
Turk J Elec Eng & Comp Sci
(2019) 27: 4284 – 4297
© TÜBİTAK
doi:10.3906/elk-1904-135

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Parallel algorithms for computing sparse matrix permanents

Kamer KAYA∗

Department of Computer Science and Engineering, Faculty of Engineering and Natural Sciences,
Sabancı University, İstanbul, Turkey

Received: 16.04.2019 • Accepted/Published Online: 29.08.2019 • Final Version: 26.11.2019

Abstract: The permanent is an important characteristic of a matrix and it has been used in many applications.
Unfortunately, it is a hard to compute and hard to approximate the immanant. For dense/full matrices, the fastest
exact algorithm, Ryser, has O(2n−1n) complexity. In this work, a parallel algorithm, SkipPer, is proposed to exploit
the sparsity within the input matrix as much as possible. SkipPer restructures the matrix to reduce the overall work,
skips the unnecessary steps, and employs a coarse-grain, shared-memory parallelization with dynamic scheduling. The
experiments show that SkipPer increases the performance of exact permanent computation up to 140× compared to
the naive version for general matrices. Furthermore, thanks to the coarse-grain parallelization, 14–15× speedup on
average is obtained with τ = 16 threads over sequential SkipPer. Overall, by exploiting the sparsity and parallelism,
the speedup is 2000× for some of the matrices used in the experimental setting. The proposed techniques in this paper
can be used to significantly improve the performance of exact permanent computation by simply replacing Ryser with
SkipPer, especially when the matrix is highly sparse.

Key words: Sparse matrices, permanent, Ryser’s algorithm, multicore CPUs, shared-memory parallelism, load balanc-
ing

1. Introduction
Given an n× n matrix A with entries ai,j for 1 ≤ i, j ≤ n , the permanent is computed as

perm(A) =
∑
σ∈P

n∏
i=1

ai,σ(i), (1)

where P is the set of all permutations of the numbers in {1, 2, · · · , n} .
The permanent has many applications and relations in mathematics, statistics, and computer science;

for instance, it is related to Fibonacci and Lucas numbers [1] as well as order statistics [2]. Permanents also
have found applications in quantum computing: boson sampling, introduced by Aaronson and Arkhipov [3],
is a restricted quantum computing model that samples from the probability distribution of identical bosons
and this distribution can be obtained by computing the permanents of some matrices obtained throughout the
process. To analyze the efficiency of classical computers in simulating boson sampling, a benchmark of the exact
permanent computation algorithms was recently performed [4]. Another application of the permanent is from
bioinformatics, where exact values are required to find the genotype probability distributions required for DNA
profiling [5]. The permanent computation problem is also related to identity testing in simple read-restricted
∗Correspondence: kaya@sabanciuniv.edu

This work is licensed under a Creative Commons Attribution 4.0 International License.
4284

https://orcid.org/0000-0001-8678-5467

Kamer Kaya/Turk J Elec Eng & Comp Sci

circuits [6]. In addition to these, the permanent has interesting relations with graph theory; with an efficient
algorithm to compute perm(A) , one can count the number of perfect matchings for a bipartite graph or find the
number of vertex-disjoint cycle covers of a directed graph. These two statements are direct conclusions of (1)
when a (0,1)-matrix A is generated as the bi-adjacency or adjacency matrix, respectively. More applications
of permanents and their relations with theory and practice can be found in [7]. Unfortunately, computing the
permanent of a (0,1)-matrix is #P-Complete [8].

Since permanent computation is hard, approximating the permanent is a well-studied problem. Jer-
rum et al. [9] discussed an approach using Markov chains, which can provide an (1 + ε)-approximation for the
permanent of a nonnegative matrix in fully polynomial time, with Õ(n10) complexity. Their Markov chain
Monte Carlo (MCMC) approach makes use of the underlying graph being bipartite, and the techniques cannot
be generalized easily to the general graph case. Štefankovic et al. [10] took the MCMC approach and high-
lighted the difficulties that arose. They also proposed a Markov Chain efficiently estimating the number of
perfect matchings in a special graph class. Gurvits and Samorodnitsky [11] and Linial et al. [12] used matrix
scaling and proposed deterministic approximations with exponential guarantees (2n and en , respectively). Du-
fosse et al. also employed matrix scaling to improve the variance of the existing approximations in practice [13].
There also exist studies focusing on special classes, e.g., positive semidefinite matrices [14] and random matrices
with unit variance and vanishing mean [15].

