
Turk J Elec Eng & Comp Sci
(2019) 27: 4203 – 4219
© TÜBİTAK
doi:10.3906/elk-1903-186

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

GACNN SleepTuneNet: a genetic algorithm designing the convolutional neural
network architecture for optimal classification of

sleep stages from a single EEG channel

Shahnawaz QURESHI1, Seppo KARRILA2, Sirirut VANICHAYOBON1∗

1Information Systems Technology and Applied Research Laboratory (iStar), Department of Computer Science,
Faculty of Science, Prince of Songkla University, Songkhla, Thailand

2Department of Chemistry, Faculty of Science and Industrial Technology, Prince of Songkla University,
Surat Thani, Thailand

Received: 30.03.2019 • Accepted/Published Online: 02.08.2019 • Final Version: 26.11.2019

Abstract: This study presents a method for designing–by a genetic algorithm, without manual intervention–the feature
learning architecture for classification of sleep stages from a single EEG channel, when using a convolutional neural
network called GACNN SleepTuneNet. Two EEG electrode positions were selected, namely FP2-F4 and FPz-Cz, from
two available datasets. Twenty-five generations were involved in diagnosis without hand-crafted features, to learn the
architecture for classification of sleep stages based on AASM standard. Based on the results, our model not only achieved
the highest classification accuracy, but it also distinguished the sleep stages based on either of the two EEG electrode
signals, in both datasets. The results show that our model performed the best with highest overall accuracy rates and
kappa statistic (CAP sleep: 95.61% and 0.94; Sleep EDF: 92.51% and 0.90) among other state-of-the-art methods that
require no manual intervention. Our model could automatically learn the features for classification of sleep stages, for
different raw EEG electrode positions in different datasets, without user-assisted feature extraction.

Key words: Without hand-crafted feature extraction, electroencephalogram (EEG), genetic algorithm, convolutional
neural network

1. Introduction
Convolutional neural networks (CNNs) have become a popular machine learning technique that can auto-
matically learn informative features in various applications, including image processing, speech and language
processing, and medical image analysis. A CNN relies upon its deep architecture, which enables extracting a
set of perceptive features at multiple stages of abstraction. The deep architecture thereby eliminates laborious
feature engineering, and instead automatically learns transforms of the inputs that are appropriate for the
classification problem by involving so-called “convolutional filters” in an end-to-end learning process. Interest
in using CNNs for biosignal-related problems [1–3] has begun to emerge in the context of EEG signals.

In spite of their success, designing a CNN architecture is a challenging task requiring decisions on several
design parameters, like the depth of network, the type and parameters of each layer, and the connectivity of
the layers. State-of-the-art CNN architectures have become deep and complex, which practically means that
a substantial number of design parameters should be tuned for best performance with given type of data.
Both trial-and-error explorations and expert knowledge contribute to creating appropriate architectures for an
∗Correspondence: siriut.v@psu.ac.th

This work is licensed under a Creative Commons Attribution 4.0 International License.
4203

QURESHI et al./Turk J Elec Eng & Comp Sci

application context. Because of this situation, automatic design methods for CNN architectures can provide
significant advantages. In this paper we attempt to design the CNN architecture without human intervention
in feature extraction by using a genetic algorithm, in the context of automatic sleep stage scoring from a
single EEG channel signal. Efficient diagnosis and treatment of patients with sleep-related diseases is presently
an important research topic in the healthcare community. Getting sufficient good quality sleep at night is
significantly associated with human mental and physical health. Sleep disturbances may be caused by a variety
of disorders, such as sleep apnea, insomnia, or narcolepsy.

Neuroscientists assess sleep by using electrical signals from sensors affixed to different parts of the human
body. These electrical signals can fall into several types, such as electroencephalogram (EEG), electrooculogram
(EOG), electromyogram (EMG), or electrocardiogram (ECG). Once such data have been collected, sleep
scoring is the first step in the diagnosis of a sleep disorder. When EEG is used as an inspection technique
to identify the stages of sleep by scoring, this is known as polysomnography (PSG). Traditionally, sleep scoring
is done by expert sleep technicians, based on visual subjective perceptions of the signals. The commonly
used guidelines in this task are Rechtschaffen and Kales (R&K) and American Academy of Sleep Medicine
(AASM) guidelines (https://aasm.org/clinical-resources/practice-standards/practice-guidelines/). According
to the R&K guidelines, the recordings should distinguish between six sleep stages, namely wake stage (W),
nonrandom eye movement stage 1 (NREM 1), nonrandom eye movement stage 2 (NREM 2), nonrandom eye
movement stage 3 (NREM 3), nonrandom eye movement stage 4 (NREM 4), and random eye movement (REM).
The AASM guidelines essentially modify these to five stages by combining stages NREM 3 and NREM 4 into
N3 stage. These two common nomenclatures for distinct sleep stages are compared side by side in Table 1.

Table 1. Two common standards for sleep stages.

R&K W NREM1 NREM2 NREM3 NREM4 REM
AASM W N1 N2 N3 REM

Visual sleep state recognition by inspecting the EEG signals is challenging for several reasons. Currently
standard sleep stage evaluation is costly, as it requires labor by experts. Furthermore, the massive amounts
of data that are analyzed per patient make sleep scoring by human experts exhausting and subject to mis-
classifications due to tiredness. To overcome these problems with manual sleep scoring, several studies have
proposed automating the identification of sleep stages, based on single or multiple signal channels. However,
recent studies show promising results in the classification of sleep stages using deep learning, a comparatively
novel branch of machine learning that is still evolving rapidly [2, 3].

