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Abstract: The Internet of things increases information volume in computer networks and the concept of fog will help
us to control this volume more efficiently. Scheduling resources in such an environment would be an NP-Hard problem.
This article has studied the concept of scheduling in fog with Bayesian classification which could be applied to gain the
task requirements like the processing ones. After classification, virtual machines will be created in accordance with the
predicted requirements. The ifogsim simulator has been applied to study our fog-based Bayesian classification scheduling
(FBCS) method performance in an EEG tractor application. Algorithms have been evaluated on a practical application
of brain signal tracking system. According to the results, the FBCS method, compared with other methods, has reduced
the energy consumption in the cloud and the executing task cost in cloud; and also the average of energy consuming in
mobiles has been decreased by smart decision making.
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1. Introduction

Based on the comprehensive studies of scheduling algorithms in cloud [1] and fog environments [2, 3] and by
the presence of Internet of things (IoT), the future generation networks like mobile nets will have a compact,
heterogeneous, and very unstable conditions. Therefore, the current static scheduling techniques would not be
proper for the future generations of the networks. Using techniques such as artificial intelligence and machine
learning (ML) has attracted the attention of network planning scientists [4]. With the development of devices at
the edge of the network, the concept of the fog emerged and provided a low latency, large scale, and geographic
distribution, mobility, location awareness, flexibility, heterogeneity, and scalability [5]. According to [6], fog is
a local cloud which provides a limited and trustable processing power with a slight delay near the users. The
difference between fog and cloud will be defined in the closeness of the final users, geographical distribution,
and the support of mobility [7]. Fog computing (FC) was introduced by Cisco Systems to develop the model of
cloud computing (CC) to the edge of the network especially for the services of IoT [8]. In [9], some scenarios
of the fog environment applications have been analyzed and some scenarios of other documents have also been
reviewed and finally, it can be concluded that only these general scenarios of FC can be used:

• Data will be gathered from the edge of the network such as vehicles and sensors.

• A large number of machines in the network send data.

• Processing data and decision making must be done in less than a second.
∗Correspondence: m.nickray@qom.ac.ir
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Based on [10], CC fails to guarantee the Quality-of-Experience (QoE) requirements for some services like
the smart grids (SG) services such as latency, bandwidth, energy consumption, and network cost. FC extends
CC into the edge of the network by deploying limited resource, localized computing, and processing facilities.
FC is mostly in contact with the service providers and the owners of equipment in fog layer like the end user
devices, access points, and edge routers [11]. Regarding the high dynamicity of fog network, fair and optimized
distribution of resources among the tasks requires an efficient and optimized scheduling algorithm. Considering
the positive consequences of using the ML algorithms in CC [12], we have tried to study the results of the
utilization of Bayesian classification algorithm for scheduling in FC. Our key contributions in this paper are as
follows.

1. Since a large number of sensors and small things in IoT require low energy consumption; thus, we consider
a three-tier architecture so that end devices are at the lowest level, the fog at the intermediate, and the
cloud at the highest.

2. The use of the Bayesian method to classify tasks based on their processing requirements has led to the
creation of intelligent virtual machines, and the resources of the devices are optimally distributed between
tasks.

3. According to the application, cost and energy metrics are analyzed based on the number of departments,
mobile devices, users and the EEG signal. The simulation results have shown that using FBCS method
has reduced energy consuming and cost in the cloud than random, first-come-first-served (FCFS), delay-
priority [13], and energy consumption of IoT application in fog computing (ECIF) [14] methods.

The rest of this paper is organized as follows. In Section 2, related works and results of using the ML
methods for scheduling in the fog and cloud environments have been described. In Section 3, the model of the
system is presented. In Section 4, the FBCS method including the Bayesian classification and the algorithms
of task scheduling in fog environment have been described. In Section 5, the results of simulation have been
evaluated and are compared with other methods in detail, and finally in Section 6, the overall results, and future
works have been brought.

2. Related works

Scheduling in cloud computing is a new viewpoint for distributed computing and parallel processing. It prepares
the computing under the name of a beneficial system for a pay-per-use service [15]. Practical programs can
be modeled as the workflows in a directed acyclic graph (DAG). CC also represents infrastructure, platform,
and software as a service [16]. When the techniques and the devices of IoT entered the life of ordinary people
more and more, the current CC pattern could hardly support the need for mobility, location awareness, and low
latency. Therefore, FC was introduced to solve the mentioned problems [7]. In response to the question of what
the benefits of using fog in combination with the cloud are, an answer with an analysis of two scenarios including
only cloud and a combination of cloud-fog together with a comparison between processing delay and consumed
energy has been prepared in [6] according to the increase of the number of users and different workloads. Their
simulation has been done by discrete event system specification. The results approve that by using the fog
networks, waiting time is less and the data rate will be more.

In many domain-specific applications like industrial applications, the CC will not be able to answer the
need of users on time [11]. Datacenters will classify the tasks according to service level agreement (SLA) and
the requested services [15]. To prepare a better service with optimized use of resources, the tasks will be loaded
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on vector machines (VMs) and the resources will be shared. This is exactly the opposite point of the idea of
occupying the whole resources [11, 17].

Scheduling can be implemented in three different levels: task level, resource level, and workflow level.
Stability and efficiency of systems depend on a variety of factors such as task scheduling.

Scheduling in CC is mostly focusing on improving the use of resources and decreasing the required time
to complete a job. It also has this ability to be generalized to FC. In network, the cost to do a specific job
depends on the time and exchanged data. One way to reduce the cost of the user is to decrease the volume
of sent data to the cloud which is the main idea behind creating the fog. This fact reveals the importance of
paying attention to FC and scheduling in this environment. Cloud can connect to an IoT device through fog
nodes [18].