Various studies exist in the literature focusing on the exact computation of (1) [16–19]. When the
matrix is dense/full, Ryser’s algorithm from 1963 [20] uses the inclusion/exclusion principle and computes the
permanent in O(2n−1n2) time. Later, Niejenhuis and Wilf proposed to process the sets in Gray-code order to
reduce the complexity to O(2n−1n) [21]. This algorithm is still the most efficient algorithm at hand for generic
matrices. From now on, it will be denoted as Ryser.

Besides all the applications of permanents, as mentioned above, it is an interesting problem in practice
to understand how fast can we compute the permanent with the current parallel architectures at hand. This
work solely focuses on the exact permanent computation problem for sparse matrices and proposes a parallel,
novel algorithm called SkipPer. When the matrix is sparse, computing the permanent is not straightforward;
indeed, when the number of possible transversals, i.e. sets of n nonzero matrix entries such that no two
come from the same row or the same column, is small, one can enumerate all the transversals and sum their
contributions to find the permanent. Unfortunately, this is not the case for many sparse matrices. Even when
the number of transversals is large, depending on the level of sparsity, SkipPer incurs optimizations that
yield a shorter permanent computation time. In addition, although the Gray-code order seems to necessitate
inherently sequential iterations, SkipPer can parallelize the execution flow and assign a balanced work load to
the threads via dynamic scheduling. Furthermore, since SkipPer does not perform heavy preprocessing on the
input matrix, it can easily be plugged into existing permanent computation codes and replace Ryser to obtain
significant speedups based on the sparsity.

The rest of this paper is organized as follows: Section 2 presents Ryser’s algorithm and related notation.
Section 3 describes the basic approach proposed to exploit the sparsity. A further optimization that focuses on
skipping the zero-contributing Gray codes with its coarse-grain parallelization is described in Section 4. The
related studies in the literature, as well as their differences from the proposed techniques, are summarized in
Section 5. Section 6 presents the results of the experiments and Section 7 concludes the paper.

4285

Kamer Kaya/Turk J Elec Eng & Comp Sci

2. Background and notation

For an n× n matrix, Eq. 1 defines the permanent in terms of transversals. With a naive algorithm, computing
the total contribution of all transversals takes O(n × n!) time. To reduce the complexity, Ryser’s algorithm
restructures the original permanent equation and performs inclusion/exclusion as follows:

perm(A) = −1n
∑

S⊆{1,2,··· ,n}

(−1)|S|
n∏

i=1

∑
j∈S

ai,j . (2)

The pseudocode of the Niejenhuis–Wilf variant of Ryser’s algorithm, Ryser, is given in Algorithm 1. In the
pseudocode, Grayg is the g th Gray code with (n − 1) bits; a 4-bit Gray code is shown on the right of the
algorithm. For a binary-reflected Gray code,

Grayg = g ⊕ (g ≫ 1),

where ⊕ is the bitwise XOR operation and g ≫ 1 shifts the bitwise representation of g to the right by one bit.
Let Grayg [j] be the j th bit of Grayg , where j = 1 denotes the least significant bit. The set bits

for each code, i.e. the ones that are equal to 1 , represent the indices of the selected columns. To store and
keep the impact of these columns, the algorithm keeps maintaining a vector x , whose ith entry relates to the
contribution of the ith row of the matrix. For each g , the algorithm first finds the difference between Grayg

and Grayg−1 , i.e. the changed bit in Grayg (line 8). Then the updates due to this bit modification are
performed on x (line 12). Finally, the product of these vector entries is added to p (line 14). Note that the
Niejenhuis–Wilf variant practically uses an (n − 1) -bit Gray code, not an n -bit one, for an n × n matrix to
halve the execution time.