A systematic literature review covering the period from 1968 to 2018 (Shahnawaz Qureshi, unpublished
data) is currently under review. According to it there is a need to identify methods for tuning the structural
parameters of a CNN, so as to maximize its performance in classifying sleep stages. We found that most studies
did not utilize optimization methods for setting the algorithm parameters to classify sleep stages. Generally,
machine learning and deep learning techniques do not yield optimal outcomes without being adequately tuned.
To achieve a high classification accuracy, it is not only required to choose an appropriate machine learning
algorithm: it can be very time-consuming to set the algorithm parameters properly. To fill this gap, we propose
to have a genetic algorithm (GA) to diagnose the convolutional neural network architecture without manual
intervention in feature extraction, for the classification of human sleep stages based on AASM standard. In
recent years, combining GA with deep learning has attracted considerable attention. Mainly, GA has been

4204

QURESHI et al./Turk J Elec Eng & Comp Sci

employed in the automatic selection of hyperparameters (e.g., learning rate), other parameters (e.g., kernel
size), and network structure [4, 5] in different research areas. To the best of our knowledge, this is the first
study using a GA for automatically choosing the best-pretrained CNN for sleep stage classification. We tested
this approach using two datasets, CAP Sleep and SleepEDF, and two electrode positions from each dataset,
namely FP2-F4 and FPz-Cz. The ability to find high-quality network structures by this approach was assessed.
Finally, we employed the best CNN network architecture found and verified its effectiveness.

The paper is organized as follows. Section 2 briefly introduces theory and reviews relevant literature on
the classification of sleep stages by machine learning techniques, with or without human interventions in feature
extraction. Section 3 presents GACNN SleepTuneNet and how the genetic algorithm was used to design the
CNN network architecture. Section 4 presents the results and discussion. Finally, the conclusion is given in
Section 5.

2. Related work
A number of prior studies have sought to develop automated sleep stage scoring based on multiple signals,
such as EEG, EOG, and EMG [6–8], or based on single-channel EEG [9–11]. There are two different ways for
classifiaction of sleep stages including with and without human intervention in context of feature extraction.
When performing feature extraction with manual intervention, developing an automatic sleep stage classification
comprises the following steps: data preprocessing, feature extraction, and classification. Various techniques have
been applied in the literature, such as K-nearest neighbors (K-NN) [12], support vector machine (SVM) [13–15],
decision tree (DT) [14, 16, 17], and random forest algorithm (RF) [13, 18].

On the other hand, another way to extract the features from EEG signals is by utilizing the deep learning
techniques without human intervention. Deep learning can learn the features from EEG signals without human
intervention for classification of sleep stages. Recently, deep learning, a branch of machine learning that employs
multiple layers of linear and nonlinear processing units to learn hierarchical representations or features from
input data has been applied in sleep stage scoring. The authors of [19] have investigated the ability of deep
belief nets (DBNs) to learn probabilistic representations from preprocessed raw PSG. They applied the AASM
standard classes and obtained F-scores ranging from 31% to 84% in 25-fold leave-one-out cross-validation. CNNs
have also been applied to learn multiple filters that are used to convolve with small portions of input data from
a single EEG channel [20]. They achieved overall accuracies in the range 71–76% for all subjects in 20 fold
cross-validation. Another study [21] proposed a CNN model (DeepSleepNet) consisting of four convolutional
layers and two max pooling layers, a dropout layer with probability (0.5), batch size (100), Adam optimizer’s
parameters 10-4, 0.9 and 0.999, and softmax function. They evaluated their model using two public datasets:
Montreal Archive of Sleep Studies (MASS) and Sleep-EDF, achieving F1-scores 86.2–81.7% in the former data
and 82.0–76.9% in the latter. Orestis Tsinalis et al. [9] proposed stacked sparse autoencoders (SSA, a special
type of neural network) for automatic sleep scoring. They achieved overall 78% accuracy in 20-fold cross-
validation. Recurrent neural network (RNN) was proposed in [22] for automatic sleep scoring with energy
features of a single EEG channel; a 10-fold cross-validation indicated 87.2% accuracy. Hao Dong et al. [23]
applied a mixed neural network approach to the classification of sleep stages. They utilized a rectify neural
network and a recurrent neural network with softmax function with single EEG channel inputs, obtaining an
accuracy of 85.92%. While the CNN techniques have not been spread rapidly in the biomedical engineering
area, they have advantages in the classification of one-dimensional biosignals, such as (EEG) and (ECG). As
the literature reviewed above shows, there is growing interest in the use of CNN with EEG signals. In this

4205

QURESHI et al./Turk J Elec Eng & Comp Sci

study we propose a GACNN SleepTuneNet for appropriate selection of parameters in a classifier that performs
sleep scoring without human intervention.

3. GACNN SleepTuneNet

Our proposed method, GACNN SleepTuneNet, uses a genetic algorithm to design a competitive network
structure for sleep scoring. Its objective function can be set as maximizing the classification accuracy, while
controlling the complexity of the created method. The GACNN SleepTuneNet comprises a GA used for selecting
the parameters and hyperparameters of a competitive CNN architecture. After obtaining the optimal parameters
and hyperparmeters, the CNN is used to classify sleep stages. The details of each process are discussed below.
An overview schematic of the GACNN SleepTuneNet is shown in Figure 1.

Dataset

GA

CNN

Calculate fitness

(Accuracy)

W

N1

N2

N3

REM

Figure 1. Overview of GACNN SleepTuneNet architecture. The GACNN architecture is trained on a learning task and
assigned the validation accuracy of the trained model as its fitness. The evolutionary algorithm searches for the best
architecture.

3.1. Dataset
The data used in this study to evaluate our method with different EEG channels came from two public databases
available on Physionet repository [24]: CAP sleep and Sleep-EDF.

3.1.1. CAP sleep
This had 108 recordings of 3 EEG, 2 EOG, and EMG channels. The EEG electrodes were set up according to
the 10-20 international system. We selected randomly 20 cases that contained FP2-F4 EEG channel (14 females
and 6 males, aged 18–72). The sleep stages were annotated into seven classes (W = wake, NREM1–NREM4 =
sleep stages, R = REM, MT = body movements) by a sleep expert according to the R&K guidelines [25]. We
evaluated our model using the FP2-F4 EEG channel and excluded body movement epochs from our dataset.
We also converted the six sleep stages into the five sleep stages of the AASM guideline.

