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Abstract: The random vector functional link (RVFL) has successfully been employed in many applications since 1989.
RVFL has a single hidden layer feedforward structure that also has direct links between the input layer and the output
layer. Although nonlinearity, high generalization capacity, and fast training ability can be provided in RVFL, it can be
found from the literature that higher nonlinearity can be obtained by adding recurrent feedback to an artificial neural
network. In this paper, the recurrent type of RVFL (R-RVFL), which has both outer feedbacks and also inner feedbacks,
is proposed. In order to evaluate and validate the proposed approach, a total of 109 public datasets were employed.
Obtained results showed that R-RVFL can be employed successfully in terms of obtained success rates.
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1. Introduction
Artificial neural networks (ANNs) have been employed since 1943 [1] and, to date, many different types of ANNs
(e.g., gradient-based methods and randomized methods) have been proposed. Determining optimum weights
and biases by gradient-based methods (e.g., backpropagation) takes time by tuning, because of the large number
of free parameters in the network. On the other hand, in randomized ones, some of these free parameters are
assigned randomly and the others are calculated analytically. Therefore, randomized ones have high training
speed and generalization capacity [2–4].

The random weight neural network (RNN), which is a randomized ANN, was proposed in 1992 by Schmidt
et al. [5]. The random vector functional link network (RVFL), which is another randomized ANN, has a more
general structure [6, 7]. In RVFL, in addition to a traditional feedforward ANN that has a single hidden layer,
there are direct links between inputs and outputs that enhance the accuracy [2, 3]. In each of these methods,
the weights and biases are assigned randomly and the other parameters, which are weights and biases in the
output layer, are calculated analytically.

The literature findings showed that higher accuracies can be obtained by recurrent forms of an ANN
model compared to their feedforward forms. The feedback connections were reported as one of the major
reasons behind this higher success. It was expressed that the feedback connections provide a higher ability in
modeling dynamic systems and enhanced the nonlinearity of the method because these connections act as a
dynamic memory [8–13].
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The motivation behind this paper is to improve RVFL in order to have a recurrent form. The proposed
recurrent RVFL (R-RVFL) was tested by 109 datasets that can be grouped as classification (31 datasets),
regression (31 datasets), and time series (47 datasets) datasets. The obtained success rates showed that the
proposed approach can be employed in classification and regression tasks. The rest of the paper is organized
as follows. The list of employed benchmark datasets and their sources, the proposed approach, and the applied
procedure are presented in Section 2. Obtained results are given and discussed in Section 3. Finally, Section 4
concludes this study.

2. Method
2.1. Traditional random vector functional links network
The structure of the RVFL artificial neural network is shown in Figure 1 [3].
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Figure 1. General structure of basic form of RVFL.
As seen in Figure 1, the output of RVFL is a summation of direct links from inputs and nonlinearly

mapped inputs. The output of RVFL, y , can be calculated as follows:

y =
n∑

j=1
βjxj +

n+m∑
j=n+1

βjg

(
n∑

i=1
ai,jxi + bj

)
. (1)

Here, x , n , m , g () , ai,j , βj , and bj are the input, number of attributes, number of enhancement nodes,
activation function (any piece of a differentiable function), weights in the hidden layer, weights in the output
layer, and biases in the enhancement nodes and in the output layer, respectively. In RVFL, the weights in the
hidden layer and biases in the enhancement nodes are assigned randomly. Therefore, the output of the j th
enhancement node can be calculated by the following equation:

Oj = g

(
n∑

i=1
ai,jxi + bj

)
. (2)

Finally, the weights and biases in the output layer are calculated by Moore–Penrose pseudoinverse or ridge
regression [3].
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2.2. Novel proposed recurrent random vector functional links network
In R-RVFL, inner and outer feedbacks were added to the structure of RVFL as seen in Figure 2.
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Figure 2. The structure of R-RVFL.
In R-RVFL, in addition to the weights in the hidden layer and the biases in the enhancement nodes,

weights in the inner (k ) and outer (K ) feedbacks are also assigned arbitrarily. The output of R-RVFL (ys )
can be calculated as follows (see Figure 2):

ys =
n∑

j=1
βjxs

j +
l∑

j=1
Kjxs−j

j +
m∑

j=1
βj

{
g

(
n∑

i=1
ai,jxs

i + bj

)
− kjβjg

(
n∑

i=1
ai,jxs−1

i + bj

)}
, (3)

where l , k , and K are the number of outer feedback connections and the inner and outer feedbacks
weights, respectively. The calculations can be done sequentially and the output of each enhancement node of
the sample s is updated according to the previous output of that enhancement node as follows:

Os
j = g

(
n∑

i=1
ai,jxi + bj − kjOs−1

j

)
. (4)

Furthermore, as seen in Figure 2, context neurons were added to the structure of the RVFL network. The
input of each context neuron was associated with a specific delay of the whole output of the RVFL according
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to the weight of that outer feedback. These context neurons act similarly to other input neurons. Moreover, in
traditional RVFL, there is not any activation function on the direct links and also bias in the output layer. In
this version of RVFL, as seen in Figure 2, activation functions were also employed on direct links.

2.3. Applied methodology
In this study, the results achieved by the proposed R-RVFL were compared with the results obtained by an
ANN that was trained by backpropagation, RNN, and RVFL. The applied methodology in this study can be
summarized in three steps.