Algorithm 1 : Ryser
Input: A (n× n matrix)
Output: perm(A)

1: for i = 1 to n do
2: sum = 0
3: for j = 1 to n do
4: sum← sum+ ai,j

5: x← ai,n − sum
2

6: p←
∏n

i=1 x[i]

7: for g = 1 to 2n−1 − 1 do
8: j ← log2 (Grayg ⊕ Grayg−1)
9: s← 2×Grayg [j] −1

10: prod← 1
11: for i = 1 to n do
12: x[i]← x[i] + (s× ai,j)
13: prod← prod× x[i]
14: p← p+ ((−1)g × prod)

15: return p× (4× (n mod 2)− 2)

Binary Gray
Gray0 0000 0000
Gray1 0001 0001
Gray2 0010 0011
Gray3 0011 0010
Gray4 0100 0110
Gray5 0101 0111
Gray6 0110 0101
Gray7 0111 0100
Gray8 1000 1100
Gray9 1001 1101
Gray10 1010 1111
Gray11 1011 1110
Gray12 1100 1010
Gray13 1101 1011
Gray14 1110 1001
Gray15 1111 1000

4286

Kamer Kaya/Turk J Elec Eng & Comp Sci

As mentioned above, Ryser’s algorithm is currently the most efficient one for the exact computation
of permanents of generic, dense matrices. In the pseudocode above, the outer loop (line 7) iterates exactly
(2n−1 − 1) times and the inner loop (line 11) iterates n times. Hence, the overall complexity is O(2n−1n) .

3. SpaRyser: An algorithm for sparse permanents
A sparse matrix has many zero entries; for permanents, and hence for Ryser, such entries do not have a practical
impact on the final value. When the selected transversal contains even a single zero, its whole contribution
becomes zero. Hence, such entries can be removed from the matrix and the remaining part can be stored
with an appropriate data structure. The most widely used sparse-matrix data structures in the literature are
Compressed Row/Column Storage (CRS and CCS). To store the sparse nonzero pattern, these structures use two
arrays where the entries of the first one denote the start locations of each sparse row/column whose column/row
ids are consecutively stored in the second array. An additional array, whose index structure is the same as the
second array, is used to store the nonzero values. A toy matrix and its CRS/CCS representations are given
in Figure 1. Using such a structure for permanent computation was proposed by Mittal and Al-Kurdi [16].
However, their approach computes the permanent via enumeration and can be used only for matrices when the
number of all transversals is small. That is, their algorithm is based on (1), whereas the proposed algorithms
SpaRyser and SkipPer in this work are based on (2).

Figure 1: (a) A 6× 6 matrix and its (b) CRS and (c) CCS representations.

For a dense/full matrix, regardless of the flipped bit, there will be n updates on the vector x . However,
for a sparse matrix, one can exploit the sparsity with CCS representation, since the zero entries, which have zero
contribution on the x vector, can be skipped. Thanks to CCS, when the j th bit is flipped in the Gray code, the
number of updates to the vector will exactly be equal to the number of nonzero elements on column j . Note
that Ryser also performs the same number of useful updates, but it also performs updates with no impact.
Hence, in terms of the number of floating point operations, using CRS and CCS can significantly increase the
efficiency based on the level of sparsity in the matrix. The pseudocode of SpaRyser is given in Algorithm 2.