3.1.2. Sleep EDF

These data are from two electrodes (Fpz-Cz and Pz-Cz) and two studies, namely of age effect in healthy subjects
(SC) and of Temazepam effects on sleep (ST). In this study we used 20 subjects (10 males and 10 females, aged
25–34) from SC. A sleep expert scored these sleep stages according to the R&K guideline into one of the eight
classes (W, NREM1, NREM2, NREM3, NREM4, REM, MOVEMENT, UNKNOWN). In this study, we used

4206

QURESHI et al./Turk J Elec Eng & Comp Sci

the FPz-Cz channel (not Pz-Cz) without any preprocessing. We merged NREM1 and NREM4 stages under
N3 stage as recommended by (AASM) [26], as for the EDF dataset, and also excluded a small number of
MOVEMENT and UNKNOWN epochs. Single-channel EEG (FPz-CZ) was divided into 30-s length samples
(epochs) each representing only a single sleep stage. Table 2 summarizes the epoch counts by AASM standard
sleep stage.

Table 2. The epoch counts by AASM standard sleep stage and their total numbers.

Dataset W N1 N2 N3 REM Total
CAP sleep 5760 1097 11,155 7304 3548 28,864
Sleep-EDF 7920 2802 17,781 5700 7697 41,900

3.2. Genetic algorithm (GA)

In other application fields, on developing deep learning algorithms, researchers have studied using GA in the
tuning of learning parameters [4, 5] network structure [27], and hyperparameters [28] of deep neural networks.
GA uses an adaptive heuristic search algorithm inspired by the process of natural selection and genetics.
GA is robust and offers significant benefits in solving some optimization and search problems, and includes
reproduction, crossover, and mutation operations. It requires two essential elements: a genetic representation
of the solution domain, and a fitness function to evaluate each individual. GA is widely used in business, science,
and engineering: a good example is the traveling salesman problem [29]. Generally, evolutionary algorithms have
also been applied to hyperparameter optimization problems [30]. The principal concept of a genetic algorithm
is to generate a variety of individuals by genetic operations such as mutation and crossover, and apply selection
pressure that directs evolution of the population to improve fitness.

In this work the genetic algorithm is only used to propose network architecture, parameters and hy-
perparameters, while the classification accuracy of each architecture is obtained using individual training from
scratch. Our Algorithm 1 has the following steps to evolve CNNs based on GA.

Algorithm 1 GA searching for CNN
1: Input: Dataset D
2: Generate a random population of N chromosomes from the reference dataset D.
3: Evaluate the fitness function from CNN.
4: Create a new population of chromosomes by iterating the following steps until the new population is

complete.
5: Select some chromosomes from the current population based on classification accuracy (fitness) by using

the roulette wheel process.
6: For crossover, select the most fit chromosomes by elitism and compute the next generation.
7: Apply mutation with probability rate 0.03.
8: Test the classification accuracy; if the perfect classification is achieved then stop the process.
9: Go to step 3.

3.2.1. Chromosome evaluation
In this step, we apply the CNN-based fitness function to assess the chromosomes. The highest classification
accuracy (fitness) is sought through the design of the fitness function, which is also aware of the number of

4207

QURESHI et al./Turk J Elec Eng & Comp Sci

parameters and hyperparameters in the CNN. Accuracy is here defined as the count of correct classification
calls divided by the total number of classification calls. Since we are dealing with multiclass classification, the
performance measure is the average accuracy α .

α =

∑l
i=1

tpi+tni

tpi+tni+fpi+fni

l
(1)

where l is the number of classes, tpi is true-positive count, fpi is false-positive count, fni is false-negative
count, and tni is true-negative count for an individual class Ci .

3.2.2. Selection operator
In selection operation, the GA does not pick only the top two but selects an entire subpopulation with a lottery,
in which the probability to be chosen is determined by the fitness score. The goodness of each individual
depends on its fitness. Fitness is a numeric ”function” characterizing an individual in the population, and is
here the accuracy of classification reached by training a CNN matching the individual in the GA population.
The selection should prefer better chromosomes that are passed on to the next generation.

Gen
5

17%

11

21%

23

18%

24

21%

25

23%

Figure 2. Highest fitness scores randomly generated by Russian roulette wheel.
In practice, various selection methods, such as roulette wheel selection, tournament selection, boltzmann

selection, can be used to determine which individuals survive. We performed Russian roulette wheel selection.
The higher the fitness is, the more likely an individual survives and can breed, while those with poor performance
are more likely to be screened off from the population. The Russian roulette wheel is shown in Figure 2,
representing random generation for the highest fitness function (accuracy) in two different datasets.

3.2.3. Crossover
The generation of successors in a GA depends on the two important operators: crossover and mutation [31].
The crossover operation represents the exploitation part of the search algorithm. It takes selected chromosomes
for mating to combine the most fit chromosomes in the next generation of offspring. However, if the new
population were created only by crossover with mutations, the best chromosomes of the current generation
could be lost; there would be no guarantee of consistent improvement. This problem is addressed by elitism
[31], preserving the best individuals of each population also unchanged; they deserve not only the right to breed,
but also extended longevity for themselves. Therefore, the N most fit individuals were copied straight into the
next generation.

4208

QURESHI et al./Turk J Elec Eng & Comp Sci

3.2.4. Mutation
The mutations used in a genetic algorithm introduce diversity within the population, providing a multitude of
”search directions”, and also helping avoid getting stuck at a local optimum. Mutation represents the exploration
part of the search algorithm, and allows discovering unexplored areas with the intent of finding better and better
solutions. In the random mutation, a gene is bit flipped, so that 1 becomes 0 or 0 becomes 1. The selection of
cases subject to mutations ensures that the best chromosome is never lost in the optimization process. Too high
mutation rate gives slow convergence. However, for finding the effects on accuracy, we tested different mutation
rates and found that probability 0.03 gave robust results. The rate of mutations used in this study was set at
0.03.

