webster et al. [11] presented the first RR quality metrics in which spatial, and temporal information features
are extracted from the reference and transmitted data over a reduced bandwidth channel to evaluate the video
quality. An RR hybrid image quality metric (HIQM) metric has also been developed in [12], which evaluates
the quality by calculating the weighted sum of the different extracted features on the transmitter and receiver
sides. Similarly, an RR objective quality metric [13] extracts features such as mean and standard deviation from
the processed spatial-temporal (S-T) regions of the input, and output video streams. Although the proposed
reduced reference methods show very good correlation with the subjective evaluation, but still these methods
are not feasible for current bandwidth constraint wireless environment, and are feasible only when at least
some information can be transmitted through the wireless medium. In order to overcome the limitations of the
existing algorithms, we proposed an RR metric in one of our previous works [14]. Our proposed metric showed
a strong correlation with subjective evaluation.

2.4. No-reference methods
In this method, the original image is not available for comparison. Most of these methods are designed for the
assessment of distortion which comes from the discrete cosine transform (DCT)-based compression.

2.4.1. Blocking metrics

Many FR, RR, and NR algorithms presented in the literature define blocking distortion within the image/video.
These methods use different approaches to evaluate the blocking distortion, i.e. error differences between the
original and distorted images [15], DC coefficients of the DCT [16], by assigning weights to the HVS effects,
and then measuring the difference of the intensity values between the columns and rows in each block [17],
etc. Most of these metrics take into account additional features such as HVS effects, flatness measurement, and
zero crossing to estimate blockiness. It makes them computationally less efficient, and/or they are FR-based.
In order to overcome the existing limitations, we proposed an NR algorithm based on SVD in our previous
work [18]. The proposed algorithm does not need any other measurements such as HVS, zero crossing, etc. and
the results showed that our proposed algorithm outperformed other metrics.
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2.4.2. Blurring metrics

Blurring is the next most important compression artifact after blockiness, especially with low compressed bit
rates. FR, RR, and NR algorithms presented in the literature use many features to estimate blur, i.e. variance
[19], and first- (gradient) and second-order (Laplacian) derivatives [20], etc. Most of these metrics do not take
into account the important influence of specific image content, and HVS effects on the actual visibility of the
artifacts. Therefore, these metrics are not able to predict the quality efficiently. An algorithm was also proposed
in our previous work to overcome limitations in existing metrics [21]. In our proposed algorithm, the edges
were detected by the threshold set by the HVS effects, and SVD was used to measure the spread of the edges in
the spatial domain. Test results showed that our proposed algorithm has a strong correlation with subjective
evaluation [21].

2.5. Network loss induced metrics
Many FR, RR, and NR algorithms were previously presented to estimate the network losses. In [22], the
author uses the motion intensity and packet loss effect to measure the network losses. These informations are
extracted from the video stream packet’s content. The proposed algorithm does not show a strong correlation
with subjective data. No-reference video quality monitoring metric was presented in [23] to estimate the video
quality distorted by the packet loss for H.264/AVC compliant coded video. The algorithm measured quality
efficiently at the macroblock, frame, and sequence levels. However, the metric can work with I and P frames
only. Similarly, an NR algorithm was presented in [24] to detect the packet losses in transmitted video by
working on the decoded pixel values. This algorithm is capable of processing up to 25 frames per second of
Full HD video, and shows good correlation with subjective assessment. In [25], the author measures network
losses by using user data field of the video. This approach is less intrusive, does not need to inject extra probing
stream, and can also provide the packet loss detailed information of all frames. In order to overcome all these
limitations, an algorithm was proposed in our previous work to estimate the transmission losses [26]. Our
proposed NR algorithm is capable of measuring network losses for video encoded for all frames, i.e., I, P, and
B frames. The proposed algorithm has low computational requirements, and can measure distortion up to 20%
PLR. The algorithm works on the spatio-temporal dynamics of the video, and simulation results proved that
metric correlates well with the subjective evaluation.

