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Abstract: This paper proposes a novel artificial neural network called sparse-Bayesian–based fast learning network
(SBFLN). In SBFLN, sparse Bayesian regression is used to train the fast learning network (FLN), which is an improved
extreme learning machine (ELM). The training process of SBFLN is to randomly generate the input weights and the
hidden layer biases, and then find the probability distribution of other weights by the sparse Bayesian approach. SBFLN
calculates the predicted output through Bayes estimator, so it can provide a natural marginal possibility for classification
problems and can solve the overfitting problem caused by the least-squares estimation in FLN. In addition, the sparse
Bayesian approach can automatically trim most redundant neurons in hidden layer, which makes the network more
compact and accurate. To verify the effectiveness of the improvements in this paper, the results of SBFLN are evaluated
in 15 benchmark classification problems. The experimental results show that SBFLN is not sensitive to the number of
neurons in the hidden layer, and the performance of SBFLN is competitive or superior to some other state-of-the-art
algorithms.
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1. Introduction
Artificial neural networks (ANNs) have been widely used in industrial, financial, and natural fields due to
their ability to obtain potential nonlinear mappings from data [1–3]. Extreme learning machine (ELM) is
one of the most popular ANNs with its simple structure and powerful approximation capability [4, 5]. In
ELM, the input weights are randomly assigned, and the output weights are calculated by the least squares.
This method overcomes the slow learning process of the ANNs and the local minimum problem [6]. However,
ELM requires more hidden neurons than traditional neural network learning algorithms in some regression or
classification applications, which may result in trained models spending more reaction time on unknown test
samples [7]. In addition, due to the random assignment of input weights, the stability and repeatability of ELM
are not very good. In [7], Li Guoqiang proposes an improved architecture of ELM called fast learning network
(FLN). FLN is a dual parallel architecture consisting of a single hidden layer feedforward neural network and a
single-layer linear perceptron. It passes the received input information to the hidden layer and the output layer.
Therefore, FLN not only has the nonlinear approximation capability like general ANNs, but also reflects a linear
mapping between input and output. This combination allows FLN to achieve better accuracy, generalization
performance, and stability with the same hidden neurons [8]. More importantly, FLN inherits the ELM’s
advantage that it does not require iterative calculations. Similarly with original ELM, FLN transforms network
training into solving linear least-squares problems, and then computes the output weights through the Moore-
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Penrose generalized inverse [9], so the training speed is very fast. Due to these advantages, FLN has been
successfully applied in the real world problem [10–12]. In recent years, various improved training algorithms
have been proposed for ELM to improve the pseudoinverse operation in ELM training [13, 14]. In order to solve
the overfitting problem of ELM, an enhanced ridge regression algorithm is proposed in [14] to train ELM (Ridge-
ELM). Ridge-ELM introduces the L2 norm penalty of the output weights on the training objective function,
which sacrifices a small amount of precision to obtain more reliable generalization ability. Miche [15] proposes
an optimally pruned ELM called OP-ELM, which introduces L1 norm penalty into the training objective
function and uses the minimum angle regression training method to obtain sparse output weights. Another L1
norm penalty ELM, called Newton linear programming ELM [16], uses the Newton-Armijo training algorithm.
Compared with the L2 regularization regression, the L1 regularization regression has a better effect in filtering
a small number of abnormal samples, and can shield the irrelevant features in the hidden layer. However, the
accuracy of the L1 regularization regression tends to be worse than the L2 regularization regression. In [17] and
[18], both L1 and L2 norm penalties, which consider both sparseness and accuracy of the network, are introduced
to deal with the linear mapping from the hidden layer to the output layer in ELM. The improved networks are
called adaptive elastic ELM (AEELM) and Tikhonov regularization OP-ELM (TROP-ELM), respectively. In
contrast, training methods of FLN are relatively backward. Recently, the Bayesian approaches of the neural
network models become very intense in recent research and show their suitability in different fields [19]. These
algorithms introduce a probability distribution on the network parameters and the predictive outputs. Some
related classic algorithms are probabilistic versions of self-organizing maps [19] and the relevance support vector
machine (RVM) [20] which is the probabilistic approach for support vector machines. The Bayesian approach
has also been introduced into the training of ELM to solve regression and classification problems for higher
generalization [21, 22].