3.3. Convolutional neural network architecture (CNN)

Recently CNN has gained interest and shown promise in 1D biomedical signal problems [32]. We chose CNN as
the model type, for architecture selection and hyperparameter optimization, partly due to its current popularity
in the machine learning community.

Our CNN architecture comprises layers, namely (1) convolutional layer, (2) pooling layer, (3) normaliza-
tion layer (using an activation function), and finally (4) a fully connected layer. The hyperparameter optimiza-
tion approach often tunes predefined hyperparameters, such as the numbers of layers and neurons, and the type
of activation functions. However, we propose different layers with different parameters as discussed below. The
complete GACNN SleepTuneNet architecture is presented in Figure 3.

R

E

L

U

D

R

O

P

O

U

T

P

O

O

L

I

N

G

Layer 1

L

1

C

O

N

V

O

L

U

T

I

O

N

Layer 2

Max pool,

Kernel size = 2

Stride = 2
No of filter 128

D= 0.2
L1= 1.0E-8

S

O

F

T

M

A

X

FC = 1500

W

N1

N2

N3

REM

OUTPUT

T
U

P
NI

D
1

Kernel size=2

Stride= 2
No of filter=128

P

O

O

L

I

N

G

D

R

O

P

O

U

T

L

1

R

E

L

U

Kernel size=2

Stride= 1
No of filter=256

Max pool,

Kernel size = 2

Stride = 1
No of filter=256

D= 0.2
L1= 1.0E -8

C

O

N

V

O

L

U

T

I

O

N

Figure 3. An overview of GACNN SleepTuneNet architecture.

3.3.1. Convolutional layer

Convolution layer is a core building block of the convolutional network [33]. It receives the inputs and consists
of a set of learnable filters. Every filter is small relative to the total input dimensionality. When dealing with
high-dimensional inputs, we connect each neuron to only a local region of the input array. The spatial extent
of this connectivity is a hyperparameter called the receptive field of the neuron (equivalently this is the filter
size). The convolution operation is denoted by *. The mathematics behind the CONV layer is to perform the
elementwise product between the filter and the input size. Its hyperparameters include the kernel size (K).

4209

QURESHI et al./Turk J Elec Eng & Comp Sci

Thus, our case of interest is 1D signal and size of the result is;

Output = NH −K + 1 (2)

where NH is the height or input volume size of signals and K is the kernel size of the sliding window that
convolves the data. Let us see how the convolution acts on an input. Our interest is 1D signal convolutional
layer with 100 feature detectors, input size (N) is 500, and kernel size (K) is 20 applied in each feature detector,
the window will slide through the data for 481 steps (500-20+1), giving output size 481*100. There are other
parameters involved in the convolutional or pooling layer which can modify the behavior of the layer, such as
padding (P) and stride rate (S). The effects of these parameters are described by:

Output =

⌈
NH + 2P −K

S
+ 1

⌉
(3)

where NH represents height or input size of the 1D signal, P is padding, K is the kernel size, and S is the stride.
Formally, each layer l convolves the set (X)l−1 of its input feature map by set of trainable kernels (also

known as filters) W l . With (H)l−1 the number of input feature maps and H l the number of output feature
maps, and Kl the height of the kernel, W l has form (Kl , (H)l−1 , H l). As inputs have one channel only, H0

equals 1. Thus, xl
j indicates the jth feature map in X l , and wl

ij the piece of W l that relates input feature
map i to output feature map j. Using such notation, we get:

x
(l)
j = σ

H(l−1)∑
i=1

xl−1
i ∗W (l)

ij

 (4)

where σ represent nonlinear activation function and * denotes the convolution operator.

3.3.2. Pooling layer (subsampling)

The primary purpose of pooling is to reduce or downsample the input representation, to reduce the number of
parameters and computational load in the network, and also to control overfitting. The pooling layer operates
independently on every depth slice of the input and resizes it spatially, using the Max operation [21, 34]. In
maxpooling there are two hyperparameters: kernel size (K) and stride rate (S). The pooling can be performed
with other functions, for example by average or sum pooling, but the max pooling has worked better in practice.
Moreover, two variations of max pooling are commonly seen in practice: a pooling layer with K = 2, S = 3
(called overlapping) and K = 2, S = 2.

3.3.3. Regularization
In CNN overfitting is considered a serious problem due to its large number of tunable parameters. The CNN
contains multiple nonlinear hidden layers, and these hidden layers create a useful model which can learn
the complex relationship between input and output. However, these many relationships can learn noise and
negatively impact classification performance. This leads to overfitting, and regularization techniques can help
prevent overfitting [33]. The most commonly used regularization techniques are dropout and weight decay.
The word ”dropout” refers to dropping out hidden or visible units. This technique is used in CNN to avoid
overfitting the training data by dropping out neurons with probability P >0 [33]. The optimal probability is

4210

QURESHI et al./Turk J Elec Eng & Comp Sci

not known generally. On the other hand, another most common kind of regularization technique is known as
weight decay (L1) and this uses the sum of the absolute values of the weights, and the related hyperparameter
is denoted by lambda or sometimes by alpha [33]. Weight decay makes sure that the weights are not too large
and the model is not overfitting the training set. The range of hyperparameter α is from 0.0 to 1.0 and this
controls the bias of the model. In this study, we employed two regularization techniques for avoiding overfitting.
The first one is dropout [34], and we assessed dropout rates in the range 0.1–0.7 and found that 0.2 gave the
best performance. The second technique is weight decay (L1) [33] that prevents exploding gradients. Weight
decay (L1) rates were tested in the range from 1.0E-1 to 1.0E-10, and 1.0E-8 showed the best performance.