Based on [13], in the delay-priority method, tasks are scheduled based on lower delay. Based on this
algorithm, the remaining amount of running tasks or runtime queues is obtained and these values are arranged
in an ascending list. Therefore, requests with the lowest remaining execution are prioritized to run faster. Since
the method of this paper is based on Bayesian classification. This method is the scope of ML. ML is a subset
of artificial intelligence. In the following, we survey the researches about scheduling by ML methods.

2.1. ML-based scheduling

For the scenarios in which the learning data will be produced slowly and the states are countable, we can use
some type of supervised learning such as classification (discrete variables) or regression (continuous variables)
[19]. According to [20] the impacts of using the ML concepts such as the mechanism of automatic resource
allocation, scheduling, and the smart management of resources on cloud environments have been studied. For
this purpose, some learning methods like SmartSLA which is a cost-sensitive resource management system has
been studied. The results show that SmartSLA will be able to calculate the predictive models for hardware and
software resources successfully. As in [21], a task scheduling scheme has been designed based on an reinforcement
learning (RL) to lessen the makespan and the average waiting time under the limitation of VM resources and
the deadline.

A parallel multiagent technology has been used to make the balance between discoveries and occupy in
the learning process. The convergence of the Q-learning algorithm has also been speeded up and at the end
of each section, a semioptimized policy has been reached. As in [16], in matters of resource scheduling, due to
the concentrating on a special purpose like minimizing the executing time or workload and the lack of using
the CC features, classification and regression tree and modified bacterial foraging optimization algorithms have
been proposed. In [22], the authors recommended a multiagent resource selection technique based on a neural
network which would be able to imitate the services of an expert user in the distributed systems like grids and
clouds.

According to [19], in comparison with the ad hoc heuristic, the approaches of ML can be helpful through
intelligent resource allocation, selection of action according to the conceptual states and environmental factors
for scheduling. These approaches can represent a solution based on ML by modeling supervised learning and
prepare the architecture.

2.2. ML-based scheduling in cloud

Due to the density of VMs and jobs in the CC environment and this point that the matter of job scheduling is a
NP-Hard complete problem a multiagent parallel learning has been used to increase the speed of job optimization
scheduler scheme in some books [21]. Neural networks are compatible with the datacenter management and
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decrease the cost of cooling process of Google datacenters up to 40%. Deep learning (DL) at the edge of network
decrease the amount of back propagated data to datacenters [19]. Efficiency of energy, spectrum, delay, stability,
and safety are the key parameters which are considered at the stage of networking operation. Optimization of
these parameters needs the real-time learning and decision-making algorithms [4]. Feature engineering is the
first step of every analysis based on ML. This is the process of selecting the correct data metrics to represent
them as input to the ML algorithms [18]. In [19], the facility of resource management has been discussed by
the ML in large scale distributed systems. They have studied the way ML automatically detect and understand
the workloads and the environments.

2.3. ML-based scheduling in fog

Data mining and ML have been used in some networks such as wireless sensor network and in many recent
studies. In [23], authors provide predictive models in the networks where the instability and dynamism are the
essential features. The Kernel linear regression and the extended Kalman filter are widely used to predict the
sensor values. According to [24], energy-efficient scheduling is proposed based on the deep Q-Learning model
and dynamic voltage and frequency scaling for periodic tasks in real-time systems. Usually, much of the power
in smart devices is used by CPU and GPU, and a lot of methods have been proposed to reduce the energy
consumption in recent years.

In [18], the use of low-resource ML has been evaluated on the wearable health-care fog devices which are
kept close to users. In a big data analysis to discover patterns in the physiological data, they have developed
a prototype of fog-based traditional unsupervised ML. The results proved that the proposed architecture for
low-powered clinical ML is promising, and a computer with limited data mining capabilities can analyze the
data collected from various wearable sensors for a remote health-care application.

According to [8], the researchers have proposed an RL based on the offload code mechanism to ensure
low-latency services for mobile service users. Based on [10, 14, 25], the offloading-based scheduling algorithm
designed for it sets a threshold value so that if there are not enough resources to execute the request, the requests
are directed upward through the middle layer devices to the cloud. Based on [26], ECIF, an offloading method,
could lead to the integration of IoT and CC applications. It could connect IoT nodes, sensors, edge devices, or
fog nodes. Factors such as energy, latency, load balancing, and computational requirements of an application
could affect offloading. They present recent offloading schemes proposed for domains such as FC, CC, and IoT.

In [8], the authors used the distributed RL algorithm to drain the base blocks in a decentralized state to
deploy mobile codes on the mobile Fogs which are geographically distributed. Their proposed method reduced
the mobile access runtime, latency, and also the energy consumption of mobile devices.

According to [23], a distributed learning model on the sensor device and simulation of data flow in the
fog has been proposed and the benefits of FC in this model have been investigated. The framework has shown
that the combination of Fog and CC is beneficial for IoT applications.

In [5], a data predictor was introduced in a fog-based model and was built on the lightweight Message
Queuing Telemetry Transport protocol. They have analyzed four ML algorithms to predict the measurement
of the real sensor. Selective methods include multiple linear regression, regression tree, bagged decision tree,
and artificial neural network. The results of ML algorithms based on energy and data exchange factors are the
same, except for the linear regression having less accuracy.