This paper proposes a sparse Bayesian learning approach to FLN (SBFLN), which not only has excellent
performance with low computational cost in multiclassification, but also finds sparse representation for the
output weights. The paper is organized as follows: Section 2 describes the original FLN structure and its
learning process. Section 3 explains the sparse Bayesian learning process of FLN and the automatic relevance
determination (ARD) process for generating sparse priors. SBFLN performance is evaluated in Section 4
using different benchmarks datasets that are commonly used in machine learning. Section 5 summarizes the
conclusions of this paper.

2. Review of fast learning network (FLN)

The FLN is a bidirectional parallel forward neural network based on the least square algorithm. As shown in
Figure 1, FLN is formed by adding a direct connection between the input layer and the output layer in a single
hidden-layer feed-forward neural network.

Assume that there are N observation samples {(xi, yi) , i = 1, 2, . . . , N} , where xi ∈ ℜn represents the
feature vector and yi ∈ ℜl is output vector. If there are m hidden layer neurons in the FLN, then W in is a
matrix of m × n . The hidden layer units have a threshold vector of b = [b1, b2, · · · , bm]

T . The weight matrix
W oh has a dimension of l ×m . The weight matrix W oi is a matrix of l × n . The mathematical model of the
output neurons of the fast learning network is:

Y = W oiX +W ohG =
[
W oi W oh

] [X
G

]
= W

[
X
G

]
, (1)
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Figure 1. Structure of the fast learning network.

where Y is the desired output matrix, the combination matrix W =
[
W oi W oh

]
is called the output weight

matrix, G is the FLN hidden layer output matrix:

G
(
W in

1 , · · · ,W in
m , b1, · · · , bm,x1, · · · ,xN

)
(2)

=

 g
(
W in

1 x1 + b1
)

· · · g
(
W in

1 xN + b1
)

... . . . ...
g
(
W in

m x1 + bm
)

· · · g
(
W in

m xN + bm
)

m×N

. (3)

As already mentioned, the input weights W inand hidden neuron thresholds b = [b1, b2, · · · , bm] of FLN
can be randomly assigned values. Thus, the output weights can be obtained with Moore–Penrose’s generalized
inverse:

Ŵ = Y

[
X
G

]+
= Y H+ (4)

{
W oi = Ŵ (1 : l, 1 : n)

W oh = Ŵ (1 : l, n+ 1 : (n+m))
(5)

where H =

[
X
G

]
, H† =

(
HTH

)−1
H is a pseudo-inverse matrix.

3. Sparse Bayesian learning for FLN

This paper optimizes output weights W based on Bayesian approach. To make it clear, the inputs for Bayesian

learning are expressed as H ∈ ℜN×(n+m) , in which H = [h1,h2, · · · ,hN ]T and hi =

[
x(i)
g(i)

]
is the

combination matrix of the input and hidden layer output, x(i) = [x1(i), . . . , xn(i)]
T, g(i) = [g(W in

1 x1(i) +

b1), . . . , g(W
in
m xm(i)+ bm)]T, i = 1, · · · , N . Suppose that ti = yi + εi = Whi + εi , where εi is the independent

noise.
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We first consider binary classification, the purpose of which is to predict the posterior probability of a
classes (0 or 1) for a given input x . Every sample can be treated as an independent Bernoulli event. The
likelihood function p(t|W ) can be analyzed using a Bernoulli distribution as equation (6). The case can then
be assigned to the class with the greatest likelihood.

p(t|W ) =

N∏
k=1

σ {y(hk;W )}tk [1− σ {y(hk;W )}]1−tk , (6)

where t is defined as the class labels, σ{y(h;W )} is the sigmoid function 1

1 + e−y(h;W )
, y(h;W ) = h(x)W ,

and {xk}Nk=1 is the training input. To calculate output probability distribution, the Bayesian predictive
framework is used to infer the posterior distribution over W .