1st step: Normalizing the employed dataset into the range of –1 to 1.
2nd step: Determining the optimal network parameters. The parameters used in the trials are given

in Table 1. The parameters were selected according to the achieved highest mean test success rate in cross-
validation.

Table 1. Used parameters in the trials.

Parameter Used in trials Methods
Number of neurons in the hidden
layer

5, 10, 15, 20, 30, 40, and 50 ANN, RNN, RVFL, and R-RVFL

Activation function Sigmoid, sine, triangular basis,
and radial basis

ANN, RNN, RVFL, and R-RVFL

Number of context neurons 0, 1, 2, 3, and 4 instances (sam-
ples)

R-RVFL

Accuracy and root mean square error (RMSE) were used as success rates in classification and regression
datasets, respectively. These validation metrics are calculated as follows:

Accuracy (%) = 100 ∗ #Trueclassifiedsamples

#Allsamples
%, (5)

RMSE =

√√√√ 1
N

N∑
i=1

(fi − yi)2
, (6)

where f , y , and N are the desired value, obtained value, and number of observations (samples) in the dataset,
respectively.

3rd step: Employing the ANN, RNN, RVFL, and R-RVFL in each dataset. Two different test procedures
were employed. The first one is 5-fold cross-validation and all classification, regression, and time series datasets
were classified/estimated according to 5-fold cross-validation [14]. The second procedure is Monte Carlo cross-
validation and only time series datasets were employed in this procedure according to the following training-test
partitions [15] (see Table 2). Based on the applied procedures, the same data partitions were used in each
employed method.

2.4. Utilized datasets
In order to validate the proposed approach, 109 benchmark datasets were employed. The datasets can be
divided into 3 groups as follows.
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Table 2. Used partitions in Monte Carlo cross-validation.

Partition # Training partition Test partition
1 First 40% of the dataset Next 4% of the dataset
2 First 50% of the dataset Next 5% of the dataset
3 First 60% of the dataset Next 6% of the dataset
4 First 70% of the dataset Next 7% of the dataset
5 First 80% of the dataset Next 8% of the dataset

a) Employed classification datasets (31 datasets): Lithuanian [16], Highleyman [16], banana shaped [16],
spherical [16], multiclass [16], liver,1 Pima Indian diabetes,1 hepatitis,1 image segmentation,1 satellite
image,1 statlog (shuttle),1 abalone,1 wine,1 breast tissue,1 cardiotocography,1 skin segmentation,1 seeds,1

EEG eye state,1 seismic bumps,1 banknote authentication,1 balance scale,1 acute inflammations,1 derma-
tology,1 diabetic retinopathy Debrecen,1 fertility,1 glass,1 Haberman,1 Hayes-Roth,1 QSAR biodegrada-
tion,1 climate,1 and banana2 datasets.

b) Employed regression datasets (31 datasets): approximate sinc [16], forest fire,1 CASP 5-9,1 İstanbul
stock exchange,1 auto-price,1 Boston housing,1 servo,1 breast cancer,1 CPU-small,1 CPU,1 machine-
CPU,1 energy efficiency: cooling,1 energy efficiency: heating,1 yacht, 1 diabetes child,3 delta elevators,3

elevators,3 kinematics,3 puma-8NH,3 puma-32H,3 pyrimidines,3 stocks,3 triazines,3 bank-8FM,3 ailerons,3

delta ailerons,3 California housing,3 census-8L,3 census-8H,3 census-16L,3 and census-16H.3

c) Time regression datasets (47 datasets): solar station ID: 722255,4 solar station ID: 722700,4 solar station
ID: 744860,4 solar station ID: 911900,4 MSL station ID: 1111,5 MSL station ID: 1391,5 MSL station ID:
1673,5 MSL station ID: 2093,5 MSL station ID: 2171,5 MSL station ID: 638,5 MSL station ID: 913,5 S& P
500 futures,6 NQ 100 futures,6 Dow 30,6 Russell 2000,6 DAX,6 CAC 40,6 FTSE 100,6 DJ Euro Stoxx 50,6

FTSE MIB,6 SMI,6 IBEX 35,6 WIG20,6 BUX,6 OBX,6 iBovespa,6 IPC,6 BIST 30,6 Hang Sengs,6 China
H-Shares,6 Singapore MSCI,6 BSE Sensex 30,6 NITFY,6 KOSPI 200,6 Nikkei 225,6 US Dollar index,6

EUR/USD,6 US 30Y T-Bond,6 Euro Bund,6 Japan Govt. Bond,6 crude oil,6 natural gas,6 gold,6 copper,6

and US-wheat.6

3. Results and discussion
In this section, first, the effect of the parameters of the R-RVFL will be investigated. Later, results achieved by
R-RVFL will be compared with results obtained by ANN, RNN, and RVFL.

1UCI Machine Learning Repository (2019) [online]. Website: http://archive.ics.uci.edu/ml [accessed 28 08 2019].
2MLDATA (2019) [online]. Website: http://mldata.org/repository/data/viewslug/banana-ida/ [accessed 28 08 2019].
3DCC (2019) [online]. Website: http://www.dcc.fc.up.pt/∼ ltorgo/Regression/DataSets.html [accessed 28 08 2019].
4NOAA (2019) [online]. Website: https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/solar-

radiation [accessed 28 08 2019].
5PSMSL (2019) [online]. Website: http://www.psmsl.org/ [accessed 28 08 2019].
6Investing (2019) [online]. Website: https://www.investing.com/ [accessed 28 08 2019].
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3.1. Analysis of proposed approach

In order to analyze the properties of the proposed approach, the Lithuanian, forest fire, and Dow 30 datasets were
used in tests and the effect of the parameters of R-RVFL was assessed according to obtained mean accuracies in
cross-validations. First, R-RVFL was assessed according to the inner and outer feedbacks and obtained mean
accuracies are summarized in Table 3. Note that the datasets marked with an asterisk were estimated according
to Monte Carlo cross-validation based on the orders of the samples, while the others were classified/estimated
according to 5-fold cross-validation.