3.3.4. Normalization
Many types of normalization have been proposed for use in ConvNet architecture, such as tanh, sigmoid, and
the ReLu function. Due to its good performance in most situations, we chose to use ReLU [20], which stands for
rectified linear unit. ReLU is an element-wise operation (applied per pixel in an image array) and replaces all
negative pixel values in the feature map with zeroes. It is computationally efficient and converges much faster
than sigmoid/tanh in practice. ReLU is defined as follows:

f(z) = max(0, z). (5)

3.3.5. Fully connected layer
The last layer connected into the CNN architecture is fully connected and computes the dot product between
its weights and the previous layer’s outputs to obtain the probability scores for different classes [35]. The
convolutional layers and fully connected layer are trained by the so-called backpropagation algorithm, which
adjusts the parameters (weights) in these layers so as to minimize the output error. However, the basis of
backpropagation is the error in the final answer, which is used to determine how much the network adjusts by
updating the weights using gradient descent. The most commonly used type of gradient decent algorithms, in
practice, is the stochastic gradient descent (SGD) [33]. It is an iterative optimization technique to minimize
the error in the network outputs. The benefit of the SGD is that it is simple to implement and fast for several
training problems [33]. Thus, the weight is updated as follows:

W = w − α

(
∂Error

∂w

)
(6)

where W represent the new updated weight, w is the old weight, α is the learning, and ∂Error
∂w is the derivate

of error with respect to this weight.
3.3.6. Softmax approach

Softmax is useful in case there are more than two classes in the data, so we use the softmax [36] function at the
end of architecture. It takes as input a vector of scores and produces output based on the probability distribution
by using softmax function. Thus, in our case, we have five classes, and we can compute the probability estimate
of each class according to the softmax formula:

a(l) =
ezl∑5
j=1 e

zj
(7)

where zl is a (5,1)-dimensional array (a vector) and al is the output vector.

4211

QURESHI et al./Turk J Elec Eng & Comp Sci

Formally, suppose we have vector size (5) representing different classes such as W, N1, N2, N3, and REM.
The indexing we use for these is (0,...,4); from zero to C-1, where C is the number of classes. In this case, we
want to build a network where the output layer has C = 5 output units. Thus, zl = 5 is the number of units of
the output layer, which is layer l. The units in output layer indicate the probability of each of the five classes:
the output is P (W | x), P (N1 | x), P (N2 | x), P (N3 | x), P (REM | x) .

In this study, we consider convolutional neural network architecture design as a model selection problem,
or a hyperparameter optimization problem, in the context of classifying sleep stages. In this approach we
tune the predefined hyperparameters, such as the numbers of layers and neurons, and the types of activation
functions. Our CNN SleepTuneNet is based on the following configuration. Two convolutional layers; the first
with kernel size 2 and number of filters 128 and stride rate 2 with valid padding. Max pooling is applied to
reduce the computational cost with kernel size 2 and stride rate 2. Then second convlayer has 256 filters with
kernel size 2, stride rate 1, and valid padding. Then maxpooling layer was set with kernel size 2 and stride
rate 1. ReLU activation function and dropout with 0.2 probability are utilized in our CNN SleepTuneNet
architecture. One fully connected layer of size 1500 and finally the softmax layer compute the probability of
each sleep stage. The model is trained using mini batch-size = 128 by stochastic gradient descent with learning
rate (0.01). The regularization techniques dropout and weight decay (L1) were applied to prevent overfitting,
with parameters (0.2) and (1.0E-8). The combination of layers can be summarized as Input → [Conv] →
[Pool] → [Dropout][weightdecay] → [ReLU] → [Conv] → [Pool] → [Dropout][weightdecay] → [ReLU] →
FullyConnected→ [Softmax]→ Output . A full network description is shown in Algorithm 2.

3.4. Experimental setup

The numerical experiments were run on a machine with 4.20 GHz CPU, 32.0 GB RAM, equipped with a NVIDIA
GeForce GTX 1050 graphical processing unit. The training time was approximately 2 h for each validation fold.
To assess the generalizability of our classification system, we evaluated our model with 10-fold cross-validation
for the AASM standard. We partition the entire dataset based on the subjects into 70% and 30% for training and
validation, respectively. This avoids overfitting over the subjects and supports generalization. In this procedure,
we choose three randomly selected subjects as validation data and the remaining 17 subjects for training. Thus,
each fold is created with a 85/15 split. With the help of GA, we generated 25 individual populations with
different hyperparameters to find the optimal settings for calling AASM standard labels for two datasets. These
populations each had several network configurations, created by increasing/decreasing convolutional layer size,
and changing stride size and max-pooling size. As regards the regularization parameters, we tried several weight
decay parameters ranging from 1.0E-1 to 1.0E-10. Among these 1.0E-8 showed the best performance. In training
by backpropagation the learning rate was tested from 0.1 to 0.00001, and 0.01 showed the best performance.

3.5. Sleep scoring performance evaluation

To assess AASM scoring performance we assessed the confusion matrix. However, it was scaled to class balanced
form, in order to place an equal weight on each class. The metrics we computed are precision, recall, F1-score,
per stage accuracy, overall accuracy, per stage classification error and kappa statistic. However, we have five
classes, and each was assessed as a binary classification problem of one vs. all other classes. The formulas for
the metrics are provided next.