2.6. JND measurement metrics
JND models can be pixel-based and DCT-based models. For the pixel-based JND models, Chou and Li [27]
presented an algorithm to measure JND by using luminance, and texture masking information. Research has
shown that estimating the contrast masking while keeping in mind the difference of the texture, and edge
region is very important. Therefore, Anmin et al. [28] decomposed an image into EM (edge masking), and
TM (texture masking) structures to measure the JND in a pixel based approach. For the subband/DCT-based
JND models, Ahumada and Peterson [29] developed a well-cited JND model in the DCT domain by measuring
spatial contrast sensitivity function (CSF) for every DCT component to evaluate the JND threshold. Pixel-
and DCT-based JND models do not measure texture masking, except that in [28]. Moreover, all JND models
do not measure temporal effects of the HVS, except that in [30]. Moreover, the spatial/temporal CSF are not
measured by the pixel-based JND models. For a complete JND model for videos, the temporal characteristics
of HVS must be measured with spatial CSF. The model in [30] measures temporal effects in the pixel domain.
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Kelly [31] developed a spatio-temporal CSF model based on retinally stabilized travelling wave stimuli, which
was enhanced by Dally [32] by adding the eye movements. However, all of these existing models ignore the
effects of foveal vision, which is very important as the size of the images and videos are increasing, i.e. high
definition-images and videos. Keeping the limitations of the existing metrics in view, an algorithm was proposed
in our previous work to estimate JND in pixel domain [33]. The proposed algorithm takes into account all major
effects to measure JND, i.e. luminance adaptation, contrast masking, CSF, eye movement, and the foveal effect.
The results showed that the proposed algorithm outperformed the existing algorithms.

2.7. Temporal metrics
Many FR, RR, and NR algorithms that measure temporal distortions are also presented in the literature. In
[34], a Flicker Sensitive-MOtion-based Video Integrity Evaluation model is proposed to measure the temporal
distortion. The model integrates the well-known MOVIE Index with a new perceptual flicker visibility index.
The model uses the responses of neurons in primary visual cortex to measure flicker. The proposed model
shows almost same results as existing algorithms. In [35], the author presents a full reference method to
measure temporal distortion based on space time texture using motion tuning strategy. The test results show
that the presented method correlates highly with the subjective quality and has a high computational efficiency.
Similarly, a model is presented in [36] to enhance the SpatioTemporal model (VMAF(ST-VMAF)) proposed by
Netflix. The model proves the improved performance on many subjective video databases. All of the existing
metrics are good for measuring temporal distortion, but mostly use additional information to enhance their
measuring capabilities. In the present study (Section 4), we also propose an NR algorithm to measure the
temporal distortion. This algorithm is also used as a function module in the proposed framework.

2.8. Metrics based on neural networks approach

Similarly neural network approach is also used to measure quality in an NR way. In [37], the author uses
deep convolutional neural networks (CNN) approach to measure the quality by integrating the feature learning
and regression into one optimization process. Similarly, the author uses machine learning approach in [38] to
combine a simple NR metrics approach to derive a predictive NR assessment metric. The algorithm obtained
a correlation of over 97% correlation, but the algorithm has been tested up to the packet loss rate of 10% only.
In another approach [39], an NR deep blind video quality assessment approach is used by considering various
spatial and temporal cues obtained by using the deep CNN approach, and temporal cues features are obtained
from spatial cues. However, the algorithm does not show very good results as compared with existing algorithm.
In [40], another deep CNN-based approach is presented by using ten convolutional layers, five pooling layers
for feature extraction, and two fully connected layers for regression. The algorithm does not require any other
additional information and shows good correlation with subjective data. In [41], an NR framework is proposed
based on the 3D shearlet transform and CNN. Spatiotemporal features are extracted by using 3D shearlet
transform, and then CNN and logistic regression are used to predict a perceptual quality score.

The existing NR algorithms, i.e. blocking, blurring, etc., predict the distortion efficiently, and can also be
used in a bandwidth constraint wireless environment. However, many of these metrics are distortion-specific, or
only able to work with images, and are not able to predict video quality efficiently. Therefore, the existing NR
metrics also create a necessity to develop other metrics/framework, which should be suitable in a bandwidth
constraint wireless environment, and should be able to predict the quality comprehensively, and efficiently, i.e.
taking into account all kinds of distortions.
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2.9. Comparison between metrics
We have presented a brief overview of different quality metrics. There is no common ground among these
metrics, and it is difficult to make a proper performance comparison among them. However, we present a
comparison in Table 1 among these metrics based on their performance (correlation) with subjective scores, and
their suitability for wireless network architecture.

Table 1. Comparison of different metrics.