Table 3. Effect of inner and outer feedbacks on the obtained accuracy.

Dataset Inner feedback:
√

Outer feedback:
√ Inner feedback:

√

Outer feedback: X
Inner feedback: X
Outer feedback:

√ Inner feedback: X
Outer feedback: X

Lithuanian (% ) 99.90 99.50 99.80 96.00
Forest fire 0.0469 0.0493 0.0471 0.0477
Dow 30 0.0087 0.1457 0.0089 0.1456
Dow 30∗ 0.0057 0.1122 0.0278 0.1122

As seen in Table 3, in the Lithuanian dataset, the inner feedbacks are as important as the outer feedbacks.
On the other hand, in the forest fire dataset, Dow 30, and Dow 30∗ datasets, it can be said that the proposed
approach does not gain any extra knowledge in inner feedbacks (i.e. there is not any requirement of inner
feedback). However, the findings given in Table 3 show that using both inner and outer feedbacks boosts the
overall success and is the main difference between the structure of RVFL. This may be explained by the features
of the cascaded control scheme [17], since the disturbances can be eliminated faster, the controllability of the
inputs is increased, and time delay effects are reduced [18]. Furthermore, the obtained success rates are related
to the number of context neurons, which is the same as the number of outer feedbacks, as summarized in Table
4.

Table 4. Effect of number of context neurons on the obtained accuracy.

Dataset Number of context neurons
0 1 2 3 4 5 6 7 8

Lithuanian (% ) 99.50 99.80 99.80 99.80 99.90 99.80 99.80 99.80 99.90
Forest fire 0.0473 0.0486 0.0491 0.0478 0.0469 0.0482 0.0600 0.0477 0.0634
Dow 30 0.1457 0.0095 0.0087 0.0087 0.0087 0.0089 0.0087 0.0085 0.0083
Dow 30∗ 0.1122 0.0057 0.0063 0.0057 0.0057 0.0057 0.0057 0.0057 0.0059

As seen in Table 4, a correlation between obtained success rates and the number of context neurons was
not found. Therefore, these results show that the optimum number of context neurons must be determined
by trials or maybe by an expert opinion. Furthermore, it can be said that for each of the employed datasets,
using context neurons increases the success in terms of accuracy, but the increase in the number of used context
neurons did not yield an increase in accuracy. It can be said that the number of context neurons may depend
on the characteristics of the dataset. Moreover, the effect of output bias, direct link, and activation function in
the direct link was tested and obtained success rates are given in Table 5.

As seen in Table 5, the output bias does not boost the success rate in the employed datasets. On the
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Table 5. Effect of output bias, direct link, and activation function on the obtained accuracy.

Dataset Output bias:
√

Direct link:
√

Activation f.:
√

Output bias:
√

Direct link:
√

Activation f.: X

Output bias:
√

Direct link: X
Activation f.: X

Output bias: X
Direct link:

√

Activation f.:
√

Output bias: X
Direct link: X
Activation f.: X

Lithuanian
(% )

99.90 99.90 99.90 99.90 99.90

Forest fire 0.0469 0.0481 0.0458 0.0549 0.458
Dow 30 0.0087 0.0088 0.0109 0.0088 0.0099
Dow 30∗ 0.0057 0.0087 0.0155 0.0057 0.1505

other hand, using an activation function in the direct link increases the success of the RVFL. Moreover, having
a direct link and the activation in the network structure increases the success of the R-RVFL. Consequently,
reported results in Table 5 suggest that the direct link and the activation function in the direct link boost the
success of R-RVFL. This result supports the finding of Zhang and Suganthan that direct links have a high
impact on the increase of the success of the RVFL [3]. Although a boosting effect of the output bias was not
observed, using output bias did not yield a decrease in the success of the proposed approach.

3.2. Obtained general results

Before starting validation of R-RVFL, the parameters of ANN, RNN, RVFL, and R-RVFL were determined
by trials and the optimum parameters were determined based on obtained test success rates. The obtained
RMSEs for the forest fire dataset by RNN (the same parameters were obtained by ANN), RVFL, and R-RVFL
are shown in Figure 3 as an example (note that # CN in Figure 3 refers to number of the context neurons). As
seen in Figure 3, the obtained RMSEs were highly dependent on the structure of the network. Furthermore, in
the ANN, RNN, and RVFL, determining the optimum number of neurons in the hidden layer and the optimal
activation function is required. However, in R-RVFL, in addition to the number of neurons in the hidden
layer and the activation function, the number of context neurons must be optimized. Therefore, the number of
required trials in the optimization of R-RVFL is higher than in ANN, RNN, and RVFL, but still the number of
parameters that must be optimized in R-RVFL, similar to both of the other employed RNN and RVFL methods,
is less than the parameters in the ANN that was trained by backpropagation, which is a gradient-based method
(e.g., learning rate, number of maximum epochs, stopping criteria) [2, 3]. After optimization of each employed
method, each particular dataset was classified/estimated based on cross-validation strategies. Obtained success
rates for each dataset are reported in the Appendix (see Tables A1–A4) and obtained mean success rates are
reported in Table 6.