p(W |t,α) =
p(t|W )p(W |α)

p(t|α)
, (7)

where p(W |α) is the prior distribution of W defined using the principle of automatic relevance determination
(ARD) to set the inverse variance hyperparameter as α . A Gaussian prior distribution with a mean of zero is
calculated by:

p(Wk|αk) = N (Wk|0, α−1
k ), (8)

p(W |α) =

m+n∏
k=1

αk√
2π

exp

(
−αkWk

2

2

)
. (9)

The hyperparameter α is implicitly related to W . We can use ARD iteration to get the best α and W .
Note that each αk independently controls the prior distribution of the associated Wk , which causes the ARD to
reduce the weight of the unrelated hidden layer neurons to zero, resulting in a sparse model. This is because some
hyperparameters α approach infinity during inference, the posterior distributions of their associated weights
are peaked around zero[20].

The following describes the specific process of determining α and W . As shown in equation (7),
since p(W |t,α) ∝ p(t|W )p(W |α) , maximizing the logarithm of p(t|W )p(W |α) is equivalent to maximizing
p(W |t,α) . Thus, the objective function can be written as:

E(W ) = ln p(t|W )p(W |α)

=ln

{
N∏

k=1

γtk(1− γ)
1−tk

}
+ ln

{
m+n∏
k=1

αk√
2π

exp

(
−αkWk

2

2

)}

=

N∑
k=1

[tk ln γk + (1− tk) ln(1− γk)]−
1

2
WTAW + C,

(10)

where γk = σ{y(hk,W )} , A = diag(α1, · · · , αm+n) , C =
∑m+n

k=1 lnαk−
1

2
ln(2π) . Equation (10) is a penalized

logistic log-likelihood function and it can be iterated to maximize. The iterative reweighted least squares (IRLS)
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algorithm [22] is used to find the W to maximize Equation (10). The first and second derivatives of equation
(10) with respect to W can be written as

∂E(W )

∂W
= HT (t− γ)−AW (11)

∂2E(W )

∂W ∂W
= −(HTBH +A) (12)

Where B = diag(β1, · · · , βN ) and βi = γi(1− γi) . The Laplace approximation approach provides a Gaussian
approximation of the posterior weights W with center µ and covariance Σ [23].

µ = ΣHTBt̂, (13)

Σ = (HTBH +A)−1, (14)

where t̂ = Hµ+B−1(t−γ) , that is, µ be the iterative update formula for W , with a step of (∂
2E(W )

∂W∂W )−1 ∂E(W )
∂W .

Therefore, p(t|W )p(W |α) ∝ N (µ,Σ) . The αk is determined by maximizing the marginal likelihood p(t|α,H)

p(t|α,H) =

∫
p(t|W ,H)p(W |α)dW (15)

As we have obtained equation (10), the log marginal likelihood of equation (15) can be written as:

ln p(t|α,H) = −1

2

[
N ln(2π) + ln

∣∣B +HAHT
∣∣+ t̂T (B +HAHT )

−1
t̂
]
. (16)

To locate a peak point, let the differential of ln p(t|α,H) with respect to αk be zero:

∂ ln p(t|α,H)

∂αk
=

1

2αk
− 1

2
Σkk − 1

2
µ2
k = 0. (17)

Equation (17) can be written in a fixed-point recursive form

α∗
k =

1− αkΣkk

µ2
k

. (18)

This completes the calculation of all formulas. Firstly, W and α are initialized, then according to Equations
(13) and (14), set W ∗ = µ to update the weight W , and then update α with equation (18). Iterate through
the loop until the algorithm converges or reaches the maximum number of iterations. The convergence criterion
is generally that the difference between ln(ak) of two iterations is less than a preset precision.