In [27], Cognitive Radio-based IoT (CIoT) is a promising solution for the IoT applications. The main
challenge of CIoT is the efficiency of packet transmissions while using the cognitive network. Therefore, a new
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Q-Learning based on the transfer scheduling mechanism is proposed to use the DL method for CIoT.
In [28], the researchers investigated and reviewed many documents about using the ML and intelligence

approach in IoT application like remote health-care applications or smart gateways. Based on [29], they designed
a dynamic RL scheduling algorithm and a deep dynamic scheduling algorithm to gain a fine-balanced solution to
offload the tasks for mobile devices. According to the results, the energy cost and service delay will increase with
raising of traffic size and computation workload. With a more detailed statement, the computation workload
has more effect on the energy cost than traffic size.

In [30], the authors proposed a manifold learning dynamic spectrum allocation framework combining FC
and CC so that the received signal is processed close to where it is generated. Based on the features of the
received signal, different ML methods have been applied such as least square logic regression, support vector
machine, and manifold learning. The extracted feature could also be projected to a higher feature space to
improve the categorization performance. Based on the defined rules, each fog node has the ability to infer
and choose the best spectrum candidate to transmit the signal without interfering with the licensed legitimate
primary users.
3. System model

As shown in Figure 1, requests in the fog layer are sent by end devices such as sensors, mobile phones, and
surveillance cameras to be placed in the queue waiting to run. In one path, requests are executed and their
specifications are classified and stored until when proper VMs will be updated and made based on them. On
the other path, requests are executed only by referring to premade VMs, and the result will be answered. We
run Virtual Reality Game (VRGAME) application [31] in the proposed system.

Figure 1. System Model

3.1. VRGAME application model

The VRGAME1 application is a human-vs-human game. Each player needs to wear a wireless EEG headset
which is connected to a smartphone. The application receives the EEG signals sensed by the EEG sensor
and calculates the brain state (concentration) of the user and streams raw data to the client module. The

1Electroencephalography Tractor Beam Game
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client module sends consistent data to the concentration_calculator module, which computes the concentration
level of the user and returns it to the client module. Client module updates the game display to the player.
The coordinator module gathers and distributes measured concentration among players. The value of the
EEG parameter could be used to determine the interval between the two sensed signals. This parameter, in
combination with the parameter MAX_SIMULATION_TIME of the Config class, determines the number of
generated tuples. When the EEG is set at lower values, more requests are sent per unit time, and the modules
that receive the sensed data need more processing resources, and, in the meantime, they also produce more data
which makes all devices available in processing environments (such as end devices, fogs, and even datacenters)
are challenged. Based on Figure 2, the EEG sensor, display actuator, and client module are placed in the mobile
device. The concentration_calculator and the coordinator modules can be placed in the fog devices (such as
gateways, routers, proxy servers, and other intermediate devices which are located at the lower level of the
cloud) or at a cloud datacenter [13, 31].

Figure 2. Application model

4. The proposed approach

In this section, due to the positive results of using the Bayesian classifier in [12], as well as by comparing
the speed and accuracy of the methods based on Bayesian theory and some of the ML algorithms [32], the
utilization of the Bayesian classifier in the fog environment is proposed to schedule tasks in accordance with
their requirements, such as processing requirements and destination modules. The FBCS method as Figure

1 is described in the form of two algorithms. In this method, TS2 =

m1 p1
...

...
mn pn

 is a two dimensional (2D)

array, the first dimension is the tasks destination modules name, and the second dimension is their processing

2Tasks Specification

4172



HEYDARI et al./Turk J Elec Eng & Comp Sci

requirements. The 2D array CT 3 =

m1 p1
...

...
mi pj

 is the result of running the Bayesian classifier on TS and the

specification is similar to TS. Cloud destination module counters (CDMC) is a one-dimensional array containing
counters of different VM in the cloud and mobile destination module counters (MDMC) is a one-dimensional
array containing counters of different VMs on mobile devices. dmn represents the task destination module
name, rm is the processing power requested by the task, nrc represents the number of tasks running on the
VM or module, and cetc (current executed tasks counter) is the number of executed tasks from the beginning
up to now.

4.1. Bayesian classifier

In step 23 of Algorithm 1, the Bayesian classifier is applied to the 2D array of TS. The arrays M = TS

m1

...
mn



and P = TS

p1...
pn

 are the first and second columns of the 2D array of TS that has been defined as M and P.

The indices j′ and i′ are derived from Eq. (1) and represent a corresponding between the module name and
the amount of the required executed task processing.

(i′, j′) = argmax

(
P (Mi|Pj) =

P (Pj |Mi)× P (Mi)

P (Pj)

)
, (1)

where P (Mi|Pj) calculates the probability of a VM Mi which has Pj processing requirements. For every value
of i , the probability P (Mi|Pj) is calculated for all j values. According to Eq. (1), we seek the best adaptation
between the module and the processing requirement of that module. In fact, we plan to allocate the most
probable requirement (the processing requirement) to the module. Therefore, physical resources are optimally
shared for logical components and the waste of resources would be at the lowest level. P (Mi) and P (Pj) are
obtained by Eqs. (2) and (3), respectively.

P (Mi) =
|Mi|
|M |

, (2)

P (Pj) =
|Pj |
|P |

, (3)

CT(i′,1) = Mi′ and CT(i′,2) = Pj′ , (4)

where P (Mi) is the probability of Mi module relative to total modules observed and P (Pj) is also the
probability of processing requirement Pj relative to total processing requirements observed. P (Pj |Mi) is the
probability of processing Pj when the module is of type Mi and can be calculated for the constant value i and
values from 1 to n for j .