Approach Performance Feasibility in wireless architecture

Subjective evaluation Very Good Low (Complex and Expensive, Time consuming)
FR (Pixel-based, e.g., PSNR) Low Low (Restricted due to FR condition)
FR (Struct. inform.-based, e.g., SSIM) Good low (restricted due to FR condition)
HVS-based Average Low (Complex, comput. high, no network loss estimation)
RR (Spatial/temporal artifacts-based) Good medium/high (less feasible as compared to NR)
NR (Spatial, temp., and network-based) Good medium/high (distortion specific)
Data hiding (watermarking) Average low/medium (additional overhead, network lost prob.)
Network Impairments (QoS measurement) Average medium (no compression artifacts meas.)

3. Proposed framework

The literature survey has shown that a model/framework is required, which should be able to measure all
kinds of distortions, and should provide a complete end-to-end quality evaluation. The true quality cannot
be predicted by just measuring one type of distortion. Therefore, a framework is proposed by an integration
of RR and NR methods by taking into account major spatial, temporal, and network impairments along with
HVS effects. This framework is able to measure video quality compressed by different codecs such as MPEG
x, H.264x, and Motion JPEG/Motion JPEG2000. Figure 1a shows the framework and its function modules.
The framework is able to work with two different types of received data. The transmission distortion has been
estimated from the data received through the bit stream only, while all other distortions have been estimated by
working on the decoded video at the output of the decoder. The framework can work in three modes depending
on the availability of the RR data as described below.

1. Working with RR measurements only.

2. Integration of the RR and NR (network, temporal, blurriness, and HVS) functional blocks. In this case,
the model does not need to measure spatial distortions (blockiness).

3. Only NR estimation by using network, temporal, blurriness, blockiness, and HVS functional blocks. Any
individual functional block, e.g., blurring, can also be used independently for specific distortion.

3.1. Experimental setup

In this work, OMNeT++ 4.1 network simulator [42] is used to integrate the JM16.2 H.264/AVC Reference
CODEC [43] for AVC simulations. Actual H.264/AVC traffic, i.e. video packets, are encapsulated in the
OMNeT++ packets instead of simulated OMNeT++ packets for creating a real-time simulated scenario.
Figure 1b shows the experimental setup as explained in [26].
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4. Distortion measurements
In order to measure the quality, we measured network distortion, JND, blocking distortion, blurring distortion,
and we also measured the quality by using reduced reference approach. All of these distortion algorithms
(function modules) are our previously published work. The network distortion was measured using an NR
approach by working on the received bit stream only [26]. The proposed algorithm was capable of working on
all I, P, and B frames. The JND was also measured using an NR approach [33]. A pixel-based JND model was
proposed which takes into account all the major effects, including foveal effects for a complete spatio-temporal
CSF estimation in pixel domain. The blocking, and blurring distortions were measured using an NR approach
[18, 21]. Similarly, the quality was evaluated by using the RR method [14]. The reader can review these papers
for further details. The next section describes a newly proposed NR temporal distortion algorithm for this work.
This algorithm is also used as a function module in the proposed framework.

4.1. NR temporal distortion measurement
Moving artifacts are related to the motion compensation effects, and are responsible for causing image persis-
tence. Therefore, an observer is not able to observe a visual artifact because of the previous frame persistence
over current frame. Existing temporal distortion measuring metrics generally use motion vectors, and motion
compensated information of the P and B frames. But these frames can also contain distortion due to the tem-
poral error propagation. In order to overcome this limitation, an NR temporal estimation algorithm is proposed
by using only I frames as a reference, as I frames are not affected by the temporal propagation, i.e. movement
artifacts. The algorithm uses incoming I frames in each group of pictures (GOP) as reference, and following P,
and B frames are treated as distorted. The MSSIM is a full reference algorithm [44]. This algorithm is applied
in an NR approach in this work, i.e. an MSSIM value is obtained for each of the P and B frames by taking the
I frame as reference, and P and B frames as distorted [44]. Similarly, an MSSIM value is also measured for each
of the I frame, i.e. a previous I frame is treated as reference, and the following I frame is treated as distorted
in two consecutive GOPs. An average is taken for the whole video sequence which provides us an estimate of
the temporal distortion. The next section describes the subjective database and simulation results.

5. Subjective data analysis and final quality evaluation
This section describes the subjective study, which was conducted to create a test database to evaluate the
framework. This procedure is also known as subjective assessment, in which viewers provide us a score defining
the quality of the received video. A human study of the distorted videos is conducted to create a database
containing compressed as well as distorted videos due to the channel-induced distortions, i.e. creating a wide
range of quality videos in order to have a good perceptual variation to test the efficiency of the framework.