Table 6. Obtained mean success rates.

Datasets Training accuracy / RMSE Test accuracy / RMSE
ANN RNN RVFL R-RVFL ANN RNN RVFL R-RVFL

Classification (%) 87.60 87.51 81.88 91.66 77.12 77.54 70.15 84.99
Regression 0.1092 0.1106 0.1259 0.0992 0.1257 0.1239 0.1216 0.1121
Time series 0.0899 0.0898 0.0988 0.0619 0.0977 0.0977 0.0910 0.0131
Time series* 0.0813 0.0812 0.0902 0.0437 0.0884 0.0883 0.0829 0.0098
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As seen in Table 6, the achieved mean success rates by R-RVFL are higher than the obtained success
rates by other employed methods. Furthermore, lower mean RMSE was obtained in estimating in time series
datasets according to the orders of the samples and this result supports the literature findings [10, 11, 19].
Consequently, as seen in this table, higher success rates were obtained by the recurrent form of the RVFL (R-
RVFL) compared with RVFL. The main reason for this success is explained by feedback connections [10, 11].
These feedback connections (i.e. context neurons, delays) proceed as dynamic memory [8], and this dynamic
memory yields a higher modeling capability [8, 9, 12]. Additionally, it was stated by Alanis et al. that because
of this property even difference equations that could not be modeled by feedforward ANNs can be modeled [12].
Furthermore, in [13], it was reported that recurrent links enhance the ability of mapping nonlinear dynamics
and especially modeling nonlinear real-time variables. In order to investigate optimized network complexities,
the mean number of neurons in the hidden layer, mean number of context neurons, and most common (mode)
activation functions are given in Table 7.
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Figure 3. Determining optimal parameters in: (a) RNN, (b) RVFL, and (c) R-RVFL.
As seen in Table 7, the mean of the required number of neurons in the hidden layer by R-RVFL is

lower than the required number of neurons in the hidden layer by other employed methods. Furthermore, a
correlation between optimum activation function and the employed method could not be found. Additionally,
the computational costs of R-RVFL and other employed methods are given in Table 8 in terms of mean process
time (s).

Although it can be seen in Table 8 that the means of the required number of neurons in the hidden layer
are lower than in the other methods, processing times in both training and test stages by RVFL are higher
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than in the other employed methods. The reason for this is the sequential computation algorithm of R-RVFL,
which is because of the recurrent links. Furthermore, as explained before, an extra number of trials is required
in order to optimize R-RVFL. Even though R-RVFL requires higher processing time, the computational cost of
R-RVFL is still in an acceptable range based on obtained results by ANN (see Table 8). The reason for this is
explained in the literature as randomly assigning some parameters and analytically calculating others instead
of optimizing them by tuning (e.g., backpropagation, Levenberg–Marquardt methods) [4].

Table 7. Optimized parameters in employed methods.

Datasets #Neurons in the hidden layer #Context
neurons

Activation function
ANN RNN RVFL R-RVFL ANN RNN RVFL R-RVFL

Classification 30.32 35.16 26.77 24.03 1.77 Sigmoid Sigmoid Sigmoid Sigmoid
Regression 32.74 36.45 34.35 31.29 1.68 Sigmoid Sigmoid Radial

basis
Sin

Time series 24.33 25.78 37.67 6.78 2.31 Sigmoid Sigmoid Radial
basis

Triangular
basis

Time series* 15.78 13.11 45.89 6.56 2.64 Sigmoid Sigmoid Sigmoid Triangular
basis

Table 8. Mean process time (s).

Datasets Training stage Test stage
ANN RNN RVFL R-RVFL ANN RNN RVFL R-RVFL

Classification 1.15 0.090 0.083 0.092 0.08 0.090 0.083 0.021
Regression 0.78 0.101 0.090 0.184 0.09 0.101 0.090 0.034
Time series 0.61 0.049 0.042 0.091 0.07 0.049 0.042 0.025
Time series* 0.45 0.021 0.023 0.038 0.03 0.021 0.023 0.004

4. Conclusion
According to the results obtained in this study, it can be said that the recurrent links boosted the network
performance but on the other hand they also increased the computational cost. The reason for obtaining higher
accuracies was addressed in the literature as the context neurons that can be associated with memory provide
higher nonlinearity. Therefore, this yields an increase in the adaptability of the machine learning method, and
in this way, even dynamic systems can be modeled. Furthermore, based on the relationship between the control
systems and the machine learning methods, this study showed that higher accuracies can be obtained by a
recurrent model based on cascaded control systems (using inner and outer feedbacks together) compared to
traditional recurrent models that used only outer feedbacks.
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Table A1. Obtained classification accuracies (% ) and optimum network parameters.