3Classified Tasks
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To prove the correctness of Eq. (1), Table 1 is presented. Numeric values are specified in this table.
In Table 2, based on the values in Table 1, all possible probabilities are calculated and the best values of i

and j are gained considering Eq. (1). Of course, in the numerical example given in Table 2, the values of the
obtained indices are randomly equaled. Ifogsim simulator has a very random and dynamic environment; during
the implementation of multiple simulations, it is determined that the CT is sometimes set to duplicate values.
Certainly, these duplicate values do not affect the classification, but since resources are allocated on the basis
of this 2D array, it can affect the scheduling. For this reason, Eq. (5) is defined to be repeated through a loop
with k (k is smaller than n) and possible duplicate values can be eliminated. Finally, the CT is completely
refined and each row would exclusively identify some type of VM and its processing requirements. Because all
i and j variables can have values from 1 to n , the time complexity is O(n2) and the time complexity of Eq.(5)
will be obviously O(k2) . Since n is much larger than k , the time complexity of the algorithm is O(n2) . This
polynomial time complexity allows the algorithm to run on devices with limited resources, like devices in the
fog environment.

if CT(k,1) == CT(h,1) and CT(k,2) == CT(h,2) then remove CTh from CT (5)

Table 1. Introducing modules and probabilities.

Row Module PR Number Row Module PR Number Row Module PR Number
1 M1 P1 1000 1 M2 P1 100 1 M3 P1 10
2 M1 P2 100 2 M2 P2 1500 2 M3 P2 320
3 M1 P3 500 3 M2 P3 120 3 M3 P3 1600
4 M1 P4 50 4 M2 P4 0 4 M3 P4 410
5 M1 P5 30 5 M2 P5 450 5 M3 P5 120

Total 1680 Total 2170 Total 2460

Table 2. The calculated probabilities.

P (Mi) P (Pj) P (M1|Pj) P (Pj |M1) P (M2|Pj) P (Pj |M2) P (M3|Pj) P (Pj |M3)

P (M1)
= 0.266

P (P1) =
0.175

P (M1|P1)
= 0.904

P (P1|M1)
= 0.595

P (M2|P1)
= 0.090

P (P1|M2)
= 0.046

P (M3|P1)
= 0.068

P (P1|M3)
= 0.004

P (P2) =
0.304

P (M1|P2)
= 0.052

P (P2|M1)
= 0.059

P (M2|P2)
= 0.779

P (P2|M2)
= 0.691

P (M3|P2)
= 0.166

P (P2|M3)
= 0.130

P (M2)
= 0.343

P (P3) =
0.351

P (M1|P3)
= 0.225

P (P3|M1)
= 0.297

P (M2|P3)
= 0.053

P (P3|M2)
= 0.055

P (M3|P3)
= 0.720

P (P3|M3)
= 0.650

P (P4) =
0.072

P (M1|P4)
= 0.109

P (P4|M1)
= 0.029

P (M2|P4)
= 0.000

P (P4|M2)
= 0.000

P (M3|P4)
= 0.900

P (P4|M3)
= 0.166

P (M3)
= 0.389

P (P5) =
0.095

P (M1|P5)
= 0.049

P (P5|M1)
= 0.017

P (M2|P5)
= 0.748

P (P5|M2)
= 0.207

P (M3|P5)
= 0.199

P (P5|M3)
= 0.048

argmax = (i = 1 , j = 1) (i = 2, j = 2) (i = 3, j = 3)

4.2. Tasks classification

In Algorithm 1, tasks are classified according to the destination module and their processing requirement. The
input of this algorithm includes the application ID, broker ID, number of departments, number of mobiles in

4174



HEYDARI et al./Turk J Elec Eng & Comp Sci

each department, logical cloud deployment mode, and the 2D array of TS . The output will be the CT which
is obtained after applying the Bayesian classifier on the TS .

4.2.1. Training phase

In this section, Algorithm 1 is explained and the job is to classify the tasks. The input of the algorithm includes
variables such as AppID representing the application identifier, the BrokerID represents the Fogbroker
identifier, the department identifies the number of departments, mobilesperdept represents the number of
mobile devices in each department and boolean CloudDeploymentMode variable. If CloudDeploymentMode

was true, deployment mode would be cloud-based. The final input is 2D array TS , the first dimension of the
array contains the destination modules and the second, processing requirements of the destination modules.
After executing this algorithm, the 2D array CT is obtained, the first and second dimensions of the CT , are
like the TS . However, the number of entries in the CT is less than the TS .

In the first step, based on the application model defined in Figure 2, the application is created. Then,
in steps 4 through 13 based on the value of the CloudDeploymentMode , modules are mapped on devices. In
step 4 CloudDeploymentMode will be checked and if it is true, the model will be cloud-based. Then in steps
5 and 6, the number of departments multiples the number of mobiles in each department, the coordinator and
concentration_calculator modules are deployed in the cloud. In step 8 for all the mobiles, the client module
would be installed on them. If CloudDeploymentMode is false, in steps 10 and 11, as the number of departments
multiples the number of mobiles in each department only the coordinator module will be deployed on the cloud.
In step 14, the simulator starts. From steps 15 to 20, as long as there is a task in the queue, the tasks would be
executed and their specifications, such as the destination module and the processing requirement, are included
in the TS . When there are no other tasks to be executed, in step 21, the Bayesian classifier runs on TS and
its output is stored in CT . In the end, in step 22, the simulator will be stopped and the training phase is
completed.