For multiclassification problems, we can generalize equation (6) by a similar approach with [24]. Define
the number of categories as l , we have

p(t|W ) =

N∏
k=1

l∏
i=1

σ{yi(hk;Wi)}tki , (19)
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where tki is the indicator variable for the case k to be a member of class i , and yi is the predictor for the class
i . According to the principle of multinominal logistic regression, Equation (19) can be alternated by

p(t|W ) =

N∏
k=1

l∏
i=1

σ{yi; y1, y2, · · · , yl}tki , (20)

where the class predictors yi are coupled in the multinominal softmax function

σ{yi; y1, y2, · · · , yl} =
eyi

ey1 + ey2 + · · ·+ eyl
. (21)

Similar to the binary classification problem, since p(W |t,α) ∝ p(t|W )p(W |α) , maximizing the log of
p(t|W )p(W |α)

E(W ) = ln p(t|W )p(W |α)

= ln p(t|W ) + ln p(W |α)

=

N∑
k=1

l∑
j=1

tkj ln γkj)−
1

2

m+n∑
i=1

l∑
j=1

(αijWij
2 − lnαij) + C.

(22)

Remark Hi = (h1i,h2i, · · · ,h(m+n)i) and H = diag(H1, · · · ,Hl) , and {α1, · · · , αk, · · · , α(m+n)×l} are
the elements of diagonal matrix A , which corresponds to each element in matrix W . Similarly, B is a block
matrix consisting of Bj with element of βij = γij(1− γij) . Then the first and second derivatives of Equation
(22) with respect to W have same format with Equations (13) and (14), which can be provided to IRLS
procedure as in the ordinary logistic regression. The subsequent steps are the same as the binary classification,
the W and corresponding α can be iteratively obtained using Equations (13), (14), and (18).

From the network structure of FLN in Figure 1 and the introduction of the softmax function of Equation
(21), it can be seen that SBFLN is equivalent to the parallel of a linear classifier and a neural network classifier,
which can comprehensively utilize the linear features of the original data and the nonlinear features of the
neuron mapping. Good classification performance can be expected for this structure by the sparse Bayesian
approach. Specifying independent hyperparameters αk is the key to sparsity. In the process of carrying out the
iteration of α to maximize the marginal likelihood, most αk grow to infinity. As a result, the corresponding
means and variance of Wk become zero through Equations (13) and (14).

4. Experiments and evaluation

In this section, 15 benchmark classification problems are chosen from the UCI machine learning repository [25]
to evaluate the proposed SBFLN, including seven binary classification problems and eight multiclassification
problems. These are common problems for evaluating the effectiveness and performance of classifiers such as
ELM, SVM, and FLN. The specifications of the benchmark datasets are listed in Table 1. As is shown, each
dataset is split into training set and testing set according to the number of samples. The samples of missing
attributes are eliminated and all the attributes of each dataset are linearly scaled to [−1, 1] .

The SBFLN is compared with FLN [7], kernel ELM (KELM) [16], TROP-ELM [18], adaptive elastic
ELM (AEELM) [17], RVM [20], and sparse Bayesian ELM (SBELM) [22] to verify the performance of various
problems of the algorithm. The evaluation index is the accuracy (correctness) and size of the model. In order to
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Table 1. The specifications of the benchmark datasets.

Datasets
Samples

Attributes ClassesTraining Testing
Colon 30 32 2000 2
Diabetes 384 384 8 2
Geman 500 500 24 2
Liver 175 170 6 2
Mushroom 2800 2844 21 2
Australian 345 345 14 2
Spect heart 130 137 22 2
Balance 310 315 4 3
Glass 100 114 10 6
lris 75 75 4 3
Segment 1150 1160 19 7
Vehicle 420 426 18 4
Wine 89 89 13 3
Satimage 2200 2235 36 6
Vowel 495 495 13 11

reduce randomness, each experiment is repeated 30 times, and the mean and standard deviation are compared.
In particular, FLN and SBFLN are individually compared in 15 benchmark problems by varying the number of
hidden units from 20 to 200 in 20 increments, which helps to analyze whether SBFLN is insensitive to number
of hidden units. The activation functions of FLN, SBELM, AEELM, TROP-ELM, and SBFLN are the simple

logistic sigmoid functions g(x) =
1

1 + exp(−x)
, and the kernel of the KELM and RVM chosen is Gaussian RBF.