4212

QURESHI et al./Turk J Elec Eng & Comp Sci

Algorithm 2 GACNN SleepTuneNet
1: Input: 1D EEG Signals, GA
2: Output: Five sleep stages
3: Forward Propagation Layer 1:
4: Conv1D 1 ← Ks = 2, S = 2, No. of filter = 128; ▷ Ks=Kernel size, S = Stride
5: MaxPool 1 ← Ks = 2, S = 2;
6: Regularization:
7: Dropout ← D = 0.2 & Weight decay ← L1= 1.0E-8; ▷ Dropout = D & Weight decay = L1
8: Activation Function:
9: ReLU (σ) ← max(0,0);

10: Forward Propagation Layer 2:
11: Conv1D 2 ← Ks = 2, S = 1, No. of filter = 256;
12: MaxPool 2 ← Ks = 2, S = 1;
13: Regularization:
14: Dropout ← D = 0.2 & Weight decay ← L1= 1.0E-8;
15: Activation Function:
16: ReLU (σ) ← max(0,0);
17: for all subject in data do
18: xl

j = σ
(∑H(l−1)

i=1 xl−1
i ∗ wl

ij

)
19: end for
20: Fully connected ← fc = 1500
21: Sleep stages probability ← Softmax (fc)
22: for each class probability do
23: a(l) = ezl∑5

j=1 ezj

24: end for
25: Hyperparameters:
26: learning rate ← Lr = 0.01, Max iteration ← Mi= 250

3.5.1. Precision
This is the fraction of correct positive calls among all positive calls:

Precision =
TP

TP + FP
(8)

3.5.2. Recall
Recall is the fraction of true positives that got called positive by the classifier:

Recall =
TP

TP + FN
. (9)

3.5.3. F1-score
F1-score is the harmonic mean of precision and recall:

F1− Score =
2 ∗Recall ∗ Precision

Recall + Precision
. (10)

4213

QURESHI et al./Turk J Elec Eng & Comp Sci

3.5.4. Accuracy
This metric describes the correctness of each case, and is the count of correct classification of each case divided
by the total number of each case:

Accuracy =
No of each case correctly classified

Total number of each case
. (11)

3.5.5. Overall accuracy
This is the number of epochs correctly classified as fraction of the total number of epochs:

Overall Accuracy =
No of epochs correctly classified

Total number of epochs
. (12)

3.5.6. Error rate
The rate of misclassifications for each sleep stage:

Error rate = 1− accuaracy. (13)

3.5.7. Kappa statistic
This metric is useful with multiclass classification problems and indicates whether a classifier performs better
than mere random calls based on the frequency of each class. Landis and Koch (1977) [37] presented an
interpretation and naming convention for this performance measure: < 0 for ”no”, 0–0.20 for ”slight”, 0.21–
0.40 for ”fair”, 0.41–0.60 for ”moderate”, 0.61–0.80 for ”substantial”, and 0.81–1 for ”almost perfect” agreement.

4. Results
4.1. EEG channel (FP2-F4) from CAP dataset

Table 3 shows the confusion matrix, obtained from 10-fold cross-validation with the single EEG channel (FP2-
F4) input and target labelling by AASM standard. The elements in the matrix are counts of 30-s EEG epochs,
the actual labels are those decided by a sleep expert, and the classifier calls are from the CNN SleepTuneNet
model. The bold numbers on the diagonal highlight the correctly classified epochs.

Table 3. Confusion matrix from cross-validation on using the (FP2-F4) electrode as input and labelling based on AASM
standard.

Predicted

Actual

Stages W N1 N2 N3 REM
W 5520 84 112 28 16
N1 107 771 186 4 29
N2 52 68 10,810 152 73
N3 18 3 187 7091 5
REM 17 17 98 10 3406

Table 4 shows separate performance metrics for each sleep stage in the AASM standard. It can be seen
that N3 stage was called with the highest accuracy 0.97, and classification error rate around 0.03. N2 and REM
ranked second with 0.96 accuracy and error rate 0.04. W also shows good performance with 0.95 accuracy.

4214

QURESHI et al./Turk J Elec Eng & Comp Sci

Table 4. Performance metrics for each AASM standard sleep stage.

Performance metrics
Stages Precision Recall F1-score Accuracy Error rate
W 0.96 0.95 0.96 0.95 0.05
N1 0.81 0.70 0.75 0.70 0.3
N2 0.94 0.96 0.95 0.96 0.04
N3 0.97 0.97 0.97 0.97 0.03
REM 0.96 0.96 0.96 0.96 0.04
Overall accuracy 95.61% Kappa statistic 0.94

The misclassification rate was around 0.05. Lastly, the weakest performance was for the sleep stage N1
with accuracy 0.70, and the highest misclassification rate of 0.3. The precision, recall and F1-score are slightly
poorer than for the above discussed stages. The overall accuracy, i.e. correctly classified number of epochs
divided by the total number of epochs, was 95.61%. The kappa statistic at 0.94 indicates that the classifier was
informative (much better than random guesses) with near perfect agreement to targeted labels.

4.2. EEG channel (FPz-Cz) from Sleep EDF dataset

Table 5 shows the confusion matrix obtained from 10-fold cross-validation on the single EEG channel (FPz-Cz)
with AASM labeling. Again, we merged S3 and S4 labels given by an expert into the single N3 stage (slow wave
stage). The bold numbers on the diagonal highlight the correctly classified epochs.

Table 5. Confusion matrix from cross-validation using the (FPz-Cz) electrode as input and AASM standard sleep stages.

Predicted

Actual

Stages W N1 N2 N3 REM
W 7171 39 461 92 157
N1 77 2457 181 37 50
N2 269 53 17,013 173 273
N3 131 18 326 5115 110
REM 136 23 441 88 7009

Table 6 gives the performance metrics by AASM sleep stage. In these data, N2 had the highest accuracy
of calls, 0.95, with respective error rates 0.05. The stages W, N3, and REM were called with 0.89–0.91 accuracy
and respective error rates 0.10–0.11. Finally, the poorest call accuracy was 0.87 for stage N1 having error rate
0.13. The overall accuracy was 92.51% and the kappa 0.90 indicates nearly perfect calls by our SleepTuneNet
model.

4.3. Comparison with state-of-the-art approaches
Table 7 presents a comparison between our method and state-of-the-art approaches with or without human
intervention in feature extraction, by overall accuracy and Cohen’s kappa. It can be noticed that our method
performed best among the approaches that utilized the single EEG channel, in terms of overall accuracy. The
kappa value confirms good agreement of labelling by a sleep expert with our classification method (0.90 and

4215

QURESHI et al./Turk J Elec Eng & Comp Sci

Table 6. Performance metrics by AASM sleep stage.