5.1. Source and test sequences
The source videos which we used to formulate the database is in raw, uncompressed, and progressive scan
YUV420 format. Twelve video sequences are used, and these video sequences are chosen based on the variety
of the content, spatial, and motion information. A set of 120 distorted sequences was created by using different
bit-rates, and packet loss rates for each reference sequence. Twelve distorted videos were produced for each
of the “City”, “Crew”, “Foreman”, “Akiyo”, “Hall”, and “Coastguard” video sequence. Eight distorted video
sequences were produced for each of the “Race”, “Fries”, “Rugby”, “Car phone”, “Mobile”, and “Mother” video
sequence. The packet losses are modeled using two state Gilbert model. The main profile is used for encoding,
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and the videos are encoded with I, P, and B frames with two B frames in a GOP. Table 2 shows the parameter
values.

Table 2. Video sequences encoded with I, P, and B frames

Sequence Resolution Data rate fps Total frames PLR
Crew SD (704× 576) 0.01, 0.1, 0.5, 1, 1.5, 2, and 3.5 Mb/s 30 300 1, 2, 5, 10 and 20
City SD (704× 576) 0.01, 0.1, 0.5, 1, 1.5, 2, and 3.5 Mb/s 30 300 1, 2, 5, 10 and 20
Rugby SD (720× 576) 0.01, 0.1, 0.5, 1, 1.5, 2, and 3.5 Mb/s 30 220 1, 2, 5, 10 and 20
Fries SD (720× 576) 0.01, 0.1, 0.5, 1, 1.5, 2, and 3.5 Mb/s 30 220 1, 2, 5, 10 and 20
Race SD (720× 576) 0.01, 0.1, 0.5, 1, 1.5, 2, and 3.5 Mb/s 30 220 1, 2, 5, 10 and 20
Foreman CIF (352× 288) 0.1, 1, 5, 50, 150, 264, and 360 kb/s 30 300 1, 2, 5, 10 and 20
CoastGuard CIF (352× 288) 0.1, 1, 5, 50, 150, 264, and 360 kb/s 30 300 1, 2, 5, 10 and 20
Akiyo CIF (352× 288) 0.1, 1, 5, 50, 150, 264, and 360 kb/s 30 300 1, 2, 5, 10 and 20
Hall Way CIF (352× 288) 0.1, 1, 5, 50, 150, 264, and 360 kb/s 30 300 1, 2, 5, 10 and 20
Mother CIF (176× 144) 0.1, 0.2, 5, 10, 15, 36, 64, and 150 kb/s 25 300 1, 2, 5, 10 and 20
Mobile CIF (176× 144) 0.1, 0.2, 5, 10, 15, 36, 64, and 150 kb/s 25 300 1, 2, 5, 10 and 20
Carphone CIF (176× 144) 0.1, 0.2, 5, 10, 15, 36, 64, and 150 Kb/s 25 300 1, 2, 5, 10 and 20

5.2. Test methodology and Processing of the score

The subjective study for the database is conducted with single stimulus continuous quality evaluation (SSCQE)
approach[45, 46]. In this study, only one video is shown to the viewer. The single stimulus approach needs
less time by the reviewer, and also reduces the memory effects on the perceived quality. In this approach, the
original reference videos are also shown to the observer, although observer is not told about its presence on the
set of videos. This is used to equalize the scores. The score given to the reference videos is also a representative
of the supposed bias which observer carries, and a compensation is acquired by subtracting the scores of the
distorted videos with this bias, providing a difference score for that particular distorted video sequence. This
measure is known as the differential mean opinion score (DMOS) [45, 46]. All of the created distorted videos
are first loaded into the memory to avoid latencies. The videos are shown to the subject at a distance of four
times the video height. Thirty observers participated in this study, and the subjects were also briefed about
the study. The study was done in two sessions to minimize the subject fatigue. In each session, 66 videos (60
distorted + 6 references) were shown to the subjects randomly. The order was changed for each session, and
also for each subject. Moreover, two consecutive sequences of the same reference were not shown to the viewer
in order to minimize memory effects. Training videos were also shown to the viewers, and the subjects also
scored training videos for training purpose. At the end of the presentation of the video, each viewer provided
an opinion score with quality grading as: Bad (0–20), Poor (20–40), Fair (40–60), Good (60–80), and Excellent
(80–100). The score that each subject assigned to a distorted sequence in a session was subtracted from the
score that the subject assigned to the reference sequence in the same session, thus providing a difference score.
The scores from the remaining subjects were then averaged to form the DMOS for each sequence.