We use grid search method to search the combination of parameters C and the kernel parameters γ in RVM
and KELM, C = [2−2, 2−1, · · · , 211, 212] and γ = [2−10, 2−9, · · · , 23, 24] , so the algorithms search parameter
combination 15 × 15 = 225 times to achieve the best results. The same method is used as the other model
to determine the number of hidden units. The number of hidden units is increased from 20 to 200 in steps of
20. Optimization process of hidden units number or kernel parameters is also counted as part of the training
process and the training time for each algorithm is recorded. The RVM handles multiclassification problems by
the same approach with SBFLN. The accuracies of the five classifiers on each problem are shown in Table 2.
Superior results are highlighted in bold.

As shown in Table 2, SBFLN achieves five best results out of the 15 benchmark problems. SBELM and
RVM obtain two best results respectively. AEELM achieves the best result for only one problem. FLN and
TROP-ELM fail to obtain a better result. KELM achieves five optimal results. It can be seen that SBFLN
and KELM get more optimal results, indicating that their applicability of different problems is relatively ahead
of other algorithms. Compared with the original FLN, SBFLN achieves better results in all test problems,
which proves that the sparse Bayesian learning algorithm in this paper significantly improves the generalization
ability of FLN. SBFLN has obtained ten similar or better results than SBELM. The linear relationship between
features and labels in these datasets is easier to handle in SBFLN. Sparse Bayesian algorithm preserves the
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Table 2. Comparisons of SBFLN with other models in the average of testing accuracy (%).

Datasets SBFLN FLN SBELM TROP-ELM AEELM RVM KELM
Colon 88.65 85.64 88.57 78.10 82.33 79.52 84.38
Diabetes 78.78 77.69 78.66 76.97 78.77 78.79 78.52
Geman 77.34 75.33 77.30 75.51 76.90 77.50 76.10
Liver 74.20 72.40 74.21 70.72 71.59 73.91 74.20
Mushroom 93.65 90.93 94.33 89.93 90.12 90.40 88.84
Australian 67.78 67.62 67.83 67.42 67.27 67.83 68.26
Spect heart 86.25 84.66 86.12 84.64 84.96 84.25 84.25
Balance 98.85 90.32 98.72 87.21 97.15 98.07 100.00
Glass 95.35 86.96 95.26 88.91 90.73 93.67 89.91
lris 98.00 94.33 98.00 96.67 98.03 96.67 98.00
Segment 97.36 97.05 97.40 90.43 97.06 97.23 97.45
Vehicle 85.12 73.42 85.17 70.00 78.01 83.66 86.75
Wine 99.41 95.36 99.41 96.58 98.33 97.76 99.41
Satimage 91.02 89.78 90.00 84.28 89.54 91.21 92.60
Vowel 65.35 59.35 65.35 58.06 63.74 64.75 59.60

useful connection weights between the labels and the features, leaving the extraneous features filtered and left
to the nonlinear hidden layer neurons for processing. The other two sparse models (TROP-ELM, AEELM) are
less accurate than SBFLN in most of the test problems. The result of AEELM in Iris problem is better than
SBFLN, but the difference is not obvious. FLN and SBFLN that with double parallel structure are better in
the Colon problem. The possible reason is that the linear classifier plays a role in the datasets with high input
dimension.