Performance Metrics
Stages Precision Recall F1-score Accuracy Error rate
W 0.92 0.90 0.91 0.90 0.1
N1 0.94 0.87 0.91 0.87 0.13
N2 0.92 0.95 0.93 0.95 0.05
N3 0.92 0.89 0.91 0.89 0.11
REM 0.92 0.91 0.91 0.91 0.09
Overall accuracy 92.51% Kappa statistic 0.90

0.94). Besides, our GACNN SleepTuneNet scored the highest accuracy not only among studies using the different
dataset, but also overall.

Table 7. Comparison between GACNN SleepTuneNet and other methods that used hand-crafted features and without
hand-crafted features by overall accuracy and Cohen’s kappa.

Study EEG Channel No. of
epochs

Scoring
standard

Cross-
validation

Metrics performance

Accuracy Kappa
[19] C3-A2 30,000 AASM 25 84 -
[20] Fpz-Cz 15,000 AASM 20 71-76 -
[21] Fpz-Cz 41,950 AASM 20 82.0 0.76
[9] Fpz-Cz 37,022 AASM 20 75-80 -
[22] FPz-Cz 960 R&K 10 87.2 -
[23] F4-EOG left 59,066 AASM 31 85.92 -
GACNN SleepTuneNet FPz-Cz 41,900 AASM 10 92.51 0.90
GACNN SleepTuneNet FP2-F4 28,864 AASM 10 95.61 0.94

5. Discussion
In this work we presented an automatic sleep scoring method applied to two sleep datasets without hand-crafted
features. It was demonstrated that parameter settings are essential for achieving excellent classification accuracy.
To tune the hyperparameters, we generated 25 populations for each dataset with classification accuracy as
the evolutionary goal. For example, we noticed that kernel size, number of filters, pooling size, and other
hyperparameters affected classification accuracy. We also observed that the iteration count in backpropagation
training affects the classification accuracy: for instance, too many iterations can give worse accuracy than earlier
interrupted training. For designing the GACNN SleepTuneNet architecture we tested various numbers of filters,
kernel sizes, pooling sizes, and stride rates, along with other hyperparameters (weight decay, learning rate, and
iteration limit) for the classification of sleep stages.

Moreover, we also noticed that there is high variation in the accuracy between two datasets with different
electrode positions, or possibly because of having healthy and unhealthy subjects. The selection of EEG
electrodes is an essential factor in an automatic system for sleeping scoring. Nonetheless, based on the results

4216

QURESHI et al./Turk J Elec Eng & Comp Sci

our method not only performed well with two different EEG electrodes (FP2-F4 and FPz-Cz) but was able to
distinguish the AASM standard sleep stages from each other very well (see Tables 3 and 5). For example, the
calls of N2 and N3 stages achieved high performance in both datasets. Overall Table 7 demonstrates that our
model had comparatively very good performance among other models with or without hand-crafted features.
Our model was evaluated by 10-fold cross-validation. Other fold counts were tested also, ranging from 5- to
31-fold cross-validation. We noticed two problems with too many folds: not only computational expense, but
also negative impact on the robustness of the produced model. The appropriate number of cross-validation folds
depends on the problem at hand, especially on the total number of training instances available. The larger the
dataset is, the fewer folds are needed to produce a robust model.

6. Conclusion
This study applied a genetic algorithm to diagnosing the structure of a convolutional neural network named
GACNN SleepTuneNet, intended for automatic sleep scoring by AASM standards, based on a single EEG
channel without using hand-crafted features. We used a genetic algorithm to evolve an appropriate CNN
architecture for the classification of sleep stages over N = 25 generations, for each dataset. Our results show
that the GACNN SleepTuneNet is not only useful without hand-crafted features, but this method’s filters are
interpretable in the context of AASM standards. Finally, GACNN SleepTuneNet can provide automatic sleep
scoring.

Acknowledgments

This work was supported by the Higher Education Research Promotion and the Thailand’s Education Hub for
Southern Region of ASEAN Countries Project Office of the Higher Education Commission, Prince of Songkla
University,Thailand.

References

[1] Cecotti H, Eckstein MP, Giesbrecht B. Single-trial classification of event-related potentials in rapid serial visual
presentation tasks using supervised spatial filtering. IEEE Transactions on Neural Networks and Learning Systems
2014; 25(11): 2030-2042.

[2] Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks.
IEEE Transactions on Biomedical Engineering. 2016; 63(3): 664-675.

[3] Zhu X, Zheng WL, Lu BL, Chen X, Chen S, Wang C. EOG-based drowsiness detection using convolutional neural
networks. In: International Conference on Neural Network; Beijing, China; 2014. pp. 128-134.

[4] Hossain D, Capi G, Jindai M. Optimizing deep learning parameters using genetic algorithm for object recognition
and robot grasping. Journal of Electronic Science and Technology 2018; 16(1): 11-15.

[5] David OE, Greental I. Genetic algorithms for evolving deep neural networks. In: Proceedings of the Companion
Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation; Vancouver, BC, Canada;
2014. pp. 1451-1452.

[6] Lajnef T, Chaibi S, Ruby P, Aguera PE, Eichenlaub JB et al. Learning machines and sleeping brains: automatic
sleep stage classification using decision-tree multi-class support vector machines. Journal of Neuroscience Methods
2015; 30 (250): 94-105.

[7] Huang CS, Lin CL, Ko LW, Liu SY, Su TP et al. Knowledge-based identification of sleep stages based on two
forehead electroencephalogram channels. Frontiers in Neuroscience 2014; 8: 263.

4217

QURESHI et al./Turk J Elec Eng & Comp Sci

[8] Güneş S, Polat K, Yosunkaya Ş. Efficient sleep stage recognition system based on EEG signal using k-means
clustering based feature weighting. Expert Systems with Applications. 2010; 37(12): 7922-7928.