4.2.2. Test phase

The test phase of Algorithm 1 starts in step 25 and ExecutedTaskCounter and MaxIteration variables are
initialized. The ExecutedTaskCounter counts the number of tasks that have been executed since the beginning
of the test phase and the initial value is zero. The MaxIteration determines the number of tasks which are to
be done to update the operation. In the simulation, the MaxIteration has been initialized with 10, which is
explained as follows.

• Max iteration: The appropriate policy to determine the amount of MaxIteration could be based on
QoS. In this paper, the constant value for MaxIteration was considered to reduce the complexity of the
simulation. The dynamic method to obtain MaxIteration and determine the best time for updating
resource allocation could be a challenging topic to improve system performance. The ifogsim simulator
works through the updateAllocatedMips function in the Fogdevice class to update the processing resources
assigned to VMs or modules. In order to execute the algorithm, it is necessary to call this function at
certain intervals and make the necessary update. Since the behavior of this simulator and the call of this
function is very dynamic and random, the MaxIteration variable is defined to specify when the simulator
engine calls the updateAllocatedMips function and ignores the update operation when the time is not
appropriate. In this way, the behavior of the algorithm gets out of a random state and is controlled. The
most convenient way to find the best time to perform an update operation is to call the function after
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Input: AppID , BrokerID , department ,mobilesperdept , CloudDeploymentMode , TS [dmn ,
rm ]

Output: CT [dmn , rm ]
Training Phase:

1 Create Application by AppID .
2 Create Fog Broker by BrokerID .
3 Module Mapping.
4 if CloudDeploymentMode then
5 for i < department × mobilesperdept do
6 Add ”connector” and ”concentration-calculator” Modules To Cloud.
7 end
8 Add ”client” Module To All Mobile Devices.
9 else

10 for i=0 to i < department × mobilesperdept do
11 Add ”connector” Module To Cloud.
12 end
13 end
14 Start Simulation.
15 n = 0 , m = 0 .
16 while Task Queue Is Not Empty do
17 Execute Task.
18 dmn = Destination Module Name Of Executed Task.
19 rm = Requested Mips Of Executed Task.
20 TS [n , m ] = [dmn , rm ].
21 n++ , m++ .
22 end
23 CT =Bayesian Classifier(TS). // The result of running Bayesian classifier on TS array.
24 Stop Simulation.

Testing Phase:
25 ExecutedTaskCounter = 0 , MaxIteration = 10 .
26 CDMC[c0 ,…,ci ] = [0,…,0], MDMC[m0 ,…,mj ] = [0,…,0].
27 while Task Queue Is Not Empty do
28 Execute Task.
29 ExecutedTaskCounter ++ .
30 if ExecutedTaskCounter % MaxIteration == 0 then
31 Update Allocation Of Mips.
32 CDMC[c0 ,…,ci ] = [0,…,0].
33 MDMC[m0 ,…,mj ] = [0,…,0].
34 end
35 if Executed Task Class == CDMC[…,ci ,…] then
36 ++ ci .
37 end
38 if Executed Task Class == MDMC […,mj ,…] then
39 ++mj .
40 end
41 end

Algorithm 1: Tasks Classification
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executing a certain number of tasks. In order to obtain the most appropriate value for this variable, the
algorithm runs for different values of iteration. Table 3 shows the results of the FBCS method for values of
1, 10, 100, and 1000 of MaxIteration . By evaluating different parameters, the best value was obtained.
The results show that if the value of this variable is 10, the cost and energy consumption of the Cloud
will be less. Moreover, the table values indicate that this variable does not have a significant effect on the
average energy consumed in mobile devices.

In step 26, according to the implemented classification of step 23, CDMC and MDMC arrays will be defined
and all entries are set to zero. These arrays contain counters. The CDMC modules which will run in the cloud
and MDMC modules that will run in the mobiles (all devices in the lower layer of the cloud). These will count
the number of tasks whose destination modules are matched with the classifications derived from step 23. In
steps 27 to 41, as long as there is a task in the task queue and the number of executed tasks is equal to the
MaxIteration , the processor assigned to the modules are updated and the values of the counters in the two
CDMC and MDMC arrays are set to zero. In steps 35 to 40, according to the classification type of executed
task, the values of the current counters in CDMC and MDMC arrays are increased. Based on the counter values
of CDMC and MDMC, in Algorithm 2, the processing power assigned to the modules will be updated.

Table 3. Max iteration Analysis. (Dep#=1)

Mob# EEG User# Iteration Cost of execution
in cloud

Average energy
consumption all
mobiles per department

Cloud energy
consumption

30 10 1 1 344,491.8000 827,609.6990 13,562,989.75
30 10 1 10 330589.3260 827,615.0795 13,553,183.54
30 10 1 100 333,441.1959 827,620.0728 13,555,195.12
30 10 1 1000 340,751.8014 827,616.0418 13,560,351.71
20 3 1 1 462,768.6891 875,251.6404 13,646,417.20
20 3 1 10 457,810.5450 875,244.0441 13,642,919.93
20 3 1 100 461,964.2201 875,247.9670 13,645,849.76
20 3 1 1000 461,738.0251 875,247.3434 13,645,690.21
120 10 1 1 1,000,244.8000 827,350.3303 14,025,529.81
120 10 1 10 977,039.6004 827,364.7526 14,007,161.86
120 10 1 100 990,737.5004 827,349.8267 14,018,823.77
120 10 1 1000 951,656.6004 827,357.1667 14,008,568.65
20 10 10 1 249,046.1834 827,589.5391 13,495,666.50
20 10 10 10 232,677.8130 827,636.4867 13,484,120.95
20 10 10 100 245,541.5895 827,662.9379 13,493,194.51
20 10 10 1000 267,101.8911 827,613.3241 13,508,402.22