Datasets Training accuracy (%) Test accuracy (%) Optimum # hidden neurons Delay
RNN RVFL ANN R-RVFL RNN RVFL ANN R-RVFL RNN RVFL ANN R-RVFL

Lithuanian 97.08 96.65 96.83 99.78 95.50 95.30 95.40 99.90 40 20 5 4
Highleyman 92.48 87.13 93.08 99.95 88.70 76.50 88.90 99.90 50 50 50 20 1
Banana Shaped 98.75 92.08 98.75 99.78 98.20 87.40 98.00 99.80 50 10 50 5 1
Spherica 84.88 82.25 85.15 99.78 80.10 73.80 79.60 99.80 40 50 40 5 1
Multi-Class 92.55 77.50 92.00 98.85 40.70 20.30 39.50 45.50 50 50 50 50 1
Liver 75.24 71.59 73.39 72.19 71.11 71.62 71.28 70.77 40 30 20 15 0
Pima Indian Diabetes 81.01 77.04 78.66 81.01 78.83 76.62 76.75 78.70 50 10 30 30 0
Hepatitis 98.75 77.19 98.44 96.25 71.25 57.50 68.75 93.75 50 5 50 10 2
Banana 90.48 87.85 90.30 87.07 83.72 73.53 87.21 80.77 50 50 40 40 0
Image Segmentation 92.62 88.57 93.32 98.65 85.92 78.10 84.49 96.29 40 50 50 50 4
Satellite Image 85.06 77.60 85.06 90.43 83.90 76.85 83.92 88.97 50 50 50 50 1
Statlog (Shuttle) 99.38 93.59 97.28 97.82 99.35 93.58 97.25 97.80 50 40 50 50 2
Abalone 28.80 26.28 28.98 30.40 25.87 24.57 25.46 27.02 30 50 30 30 4
Wine 99.86 95.92 99.15 99.58 93.89 82.78 92.22 97.78 30 30 15 10 3
Breast tissue 80.47 65.88 80.47 93.88 13.33 0.95 9.52 27.62 20 5 20 20 2
Cardiotocography 94.27 91.30 93.32 95.90 92.89 90.07 91.29 93.74 50 5 40 50 3
Skin segmentation 98.92 98.67 99.06 100.00 84.74 78.01 84.47 100.00 50 40 50 5 1
Seeds 97.50 87.50 97.26 98.93 93.81 59.05 92.86 99.52 10 20 10 5 2
EEG eye state 57.71 57.06 60.76 99.84 46.63 38.95 39.49 99.84 5 10 10 15 1
Seismic Bumps 93.39 93.42 93.41 93.39 93.38 93.42 93.38 93.27 5 5 5 5 4
Banknote authentication 99.89 97.78 99.89 99.96 99.71 97.30 99.71 99.85 40 40 40 50 0
Balance Scale 91.68 89.80 90.08 91.24 90.88 88.00 88.16 89.92 30 50 10 50 3
Acute Inflammations 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 10 5 10 5 0
Dermatology 98.57 98.16 97.61 99.52 95.89 96.99 96.16 96.99 50 20 20 30 3
Diabetic Retinopathy 75.18 66.04 74.94 74.27 72.61 64.70 71.83 71.39 40 5 40 15 4
Fertility 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 5 5 5 5 0
Glass 76.02 59.65 85.73 96.02 26.05 9.77 29.30 59.53 20 10 50 30 3
Haberman 77.63 74.04 77.80 84.00 66.23 73.44 75.08 81.31 15 50 15 15 3
Hayes-Roth 87.74 64.15 88.87 82.64 73.08 46.15 74.62 65.38 30 50 30 20 1
QSAR biodegradation 86.78 84.17 86.66 99.57 77.44 70.05 76.59 99.62 50 10 50 5 1
Climate 92.08 91.48 91.48 92.64 92.04 91.48 91.48 92.04 40 5 5 50 3
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Table A2. Obtained RMSEs in regression datasets and optimum network parameters.
Datasets Training RMSE Test RMSE Optimum # hidden neurons Delay