The best results of all binary classification datasets belong to SBELM, SBFLN, or RVM, indicating that
the Bayesian method is more effective in binary classification problem. KELM excels in most multiclassification
problems due to the native multiclassification method. Moreover, from the results obtained by KELM, the
accuracy of KELM is positively correlated with the number of samples, because the larger the number of
measured samples in KELM is, the higher the dimension of the kernel matrix and the ability of nonlinear
mapping are. However, it is worth mentioning that the high-dimensional calculation of the kernel matrix in
KELM has higher requirements for computer memory and often takes more computing time. The average
training time (in terms of seconds) of all algorithms is shown in Table 3. In terms of training time, FLN and
SBELM need the least training time in several methods, followed by SBFLN and TROP-ELM. The training
speed of SBFLN differs greatly from that of SBELM only in Colon datasets which has high input feature
dimension, while the training speed of other datasets is similar. Compared with FLN, SBFLN takes some time
to compute hyperparameters, so it is slower than FLN. RVM and KELM using kernel methods are the slowest.
Especially in datasets with large number of samples, the training time of RVM and KELM is dozens of times
higher than those of other algorithms. Since the dimension of the kernel matrix is N ×N , a large amount of
computer memory is consumed when N is large. If the memory of the computer is insufficient, the training
time will increase exponentially, which is contrary to the original intention of fast learning. Table 4 lists the
standard deviation of all testing accuracy. Compared to original FLN and SBELM, most standard deviation of
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SBFLN is lower, showing that SBFLN significantly improved the stability and repeatability. SBFLN obtains
five minimum standard deviations out of 15 problems, and the number of optimal results is the highest among
all algorithms, indicating that SBFLN is the most robust of all the algorithms compared. In general, SBFLN is
competitive or advantageous in seven models.

Table 3. The average training time (s).

Datasets SBFLN FLN SBELM TROP-ELM RVM KELM
Colon 0.3410 0.9541 0.0031 0.0047 0.1152 0.0568
Diabetes 0.0867 0.055 0.0885 0.1078 1.1000 0.2874
Geman 0.0715 0.0682 0.0684 0.0983 0.9923 0.2207
Liver 0.0078 0.0066 0.0081 0.0149 0.1437 0.0812
Mushroom 1.2631 0.9249 1.2397 1.2745 22.6797 6.7808
Australian 0.0692 0.0437 0.0633 0.1162 1.0693 0.1338
Spect heart 0.0088 0.0091 0.0083 0.0105 0.0843 0.0836
Balance 0.0043 0.0062 0.0037 0.0057 0.0646 0.0606
Glass 0.0037 0.0033 0.0038 0.0050 0.0075 0.0024
lris 0.0028 0.0029 0.0036 0.0068 0.0053 0.0029
Segment 1.0952 0.8812 1.1559 1.3694 16.4044 9.5824
Vehicle 0.1176 0.0921 0.1158 0.1744 1.9166 1.4878
Wine 0.0027 0.0031 0.0021 0.0021 0.0023 0.0029
Satimage 3.7074 5.3256 3.6337 4.8975 53.2604 14.7737
Vowel 0.0266 0.0545 0.0230 0.0289 0.2552 0.0481

Table 4. Standard deviation of testing accuracy.

Datasets SBFLN FLN SBELM TROP-ELM AEELM RVM KELM
Colon 4.26 5.43 4.81 13.11 7.26 10.36 5.38
Diabetes 3.57 3.84 3.58 5.48 1.94 1.77 1.87
Geman 2.59 2.59 2.59 3.95 4.17 3.66 4.87
Liver 4.14 4.35 4.15 5.65 2.63 4.81 4.51
Mushroom 0.04 0.04 0.03 0.09 0.07 0.06 0.07
Australian 0.12 0.13 0.12 1.97 0.38 0.12 1.32
Spect heart 2.64 4.33 2.64 2.49 5.27 3.26 2.30
Balance 0.70 0.83 0.72 0.82 1.58 1.24 0.00
Glass 2.61 2.64 3.58 2.32 2.74 6.17 2.80
lris 2.56 2.56 2.98 13.33 13.65 3.33 2.98
Segment 0.83 0.85 0.55 0.76 0.50 0.76 0.86
Vehicle 2.53 2.54 3.15 1.48 1.59 1.87 1.19
Wine 1.33 4.53 1.32 13.86 1.32 2.44 1.32
Satimage 0.95 1.34 0.96 1.60 1.13 1.05 1.60
Vowel 1.39 3.40 1.40 15.48 3.60 1.05 0.42
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Table 5. The number of nonzero weights.