4.3. Resource allocation

Algorithm 2 updates the processor allocation to the modules of the device. The input consists of CT derived
from Algorithm 1, cetc , MaxIteration , and availablemips variables and CDMC and MDMC arrays. The cetc

counts executed tasks and the availablemips is equal to the available processing power of the device. Output
has made up modules based on the derived classes from Algorithm 1. In Step 1, if the number of executed
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tasks is equal to the MaxIteration , steps 2 to 11 are executed. For the number of the derived classes from
Algorithm 1 which their destination device is cloud or fog and conforms to the current counter value in the
CDMC and MDMC arrays, if the target device has sufficient processing power, the proper module will be made
in accordance with the requested processing power. Then, when all the requested modules are made, in step
14, if the module has an executing task, or it is in the running state and is waiting for the arrival of a task,
depending on the requested processing power, it is allocated to the processor and at the end in step 17, the
energy consumption will be updated.

Input: CT[dmn , rm ], cetc , MaxIteration , availablemips , CDMC[c0 ,…,ci ], MDMC[m0 ,…,mj ]
Output: Created Modules

1 if cetc % MaxIteration == 0 then
2 availablemips = Available Mips Of The Device.
3 for k = 0 to k < i do
4 if CDMC[ck ] ̸= 0 and availablemips > 0 then
5 Create Module Based On Requested Mips Of CT[k , 1].
6 end
7 end
8 for k = 0 to k < j do
9 if MDMC [mk ] ̸= 0 and availablemips > 0 then

10 Create Module Based On Requested Mips Of CT[k , 1].
11 end
12 end
13 end
14 if nrc ! = 0 or ModuleStatus==Running then
15 Allocate Requested Mips Of The Module.
16 end
17 Update Energy Consumption.

Algorithm 2: Update Allocation Of Mips

4.4. The method analysis parameters

The cost parameter of simulation implementation is as Eq. (6).

Cost = PEC + (CC − LUUT )×RPM × LU × TM, (6)

where PEC is the cost of the previous execution in the fog device, CC is the Cloudsim clock, LUUT is the last
time the system’s efficiency is updated, RPM is the million instructions per second (MIPS) rate, LU is the last
efficiency rate, and TM is the total MIPS for the host. The overall network utilization is based on Eq. (7):

NetworkUsage =

∑N
1 (TLi × TSi)

MST
. (7)

The relations between the modules are determined by the tuples and the network resources consumption,
depending on the size of the tuples that transmitted at a given time. In Eq. (7), TLi and TSi are equal to the
total delays and the total size of the tuples related to the modules, N the total number of tuples and MST is
the maximum simulation time. Moreover, the energy consumed by the simulation for the complete integration
of network is calculated by Eq. (8):

Energy = CEC + (NT − LUUT )×HLU, (8)
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where CEC is the current energy consumption, NT is the current time, LUUT is the last time the system’s
efficiency is updated and HLU is the last utility of the host.

4.5. Evaluations

We need some resource management techniques to realize the potential power of the fog pattern and the
IoT in real-time applications [2]. To analyze the validity of proposed methods in the fog domain and the IoT,
ifogsim simulator [31] can be applied to evaluate algorithms in this domain in terms of parameters such as energy
consumption, cost, bandwidth, latency, etc. Algorithms 1 and 2 are implemented in terms of different parameters
such as the number of department, mobile, cloud user, and electroencephalography (EEG) transmission time.
If the EEG is set to lower values, the sensor will send more data at a time unit. In fact, the EEG parameter
is the time interval between two consecutive signals sent by the sensors. We compared the FBCS results with
the FCFS, random, delay-priority[13], and ECIF [14] algorithms in the same simulation conditions. Based on
[13], in FCFS, requests are served in the order of their arrival, until there are no more resources available. In
the random method, modules or VMs are randomly selected and resources are randomly allocated to them.

4.5.1. Experiment setup

The simulator is implemented in an environment with characteristics such as the eclipse photon 2018, jdk
version 1.8, Intel (R) i7-7500U-2.70GHz processor, 8GB memory, Realtek PCI family controller network card,
and Microsoft Windows 10 Enterprise x64 operating system.

4.5.2. Simulation configuration

Tables 4–7 show the VRGAME Application edge configuration; the configuration of all devices in the simulation
environment, the connection latency between devices, and the host configuration respectively. In Table 5, the
department is the same as a gateway and along with the proxy-server forms the fog devices layer.

Table 4. Vrgame application edge configuration.

Source module Destination module Periodicity
(mS)

Tuple CPU
length (B)

Tuple new
length(B)

EEG Client 0 3000 500
Client Concentration calculator 0 3500 500
Concentration calculator Coordinator 100 1000 1000
Concentration calculator Client 0 14 500
Coordinator Client 100 28 1000
Client Display 0 1000 500

As shown in Table 5, each device has parameters including MIPS, RAM4, upper bandwidth by kilobyte
per second (UpBW), down bandwidth by kilobyte per second (DownBW), level in the hierarchical topology,
rate per MIPS, busy, and idle power5. The details of the simulation outputs are shown in Tables 8–10.

Figures 3–14 show the simulation results. In all figures Dept#, Mob#, User# are the abbreviations of
the number of departments, mobiles per department, and number of cloud users, respectively.

4kilobyte
5megawatt
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Table 5. Devices configuration.