RNN RVFL ANN R-RVFL RNN RVFL ANN R-RVFL RNN RVFL ANN R-RVFL
Approximate Sinc 0.5739 0.5744 0.5739 0.5737 0.5743 0.5739 0.5743 0.5741 5 40 5 5 0
Forest Fire 0.0568 0.0459 0.0569 0.0560 0.0452 0.0564 0.0456 0.0469 10 50 5 10 4
CASP 5-9 0.0390 0.0409 0.0387 0.0392 0.0392 0.0409 0.0392 0.0395 50 50 50 50 0
İstanbul Stock Exchange 0.1333 0.1382 0.1386 0.1281 0.1428 0.1369 0.1409 0.1354 15 5 10 10 1
Ailerons 0.0741 0.0767 0.0740 0.0737 0.0753 0.0761 0.0754 0.0756 40 50 40 50 2
Delta Ailerons 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 50 50 40 40 3
Auto-Price 0.0600 0.0998 0.0737 0.0460 0.1100 0.0916 0.0962 0.0756 20 10 10 10 2
Bank-8FM 0.0464 0.0496 0.0463 0.0445 0.0470 0.0495 0.0470 0.0452 50 5 50 50 0
Boston Housing 0.0641 0.1104 0.0864 0.0740 0.1357 0.1017 0.1151 0.1033 40 10 20 15 2
Breast Cancer 0.2605 0.2716 0.2456 0.2007 0.2874 0.2407 0.2805 0.2688 5 5 10 5 2
California Housing 0.1244 0.1508 0.1253 0.0942 0.1330 0.1455 0.1327 0.0961 50 50 40 50 3
Census-8L 0.0684 0.0773 0.0687 0.0715 0.0696 0.0772 0.0693 0.0720 50 50 40 40 0
Census-8H 0.0820 0.0897 0.0834 0.0841 0.0830 0.0896 0.0849 0.0851 50 50 50 50 1
Census-16L 0.0771 0.0826 0.0769 0.0767 0.0778 0.0824 0.0775 0.0775 50 50 50 50 0
Census-16H 0.0828 0.0879 0.0855 0.0850 0.0834 0.0878 0.0860 0.0856 50 40 50 50 0
CPU-Small 0.0398 0.0619 0.0419 0.0433 0.0422 0.0615 0.0464 0.0453 50 50 50 50 0
CPU 0.0540 0.0726 0.0741 0.0546 0.0557 0.0719 0.0779 0.0576 50 40 50 50 2
Diabetes Child 0.1594 0.0979 0.0882 0.0828 0.1991 0.0950 0.2351 0.0852 30 50 5 5 3
Delta Elevators 0.1095 0.1105 0.1101 0.1097 0.1104 0.1099 0.1107 0.1107 50 50 30 50 1
Elevators 0.0751 0.0767 0.0751 0.0248 0.0760 0.0765 0.0759 0.0252 50 50 50 50 4
Kinematics 0.1130 0.1175 0.1127 0.1168 0.1140 0.1168 0.1138 0.1181 50 30 50 50 4
Machine-CPU 0.0288 0.0645 0.0314 0.0261 0.0375 0.0544 0.0362 0.0434 15 5 10 20 4
Puma-8NH 0.3581 0.3620 0.3612 0.3555 0.3618 0.3599 0.3649 0.3588 50 50 50 40 0
Puma-32H 0.3011 0.3029 0.3012 0.2984 0.3041 0.2977 0.3045 0.3010 40 50 40 5 2
Pyrimidines 0.0977 0.0940 0.0582 0.0483 0.1192 0.0873 0.1145 0.1490 10 50 20 5 4
Servo 0.0685 0.1725 0.0604 0.0663 0.0916 0.1638 0.0931 0.1093 30 5 40 40 0
Stocks 0.0245 0.0697 0.0182 0.0215 0.0489 0.0375 0.0564 0.0138 20 10 30 5 4
Triazines 0.1311 0.1594 0.1305 0.1203 0.1627 0.1468 0.1610 0.1748 30 50 30 5 0
Energy Eff.: cooling 0.0635 0.0730 0.0629 0.0480 0.0650 0.0705 0.0655 0.0543 20 50 20 40 3
Energy Eff.: heating 0.0002 0.0146 0.0002 0.0000 0.0007 0.0142 0.0006 0.0000 50 5 50 20 0
Yacht 0.0617 0.1560 0.0857 0.0112 0.1493 0.1544 0.1759 0.0465 50 5 20 50 1
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Table A3. Obtained RMSEs in time series datasets and optimum network parameters.

Datasets Training RMSE Test RMSE Optimum # hidden neurons DelayRNN RVFL ANN R-RVFL RNN RVFL ANN R-RVFL RNN RVFL ANN R-RVFL
SS. ID: 722255 0.1024 0.1090 0.1033 0.0224 0.1035 0.1080 0.1043 0.0232 50 30 50 20 1
SS. ID: 722700 0.1003 0.1086 0.1012 0.0176 0.1014 0.1076 0.1022 0.0213 50 30 50 30 1
SS. ID: 744860 0.1664 0.1668 0.1668 0.0620 0.1641 0.1690 0.1641 0.0537 50 50 10 20 3
SS. ID: 911900 0.0666 0.0803 0.0685 0.0178 0.0672 0.0799 0.0691 0.0178 50 50 40 20 3
MSL ID: 1111 0.0091 0.0117 0.0091 0.0251 0.0101 0.0108 0.0101 0.0064 15 50 20 5 2
MSL ID: 1391 0.0398 0.0451 0.0398 0.0369 0.0428 0.0425 0.0428 0.0326 10 15 40 5 3
MSL ID: 1673 0.0094 0.0157 0.0095 0.0412 0.0104 0.0150 0.0104 0.0085 15 50 5 5 3
MSL ID: 2093 0.0073 0.0111 0.0072 0.2535 0.0078 0.0116 0.0077 0.0074 10 50 5 5 1
MSL ID: 2171 0.0081 0.0152 0.0081 0.5441 0.0096 0.0150 0.0096 0.0082 10 50 50 5 1
MSL ID: 638 0.0111 0.0148 0.0111 0.0259 0.0118 0.0142 0.0118 0.0107 50 50 20 5 3
MSL ID: 913 0.0093 0.0112 0.0093 0.0201 0.0097 0.0109 0.0097 0.0089 15 50 50 5 4
S&P 500 Futures 0.1375 0.1447 0.1375 0.0171 0.1447 0.1375 0.1447 0.0095 50 50 50 5 4
NQ 100 Futures 0.1691 0.1888 0.1691 0.0161 0.1888 0.1691 0.1888 0.0107 5 50 5 5 3
Dow 30 0.1356 0.1456 0.1356 0.0190 0.1456 0.1356 0.1456 0.0087 10 40 10 15 2
Russell 2000 0.1499 0.1769 0.1499 0.0218 0.1769 0.1500 0.1769 0.0121 5 50 50 5 1
DAX 0.1597 0.1728 0.1597 0.0153 0.1728 0.1597 0.1728 0.0068 50 10 5 5 3
CAC 40 0.0901 0.0994 0.0901 0.0186 0.0993 0.0902 0.0993 0.0127 15 40 5 5 2
FTSE 100 0.1238 0.1330 0.1238 0.0174 0.1329 0.1239 0.1329 0.0076 5 10 5 5 2
DJ Euro Stoxx 50 0.0840 0.0907 0.0840 0.0188 0.0905 0.0842 0.0905 0.0098 40 10 5 5 2
FTSE MIB 0.1154 0.1321 0.1154 0.0524 0.1321 0.1155 0.1321 0.0109 5 50 5 5 3
SMI 0.1106 0.1318 0.1106 0.0175 0.1319 0.1106 0.1319 0.0076 5 30 50 5 2
IBEX 35 0.1092 0.1252 0.1092 0.0474 0.1251 0.1093 0.1251 0.0107 50 50 50 5 3
WIG20 0.0613 0.0599 0.0613 0.0246 0.0598 0.0614 0.0598 0.0095 5 50 20 5 4
BUX 0.0896 0.0995 0.0896 0.0210 0.0995 0.0897 0.0995 0.0094 20 50 30 5 1
OBX 0.1271 0.1473 0.1271 0.0202 0.1473 0.1271 0.1473 0.0148 20 50 5 5 1
iBovespa 0.0674 0.0728 0.0674 0.0421 0.0727 0.0675 0.0727 0.0115 5 50 5 5 1
IPC 0.0894 0.1043 0.0894 0.0228 0.1040 0.0896 0.1040 0.0099 50 10 50 5 1
BIST 30 0.0839 0.0946 0.0839 0.0484 0.0945 0.0840 0.0945 0.0142 50 50 50 5 3
Hang Sengs 0.0671 0.0733 0.0671 0.0286 0.0730 0.0674 0.0730 0.0098 50 10 50 5 4
China H-Shares 0.0822 0.0905 0.0822 0.0232 0.0905 0.0823 0.0905 0.0109 5 50 5 5 1
Singapore MSCI 0.1036 0.1025 0.1036 0.0207 0.1024 0.1036 0.1024 0.0095 5 50 5 5 1
BSE Sensex 30 0.1172 0.1352 0.1172 0.0704 0.1359 0.1174 0.1359 0.0697 50 10 40 5 33
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Table A3 continued