Datasets SBFLN FLN SBELM TROP-ELM AEELM
Colon 321 2108 9 7 10
Diabetes 11 160 10 71 67
Geman 24 72 17 56 54
Liver 11 76 10 59 59
Mushroom 13 209 10 154 153
Australian 4 34 3 13 10
Spect heart 10 42 7 18 14
Balance 25 372 24 168 168
Glass 19 780 19 558 554
lris 9 142 9 177 176
Segment 40 1533 39 1309 1312
Vehicle 61 736 57 524 526
Wine 13 495 12 252 249
Satimage 127 1344 115 1020 1016
Vowel 81 2343 79 2189 2178

The number of nonzero weights of several the nonkernel models (SBFLN, FLN, SBELM, TROP-ELM,
AEELM) is listed in Table 5. It can be seen that SBELM has the least nonzero weights. SBFLN has less
nonzero weights in the datasets with low dimensional features (Diabetes, Liver, Balance, Iris, etc.), and has
more nonzero weights in the datasets with high dimensional features (Colon). This also shows that SBFLN has
utilized original features. Although TROP-ELM and AEELM pruned many redundant neurons of the network,
the number of nonzero weights is greater than SBELM and SBFLN, indicating that the model is not as compact
as SBELM and SBFLN.

To test whether SBFLN is insensitive to the number of hidden units, we compare the accuracy of SBFLN
and FLN under different numbers of hidden units. As shown in Figure 2, FLN accuracy is not as good as
SBFLN in most cases. The highest accuracy of the two models is very close in some problems (Colon, Vehicle,
Vowel). However, in most other problems (Diabetes, Geman, Liver, Spect heart, Glass), the accuracy of FLN
is worse than SBFLN, and it decreases as the number of hidden units increases. The reason may be that the
FLN is overfitting in these datasets, resulting in poor generalization. The SBFLN exhibits stable high accuracy
under different number of hidden units, and is insensitive to the number of hidden units. The objective function
of SBFLN contains a penalty term for the weight, which improves the overfitting problem caused by collinearity
in the feature. Moreover, the method of this paper automatically calculates the hyperparameter of the penalty
term, so the overfitting problem in the case of large-scale network is not prominent. Moreover, the ideal accuracy
can be achieved when the number of hidden units is only about 60 ∼ 80 and the real number of effectively
hidden units can be even much smaller under the pruning effect, so the calculation cost can be significantly
reduced. If the FLN is to achieve an accuracy comparable to SBFLN only by increasing the number of hidden
nodes (sometimes possible, such as Vehicle problem in this paper), it not only leads to an increase in network
complexity and computational cost, but also increases the chance of model overfitting. In summary, SBFLN is
an efficient model algorithm with low computational cost and insensitivity to the number of hidden units.
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Figure 2. Structure of the fast learning network.
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5. Conclusions
This paper proposes a sparse Bayesian approach to FLN for multiclassification. SBFLN estimates the output
weights of FLN using a sparse Bayesian approach, which not only generates a natural probabilistic distribution
for uncertain outputs, but also uses independent hyperparameters α to control the probability distribution of
the output weights, automatically adjust most of the output weights to zero, thereby obtaining sparsity. In
addition, by maximizing the marginal likelihood instead of minimizing training error, SBFLN does not suffer
from overfitting problem and has excellent generalization ability. From the structure, SBFLN is a parallel of
linear classifier and ELM classifier. Better precision and repeatability can be achieved compared to the SBELM
in some datesets with linear features or high dimension. Finally, SBFLN is insensitive to the number of hidden
layer nodes, which means that an accuracy of close to large-scale networks can be obtained with a very small
number of neurons. These advantages have been verified in experimental results obtained from 15 different
classification problems.
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