Device name MIPS Ram Uplink
bandwidth

Downlink
bandwidth

Level Rate per
MIPS

Busy
power

Idle
power

Cloud 44,800 40,000 100 10,000 0 0.01 1648 1332
Proxy-Server 2800 4000 10,000 10,000 1 0 107,339 834,333
Department
(Gateway)

2800 4000 10,000 10,000 2 0 107,339 834,333

Mobile
(End Device)

500 1000 10,000 10,000 3 0 8753 8244

Table 6. Connection latency.

Device name Device name Latency (mS)
Cloud Proxy-server 100
Proxy-server Department (Gateway) 4
Department (Gateway) Mobiles 4
EEG sensor Mobile 6
Display EEG sensor 1

Table 7. Host configuration.

Architecture OS Storage (B) BW (B/S) VM Model Cost Cost per
Memory

Cost per
Storage

Time Zone

x86 linux 1,000,000 10,000 Xen 3 0.05 0.01 10

Table 8. Cost of executions in cloud.

Dept# Mob# EEG User# FCFS Random Delay-priority ECIF FBCS
1 10 5 1 1217614.776 1036634.200 2,106,466.244 815,042.982 273,042.278
2 10 5 1 2036455.343 935805.672 2,781,901.794 831,466.857 283,283.885
3 10 5 1 2041544.959 917922.664 3,281,684.457 844,219.371 255,996.799
4 10 5 1 2043366.975 923996.440 3,776,663.969 826,730.400 279,086.768
1 30 10 1 1,758,793.784 1,200,462.224 2,296,131.232 844,551.625 335,145.255
1 60 10 1 2,701,530.722 1,527,898.944 3,793,856.031 842,731.486 498,318.134
1 90 10 1 3,856,418.090 1,960,594.944 2,601,740.734 860,751.114 682,502.044
1 120 10 1 4,438,795.200 2,288,928.600 3,837,440.212 896,027.086 965,456.000
1 20 3 1 3,032,186.147 1,593,817.176 4,258,814.965 821,559.660 457,114.665
1 20 5 1 1,929,523.847 1,216,957.832 2,863,199.411 813,019.914 409,337.963
1 20 7 1 1,614,345.962 1,049,233.248 2,459,280.156 828,724.978 334,075.334
1 20 10 1 1,286,523.384 1,114,612.040 1,643,738.976 829,499.734 238,165.503
1 20 10 2 1,303,686.304 1,068,633.248 1,601,035.522 831,254.788 233,136.523
1 20 10 2 1,291,172.648 1,075,946.168 1,652,372.137 828,735.471 244,995.653
1 20 10 2 1262666.736 1122378.824 1,613,598.055 829,096.914 241,758.310

In Figure 3, the maximum energy consumption belongs to the delay-priority method and FBCS has a
minimum value in Dept#4. As Figure 4 shows, the greater the amount of EEG signal is, the less the amount
of energy consumption in the cloud will be. The main reason is the optimal use of the bandwidth of the fog
nodes.
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Table 9. Cloud energy consumption.

Dept# Mob# EEG User# FCFS Random Delay-priority ECIF FBCS
1 10 5 1 1.42E+07 1.41E+07 1.48E+07 1.39E+07 1.35E+07
2 10 5 1 1.48E+07 1.40E+07 1.53E+07 1.39E+07 1.35E+07
3 10 5 1 1.48E+07 1.40E+07 1.44E+07 1.44E+07 1.35E+07
4 10 5 1 1.48E+07 1.40E+07 1.60E+07 1.39E+07 1.35E+07
1 30 10 1 1.46E+07 1.42E+07 1.49E+07 1.39E+07 1.36E+07
1 60 10 1 1.52E+07 1.44E+07 1.60E+07 1.39E+07 1.37E+07
1 90 10 1 1.60E+07 1.47E+07 1.52E+07 1.39E+07 1.38E+07
1 120 10 1 1.65E+07 1.49E+07 1.60E+07 1.40E+07 1.40E+07
1 20 3 1 1.55E+07 1.44E+07 1.63E+07 1.39E+07 1.36E+07
1 20 5 1 1.47E+07 1.42E+07 1.53E+07 1.39E+07 1.36E+07
1 20 7 1 1.45E+07 1.41E+07 1.51E+07 1.39E+07 1.36E+07
1 20 10 1 1.42E+07 1.41E+07 1.45E+07 1.39E+07 1.35E+07
1 20 10 2 1.42E+07 1.41E+07 1.44E+07 1.39E+07 1.35E+07
1 20 10 2 1.42E+07 1.41E+07 1.45E+07 1.39E+07 1.35E+07
1 20 10 2 1.42E+07 1.41E+07 1.45E+07 1.39E+07 1.35E+07

Table 10. Average energy consumed by all mobiles per department.

Dept# Mob# EEG User# FCFS Random Delay-Priority ECIF FCBS
1 10 5 1 874,501.8013 874,461.9370 867746.4057 875299.9634 837547.6655
2 10 5 1 874,599.9199 874,242.2926 869,507.5515 875,300.0000 837,532.1364
3 10 5 1 874,567.7037 874,353.3993 871,750.2613 875,299.9454 837,270.6748
4 10 5 1 874,587.2341 874,362.0509 872,393.2635 875,299.9845 836,897.6000
1 30 10 1 873,364.0687 873,323.1886 869,502.2295 874,271.2302 827,579.9103
1 60 10 1 871,273.7925 870,883.1754 873,069.1859 871,975.2056 827,485.8266
1 90 10 1 866202.4834 866702.4598 874,203.0132 872,005.5700 827,375.3471
1 120 10 1 863,985.8158 863,716.2340 874,331.9420 868,025.1473 827,356.9812
1 20 3 1 875,300.0000 875,300.0000 874,656.7816 875,300.0000 875,242.6953
1 20 5 1 874,669.6223 874,642.1475 870783.1291 875299.7796 836295.9790
1 20 7 1 853,626.7652 853,707.5507 867,998.8951 875,174.0861 827,379.3979
1 20 10 1 873,503.1414 873,751.7732 866,204.4732 874,560.4189 827,645.7652
1 20 10 2 873,568.3474 873,491.4105 866,035.7913 874,568.5950 827,604.6080
1 20 10 2 873,596.4793 873,696.9294 866,518.9769 874,551.4575 827,650.0398
1 20 10 2 873,819.1439 873,965.5506 866,399.7717 874,569.4272 827,670.8757