5.3. Overall quality evaluator
A global quality evaluator combines the quantitative inputs from each of the functional blocks to predict the
final quality score. This score represents the quality of the experience as perceived by the user of the given
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application. Multivariate regression is a typical way to combine the individual metric scores into an overall
quality score. It is a simple, and computationally effective method. The combination model is defined by the
means of a multivariate linear regression as:

TotalDistortion = α1 m1 + α2 m2 + α3 m3 + α4 m4 + α5 m5 + α6 m6

The m1,m2, ...., and m6 are the variables for the blocking, blur, temporal, JND, network, and reduced
reference functional blocks. The coefficients α1, α2, ...., and α6 are the corresponding coefficients of these
variables. These coefficients are computed by using the multivariate linear regression, and represent the best
match with the test database to obtain the optimum solution.

5.4. Evaluation of the proposed framework on tested database

All of the individual functional blocks (network, blur, blocking, temporal, JND, and RR metrics) are processed
individually on each of the tested videos. They are combined using the multivariate regression to estimate
the total distortion in the received video sequence. Different values of the correlations are obtained by using,
i.e. combining, different function modules in the proposed framework. Table 3 shows the correlation results of
the proposed framework for different combinations and their comparison with other metrics. The Pearson
correlation coefficient (PCC), root mean square error (RMSE), and the Spearman rank order correlation
coefficient (SROCC) measurements are used to test the performance of the proposed framework.

Table 3. Correlation coefficient comparison with other metrics tested on developed video database.

Metrics/algorithms PCC SROCC RMSE
NR+RR measurement 0.7840 0.7183 6.72
NR measurement 0.7453 0.6929 7.37
Without blockiness measurement 0.7941 0.7153 6.46
Without RR and transmission measurement 0.6644 0.6356 7.5612
STRRED 0.8253 0.8109 5.89
MSSIM 0.8076 0.8006 6.33
RRIQA 0.6332 0.6103 7.63
PSNR 0.3653 0.4389 9.03

These results show that the framework shows a good correlation with the subjective data (even operated
in the NR mode only), and the effectiveness increases as we use it with the RR mode, i.e. NR+RR. The
framework also shows good correlation without blockiness measurement. Therefore, the framework can ignore
the blockiness functional block if RR data are available, as RR measurement estimates the blockiness distortion
itself. The framework is also able enough to estimate the video quality when it is used with compression
distortion measuring functional blocks only. Similarly, the correlation coefficients have also been measured for
the STRRED, MSSIM, RRIQA, and PSNR algorithms. The STRRED algorithm [47] works with less original
information to full original information from the reference video, i.e., effectively making it a full reference
VQA algorithms. The PSNR and MSSIM [44] are also FR algorithms, while reduced reference image quality
assessment (RRIQA) [48] is an RR algorithm.

Compared with other algorithms, our proposed framework (used in an NR mode only) shows better
correlation than PSNR and RRIQA. The framework used in compression mode also shows marginally better
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correlation than RRIQA. With the addition of the RR mode with NR, the framework shows almost the same
correlation as MSSIM. The STRRED algorithm shows good correlation for SROCC measurement. However,
PCC and RMSE results are not as good as SROCC when it is compared with our proposed framework used in
RR+NR mode. In [47], STRRED algorithm was tested with LIVE H264 video quality database [45], and the
packet losses in LIVE H264 video quality database are up to 10% only. However, packet losses in our developed
database are up to 20%, which are considered as severe losses. The STRRED showed good results in [47] when
compared with MSSIM, i.e. when it was tested with a packet loss ratio of maximum 10%. However, STRRED
algorithm does not show same good results as in [47] when compared with MSSIM, and our proposed framework
(NR+RR mode) for a packet loss ratio of up to 20%. Moreover, our framework measures transmission distortion
by working on the received bit stream only instead of decoded pixels. Our proposed framework still shows good
correlation with subjective data with this severe packet loss. Overall, the video quality estimation provided by
the framework is very satisfying, i.e. even with NR mode.
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Figure 2. Scatter plots (using developed database).

Figure 2a shows the scatter plot comparisons, i.e. visual comparison of the framework when it is tested
by combining different function modules. The figure shows that the number of outliers is not large when used
in different modes. Figures 2b and 3a show the scatter plot comparison with other algorithms. Both figures
show that the number of outliers is less as compared with RRIQA. However, the STRRED algorithm shows the
best linear relation to the subjective evaluation.