[9] Tsinalis O, Matthews PM, Guo Y. Automatic sleep stage scoring using time-frequency analysis and stacked sparse
autoencoders. Annals of Biomedical Engineering. 2016; 44(5): 1587-1597.

[10] Tsinalis O, Matthews PM, Guo Y. Automatic sleep stage scoring using time-frequency analysis and stacked sparse
autoencoders. Annals of Biomedical Engineering. 2016; 44(5): 1587-1597.

[11] Hassan AR, Subasi A. A decision support system for automated identification of sleep stages from single-channel
EEG signals. Knowledge-Based Systems 2017; 15(128):115-124.

[12] Qureshi S, Seppo K, Sirirut V. Human sleep scoring based on K-Nearest Neighbors. Turkish Journal of Electrical
Engineering and Computer Sciences 2018; 26(6): 2802-2818.

[13] Boostani R, Karimzadeh F, Nami M. A comparative review on sleep stage classification methods in patients and
healthy individuals. Computer Methods and Programs in Biomedicine 2017; 140: 77-91.

[14] Şen B, Peker M, Çavuşoğlu A, Çelebi FV. A comparative study on classification of sleep stage based on EEG signals
using feature selection and classification algorithms. Journal of Medical Systems. 2014; 38(3): 18.

[15] Diykh M, Li Y. Complex networks approach for EEG signal sleep stages classification. Expert Systems with
Applications. 2016; 63: 241-248.

[16] Hassan AR, Bhuiyan MI. Computer-aided sleep staging using complete ensemble empirical mode decomposition
with adaptive noise and bootstrap aggregating. Biomedical Signal Processing and Control. 2016; 24: 1-10.

[17] Hassan AR, Bhuiyan MI. Automatic sleep scoring using statistical features in the EMD domain and ensemble
methods. Biocybernetics and Biomedical Engineering. 2016; 36(1): 248-255.

[18] da Silveira TL, Kozakevicius AJ, Rodrigues CR. Single-channel EEG sleep stage classification based on a streamlined
set of statistical features in wavelet domain. Medical Biological Engineering and Computing. 2017; 55(2): 343-352.

[19] Längkvist M, Karlsson L, Loutfi A. Sleep stage classification using unsupervised feature learning. Advances in
Artificial Neural Systems. 2012; 1: 5.

[20] Tsinalis O, Matthews PM, Guo Y, Zafeiriou S. Automatic sleep stage scoring with single-channel EEG using
convolutional neural networks. arXiv preprint arXiv:1610.01683. 2016.

[21] Supratak A, Dong H, Wu C, Guo Y. DeepSleepNet: a model for automatic sleep stage scoring based on raw single-
channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2017; 25(11): 1998-2008.

[22] Hsu YL, Yang YT, Wang JS, Hsu CY. Automatic sleep stage recurrent neural classifier using energy features of
EEG signals. Neurocomputing. 2013; 15 (104): 105-114.

[23] Dong H, Supratak A, Pan W, Wu C, Matthews PM et al. Mixed neural network approach for temporal sleep stage
classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2018; 26(2): 324-33.

[24] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC et al. PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic signals. Circulation 2000; 101(23): 215-220.

[25] Rechtschaffen A, Kales A. A Manual for Standardized Terminology, Techniques and Scoring System for Sleep Stages
in Human Subjects. Brain Information Service. Los Angeles, CA, USA: National Institutes of Health, 1968.

[26] Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM Manual for the Scoring of Sleep and Associated Events:
Rules, Terminology and Technical Specifications. Westchester, IL, USA: American Academy of Sleep Medicine;
2007.

[27] Xie AYL. Genetic CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV); Venice, Italy; 2018.
pp. 1388-1397.

[28] Young SR, Rose DC, Karnowski TP, Lim SH, Patton RM. Optimizing deep learning hyper-parameters through an
evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-Performance Computing
Environments; Austin, USA; 2015. pp. 4.

4218

QURESHI et al./Turk J Elec Eng & Comp Sci

[29] Grefenstette J, Gopal R, Rosmaita B, Van Gucht D. Genetic algorithms for the traveling salesman problem. In:
Proceedings of the First International Conference on Genetic Algorithms and Their Applications; Pittsburgh, USA;
1985. pp. 160-168.

[30] Loshchilov I, Hutter F. CMA-ES for hyperparameter optimization of deep neural networks. arXiv preprint
arXiv:1604.07269. 2016.

[31] Goldberg DE, Holland JH. Genetic algorithms and machine learning. Machine Learning 1988; 3(2): 95-99.

[32] Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learning for healthcare applications based on physio-
logical signals: a review. Computer Methods and Programs in Biomedicine 2018; 161: 1-3.

[33] Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep Learning. Cambridge, MA, USA: MIT Press, 2016.

[34] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research 2014; 15(1): 1929-58.

[35] Van Doorn J. Analysis of deep convolutional neural network architectures. arXiv preprint 2014: 9-12.

[36] Yulita IN, Fanany MI, Arymurthy AM. Fast convolutional method for automatic sleep stage classification. Health-
care Informatics Research 2018; 24(3): 170-178.

[37] Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33(1): 159-174.

4219

	Introduction
	Related work
	GACNN SleepTuneNet
	Dataset
	CAP sleep
	Sleep EDF

	Genetic algorithm (GA)
	Chromosome evaluation
	Selection operator
	Crossover
	Mutation

	Convolutional neural network architecture (CNN)
	Convolutional layer
	Pooling layer (subsampling)
	Regularization
	Normalization
	Fully connected layer
	Softmax approach

	Experimental setup
	Sleep scoring performance evaluation
	Precision
	Recall
	F1-score
	Accuracy
	Overall accuracy
	Error rate
	Kappa statistic

	Results
	EEG channel (FP2-F4) from CAP dataset
	EEG channel (FPz-Cz) from Sleep EDF dataset
	Comparison with state-of-the-art approaches

	Discussion
	Conclusion