Figures 3–6 show that, on average, the FBCS method has reduced the energy consumption in cloud
2.53%, 4.43%, 8.28%, and 10.27% compared to the ECIF, Random, FCFS, and delay-priority, respectively. As
Figure 5 shows, increasing the number of mobile devices has increased the energy consumption of the cloud.
When the number of mobiles reaches 120, the FCFS method has the highest energy consumption and the FBCS
method has the lowest energy consumption with a mobile number of 30. Figure 6 shows that for all methods,
changing the number of users does not change much of the energy consumption of the cloud.
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Figure 3. Energy consumed in the cloud based on
Dept#.

Figure 4. Energy consumed in the cloud based on EEG.

Figure 5. Energy consumed in the cloud based on
Mob#.

Figure 6. Energy consumed in the cloud based on
User#.

Figures 7–10 show that, on average, the FBCS method has reduced the cost of execution in cloud 54.31%,
69.89%, 81.98%, and 85.87% compared to the ECIF, random, FCFS, and delay-priority, respectively. Therefore,
FBCS and ECIF methods have the best results in energy consumption and cost with different departments,
mobile, user, and EEG signals.

Figures 11–14 show that, on average, the FBCS method has reduced the average energy consumed by
all mobiles per department 4.16%, 4.3%, 4.3%, and 4.6% compared to the delay-priority, FCFS, Random, and
ECIF, respectively.

Table 11 compares the improvement percentage of FBCS compared to the FCFS, random, delay-priority,
and ECIF based on the evaluation parameters.

5. Discussion

The most important feature of devices in the fog environment is their resource constraints, which makes it
difficult for them to run real-time programs. One solution to this challenge is to send requests to the cloud, but
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Figure 7. Cost of execution in the cloud based on
Dept#.

Figure 8. Cost of execution in the cloud based on
Mob#.

Table 11. Improvement percentage of FBCS than Delay_Priority, ECIF, Random, and FCFS.

Parameter/Method FCFS Random Delay_Priority ECIF
Average energy consumed by

all mobiles in each department
4.30 4.30 4.16 4.60

Cost of executions in cloud 81.98 69.89 85.87 54.31
Cloud energy consumption 8.28 4.43 10.27 2.53

it may not work in delay sensitive applications. Hence, in real-time programs, a method should be adopted to
achieve that:

1. Requests are answered online, and QoS response parameters are provided.

2. Requests are scheduled to use available resources on devices to control network traffic without sending
requests to other devices or higher layers (FC and CC).

3. Considering that cloud-based services are pay-as-you-go [33], the cost of maintaining their datacenters is
reduced by not sending requests to the datacenters, which reduces costs for users to receive the service.

The results of this research show that the Bayesian method reduces the cost and energy consumption of fog
and cloud nodes. The algorithm’s execution time is also optimized since the maximum number of replicates
is optimally obtained. Therefore, the FBCS method can be used in devices with limited processing resources
which allows scheduling to be done online in real-time. The analysis of the results proves that the FBCS method
has the best results in terms of energy consumption and cost than other methods. FCFS and delay-priority
methods have had poor results in different criteria. Considering IoT, things require low energy consumption,
so the proposed method in fog architecture has a superiority over the compared methods.

6. Conclusion and future work

The fog layer has reduced the far distance between CC providers and the end devices. It has also reduced
the response time in real-time systems. Intelligent scheduling reduces management costs. For this reason, the
method of scheduling, according to ML algorithms, is proposed based on Bayesian classification. The FBCS
algorithm has been evaluated in the ifogsim simulator and on the VRGAME application.
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Figure 9. Cost of execution in the cloud based on Mob#. Figure 10. Cost of execution in the cloud based on
User#.

Figure 11. Average energy consumption of mobiles based
on Dept#.

Figure 12. Average energy consumption of mobiles based
on EEG

Figure 13. Average energy consumption of mobiles based
on Mob#.

Figure 14. Average energy consumption of mobiles based
on User#.
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The FBCS method is compared with FCFS, random, delay-priority, and ECIF methods. According to
our analysis, FBCS is superior to others. The results show that the amount of energy consumption in the cloud
improved minimum 2.53%, maximum 10.27%; cost of executing the tasks in the cloud improved at least 54.31%,
maximum 85.87%; and the average of energy consumption of mobile devices minimum 4.16%, maximum 4.6%.
The fact that the fog layer and its applications have a lot of dynamicity and the continuous changing conditions
is an inseparable part of it suggested that different learning algorithms would be implemented with different
environmental conditions then according to the QoS parameters, the best algorithm could be intelligently
selected.

In the future, we intend to develop appropriate learning models by using methods such as DL and RL
and the implementation of different algorithms under different conditions. Therefore, using these models makes
the system learn over time which method would yield a better result in different conditions. Consequently,
changing the environmental conditions would affect our method selection and the smart choice of the learning
method would be involved in management decision-making.
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