NITFY 0.1321 0.1446 0.1321 0.0321 0.1455 0.1323 0.1455 0.0094 20 10 5 5 1
KOSPI 200 0.0600 0.0625 0.0600 0.0290 0.0622 0.0602 0.0622 0.0086 5 50 5 5
Nikkei 225 0.1547 0.1723 0.1547 0.0165 0.1723 0.1548 0.1723 0.0110 30 50 5 5 3
US Dollar Index 0.0423 0.0434 0.0423 0.0193 0.0433 0.0424 0.0433 0.0047 5 40 5 5 3
EUR/USD 0.0841 0.0875 0.0841 0.0144 0.0875 0.0841 0.0875 0.0047 5 40 15 5 2
US 30Y T-Bond 0.0638 0.0753 0.0638 0.0169 0.0749 0.0641 0.0749 0.0069 50 10 50 5 1
Euro Bund 0.0720 0.0850 0.0720 0.0262 0.0850 0.0721 0.0850 0.0052 5 50 5 5 1
Japan Govt. Bond 0.0179 0.0208 0.0179 0.0308 0.0203 0.0183 0.0203 0.0018 20 40 5 5 2
Crude Oil 0.1327 0.1339 0.1327 0.0172 0.1338 0.1327 0.1338 0.0099 5 50 5 5 4
Natural Gas 0.1499 0.1611 0.1499 0.0181 0.1612 0.1499 0.1612 0.0101 50 50 50 5 4
Gold 0.1821 0.2098 0.1821 0.0198 0.2097 0.1821 0.2097 0.0136 50 10 50 5 3
Copper 0.1299 0.1355 0.1299 0.0194 0.1354 0.1299 0.1354 0.0114 40 10 5 5 1
US-Wheat 0.1192 0.1323 0.1192 0.0252 0.1323 0.1192 0.1323 0.0123 50 40 50 5 4
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Table A4. Obtained RMSEs in time series datasets by analyzing according to time orders and optimum network parameters.