5.5. Evaluation of the the proposed framework with LIVE Video Quality database

The framework was also tested on the LIVE Video Quality (H.264 compressed videos.) Database [46]. Table 4
shows the correlation results for different combinations. These results again show the same trend as we have seen
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in the previous section. The results again validate our assertion that the framework produces good results in
the NR mode and its effectiveness increases as we combine it with RR mode. Compared with other algorithms,
our framework almost shows the same performance when compared with STRRED, i.e. NR+RR modes. The
results also show that our framework used in NR+RR mode has a better correlation than MSSIM.

Table 4. Correlation coefficient comparison with other metrics tested on LIVE H.264 compressed database.

Metrics/algorithms PCC SROCC RMSE
NR (without transmission module)+RR measurement 0.7221 0.6391 10.66
NR measurement (without transmission module) 0.536 0.4487 16.92
NR+RR (without blockiness and transmission distortion measurement) 0.7389 0.6722 13.47
RR measurement 0.5529 0.3814 14.01
STRRED 0.7261 0.7934 9.91
MSSIM 0.6539 0.6453 17.12
RRIQA 0.2085 0.2663 14.88
PSNR 0.4858 0.4314 16.39

Figure 3b shows the scatter plot comparison with other algorithms (NR+RR mode without blockiness
and transmission distortion measurement). The figure shows that the number of outliers is less as compared with
MSSIM and RRIQA. However, STRRED shows almost the same number of outliers as our proposed framework.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Quality Evaluator

D
M

O
S

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Quality Evaluator

D
M

O
S

RR+NR

STRRED

MSSIM

RRIQA

RR+NR

STRRED

MSSIM

RRIQA

(b) Comparison with other metrics with LIVE database(a) Comparison with other metrics with developed database

Figure 3. Scatter plots

3395



UZAIR et al./Turk J Elec Eng & Comp Sci

A framework has been tested on two different databases, and shows the same trend. Overall test results
show that the framework achieves good performance, scalability, and feasibility to assess the video quality. The
framework enables us to work on two different kinds of data and work in three different modes. The ability
of the framework to work on either RR or NR mode make it very feasible in any kind of available bandwidth
environment. Moreover, the scalability is greatly enhanced to perform by using different function modules. The
framework also shows better performance, and more flexibility as compared with other existing algorithms.

6. Conclusions and future work
This work deals with the issue of video quality evaluation, which is increasingly becoming an important issue in
audiovisual communications. To improve the current state of the art, factors of NR estimation (most suitable
for bandwidth limited wireless environments), and the way human observers evaluate the content of video were
considered. We first presented a detailed survey, and comparison of the existing FR, RR, and NR algorithms
in terms of their feasibility in a wireless environment. Based on the survey, a framework is proposed in order to
overcome the limitations of the existing algorithms, i.e. to predict the video quality for different content type,
data rate, and error rate combinations. The proposed framework is a hybrid of the integral of RR, and NR
modes. The framework can work in three different modes depending on the availability of the RR data. The RR
and NR modes can also evaluate the quality individually. Moreover, each individual function block in the NR
mode can also work independently, showing the flexibility/capability of the framework. The framework is able
to work with two different kinds of received data. For transmission distortion, the framework works only with
the received bit stream, while the framework works on the decoded video to measure the blocking, blurring,
temporal, RR, and JND distortions. All of these metrics (function modules) had already been individually tested
on the publicly available database in our previous works. A new video database containing compressed and
distorted videos due to channel-induced distortions was also developed to test the performance of the proposed
framework. The proposed framework was also further verified with the H.264 compressed database provided
by the LIVE Video Quality Database. The results show that our framework demonstrates a strong correlation
with the subjective evaluation for the two separate video databases as compared with existing algorithms. The
framework also shows good performance when it is used in NR mode only. The framework is highly flexible
due to its ability to add new function modules to enhance its performance and the capacity of working in
any bandwidth environment. Depending on the application, hardware capacity, and the availability of the
bandwidth, a user can pick a function module/mode for the prediction of video quality. Furthermore, a user
can pick a specific function module to find out degradation in quality due to a specific distortion, i.e. blocking,
etc.

The development of new function modules which will estimate distortion using quantization step size,
and based on the number of encoded DCT coefficients is part of our future work. Moreover, the process of
fine tuning the proposed framework with subjective scores measured over a broad range of video contents, and
processing schemes is a continuing topic of interest. Due to its great flexibility, the framework can also be used
to estimate video quality for video encoded in any advanced video codec, i.e. H.265/HEVC.
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