Datasets Training RMSE Test RMSE Optimum # hidden neurons DelayRNN RVFL ANN R-RVFL RNN RVFL ANN R-RVFL RNN RVFL ANN R-RVFL
SS. ID: 722255 0.1017 0.1140 0.1029 0.0224 0.1063 0.1102 0.1073 0.0235 40 30 50 20 1
SS. ID: 722700 0.0995 0.1137 0.1008 0.0214 0.1040 0.1099 0.1052 0.0229 40 30 50 15 3
SS. ID: 744860 0.1920 0.1424 0.1920 0.0812 0.1362 0.1946 0.1362 0.0287 10 50 15 15 3
SS. ID: 911900 0.0649 0.0876 0.0682 0.0176 0.0684 0.0846 0.0714 0.0191 40 50 40 20 3
MSL ID: 1111 0.0068 0.0110 0.0068 0.0474 0.0086 0.0092 0.0086 0.0064 10 50 10 5 4
MSL ID: 1391 0.0378 0.0471 0.0378 0.0360 0.0411 0.0406 0.0411 0.0327 10 15 15 5 3
MSL ID: 1673 0.0082 0.0153 0.0082 0.0241 0.0094 0.0147 0.0094 0.0077 10 50 10 5 2
MSL ID: 2093 0.0057 0.0125 0.0056 0.0056 0.0085 0.0114 0.0085 0.0084 10 50 5 5 0
MSL ID: 2171 0.0079 0.0205 0.0077 0.0079 0.0092 0.0160 0.0092 0.0098 5 50 5 5 0
MSL ID: 638 0.0116 0.0159 0.0115 0.0378 0.0103 0.0161 0.0105 0.0100 10 50 40 5 3
MSL ID: 913 0.0092 0.0117 0.0091 0.0245 0.0093 0.0107 0.0093 0.0090 5 50 15 5 4
S&P 500 Futures 0.0983 0.0917 0.0983 0.0160 0.0917 0.0984 0.0917 0.0057 20 40 10 5 4
NQ 100 Futures 0.0720 0.1340 0.0720 0.0104 0.1338 0.0720 0.1338 0.0054 5 40 30 5 3
Dow 30 0.1000 0.1123 0.1000 0.0227 0.1121 0.1000 0.1121 0.0057 15 50 50 5 1
Russell 2000 0.0810 0.1624 0.0810 0.0173 0.1621 0.0811 0.1621 0.0072 5 50 5 5
DAX 0.1211 0.1518 0.1211 0.0103 0.1517 0.1211 0.1517 0.0083 50 40 5 5 3
CAC 40 0.0729 0.0973 0.0729 0.3018 0.0972 0.0730 0.0972 0.0088 5 50 40 5 3
FTSE 100 0.1179 0.1281 0.1179 0.0179 0.1280 0.1179 0.1280 0.0098 5 40 5 10 4
DJ Euro Stoxx 50 0.0677 0.1021 0.0677 0.0204 0.1022 0.0678 0.1022 0.0087 10 50 5 5 3
FTSE MIB 0.1263 0.1324 0.1263 0.1617 0.1326 0.1264 0.1326 0.0093 15 50 5 5 3
SMI 0.0549 0.1138 0.0549 0.1710 0.1138 0.0550 0.1138 0.0070 5 50 5 5 3
IBEX 35 0.1134 0.1208 0.1134 0.0335 0.1210 0.1134 0.1210 0.0083 40 50 5 5 4
WIG20 0.0746 0.0547 0.0746 0.1748 0.0548 0.0746 0.0548 0.0078 15 50 5 5 3
BUX 0.0950 0.1003 0.0950 0.1183 0.1008 0.0951 0.1008 0.0071 5 50 40 5 3
OBX 0.0684 0.1263 0.0684 0.2246 0.1259 0.0685 0.1259 0.0074 5 50 10 5 3
iBovespa 0.0697 0.0718 0.0697 0.3114 0.0722 0.0698 0.0722 0.0119 5 50 30 5 3
IPC 0.0714 0.1079 0.0714 0.0240 0.1074 0.0715 0.1074 0.0074 5 50 5 5 4
BIST 30 0.0830 0.0685 0.0830 0.0229 0.0689 0.0831 0.0689 0.0111 10 50 5 5 3
Hang Sengs 0.0670 0.0648 0.0670 0.0207 0.0647 0.0671 0.0647 0.0079 5 50 10 5 3
China H-Shares 0.0863 0.0919 0.0863 0.2001 0.0923 0.0864 0.0923 0.0086 10 50 5 5 3
Singapore MSCI 0.1357 0.0387 0.1357 0.0214 0.0385 0.1358 0.0385 0.0059 5 50 30 15 1
BSE Sensex 30 0.0565 0.1096 0.0565 0.0838 0.1090 0.0568 0.1090 0.0103 30 50 5 5 35
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Table A4. continued

NITFY 0.0563 0.1001 0.0563 0.0430 0.0999 0.0564 0.0999 0.0106 5 50 10 5 3
KOSPI 200 0.0742 0.0456 0.0742 0.0406 0.0451 0.0743 0.0451 0.0078 5 50 30 5 1
Nikkei 225 0.1538 0.1745 0.1538 0.0159 0.1745 0.1538 0.1745 0.0093 50 40 20 10 2
US Dollar Index 0.0412 0.0306 0.0412 0.0515 0.0302 0.0414 0.0302 0.0035 5 40 5 5 1
EUR/USD 0.0963 0.0773 0.0963 0.0310 0.0771 0.0963 0.0771 0.0053 5 40 20 5 3
US 30Y T-Bond 0.0557 0.0646 0.0557 0.0674 0.0641 0.0558 0.0641 0.0045 10 50 15 5 3
Euro Bund 0.0483 0.0797 0.0483 0.0479 0.0791 0.0484 0.0791 0.0033 5 50 5 5 3
Japan Govt. Bond 0.0139 0.0202 0.0139 0.1187 0.0192 0.0145 0.0192 0.0013 15 50 5 5 1
Crude Oil 0.1448 0.0843 0.1448 0.0185 0.0841 0.1448 0.0841 0.0089 5 40 15 5 3
Natural Gas 0.1605 0.1596 0.1605 0.0330 0.1599 0.1605 0.1599 0.0076 5 40 5 5 4
Gold 0.1495 0.2499 0.1495 0.0106 0.2499 0.1495 0.2496 0.0091 5 40 5 5 1
Copper 0.1550 0.1068 0.1550 0.0472 0.1064 0.1550 0.1064 0.0106 5 40 5 5 3
US-Wheat 0.1256 0.0906 0.1256 0.0292 0.0905 0.1256 0.0905 0.0107 10 50 5 5 4
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