In addition to the exploitation of sparsity, SpaRyser performs two other techniques for fast permanent
computation:

1. In Algorithm 1, Ryser, the inner loop (at line 11) has two statements. Using CRS and CCS in SpaRyser
only reduces the number of x updates on the first line but the Θ(n) cost of the second line to compute
prod is still there. The preliminary experiments showed that for a significant number of iterations of the
main loop, i.e. for many g values, the contribution, and hence the value of the prod , can be zero in sparse

4287

Kamer Kaya/Turk J Elec Eng & Comp Sci

Algorithm 2 : SpaRyser
Input: (rptrs, columns, rvals) - CRS of A

(cptrs, rows, cvals) - CCS of A
Output: perm(A)

1: nzeros← 0
2: for i = 1 to n do
3: sum = 0
4: for ptr = rptrs[i] to (rptrs[i+ 1]− 1) do
5: sum← sum+ rvals[ptr]

6: x[i]← rvals[rptrs[i+ 1]− 1]− sum
2

7: if x[i] = 0 then
8: nzeros← nzeros+ 1

9: if nzeros > 0 then
10: p←

∏n
i=1 x[i]

11: else
12: p← 0

13: for g = 1 to 2n−1 − 1 do
14: j ← log2 (Grayg ⊕ Grayg−1)
15: s← 2×Grayg [j] −1
16: for ptr = cptrs[j] to (cptrs[j + 1]− 1) do
17: row ← rows[ptr]
18: val← cvals[ptr]
19: if x[row] = 0 then
20: nzeros← nzeros− 1

21: x[row]← x[row] + (s× val)
22: if x[row] = 0 then
23: nzeros← nzeros+ 1

24: if nzeros = 0 then
25: prod← 1
26: for i = 1 to n do
27: prod← prod× x[i]
28: p← p+ ((−1)g × prod)

29: return p× (4× (n mod 2)− 2)

matrices. However, even for these g values, Ryser performs all the multiplications. To get rid of these
unnecessary operations, SpaRyser counts the number of zeros with a variable nzeros , and when a zero
is detected, i.e. when nzeros is positive, it does not compute the product and does not update p .

2. Both Ryser and SpaRyser use a binary-reflected Gray code. For an n -bit, binary-reflected Gray code,
the j th bit changes 2n−j times for 1 ≤ j ≤ n . Hence, there is a significant imbalance on the numbers
of bit flips for different bit locations. Such an imbalance yields an avenue for further optimization. To
increase the performance of the algorithm, a preprocessing step is applied and the columns are ordered
in increasing number of nonzeros. This ordering is expected to increase the performance, since sparser
columns are processed more frequently compared to the denser ones. Clearly, the amount of improvement
depends on the imbalance on the number of column nonzeros. This ordering scheme is called SortOrd.

4288

Kamer Kaya/Turk J Elec Eng & Comp Sci

4. SkipPer: Faster sparse permanents with Gray skipping and parallelization
With SpaRyser, the sparsity is exploited and the unnecessary multiplications are omitted. However, one can
further avoid them by explicitly skipping these iterations, which will yield an even faster algorithm. That is,
instead of checking a zero vector-product for every iteration, when a zero-contributing Gray code is detected, one
can skip as many iterations as possible with a single jump. Nevertheless, the jumps must not skip a contributing
iteration. To jump as long as possible, the proposed algorithm SkipPer uses the following lemma.
Lemma 1 In an n-bit binary-reflected Gray code, the value of the j th bit of Grayg , for 1 ≤ j ≤ n , is

Grayg[j] =

{
0 if g < 2j−1(
⌊ (g−2j−1)

2j ⌋ mod 2
)
+ 1 otherwise.

The lemma is exploited as follows: when a zero entry x[i] is detected throughout the execution, at least one of
the columns of A having a nonzero at its ith position needs to be processed to make x[i] nonzero. In Ryser’s
approach, a column is processed when the corresponding bit in the Gray code changes. Let next(g, j) be the
first iteration after the g th iteration where Grayg[j] ̸=Graynext(g,j)[j] for 1 ≤ j ≤ n . Based on the lemma,
this iteration can be computed as:

next(g, j) =

{
2j if g < 2j

g + 2j+1 − ((g − 2j) mod (2j+1)) otherwise.

For completeness, note that in an n -bit Gray code, when next(g, j) ≥ 2n , Grayg[j] is already the last value
for the j th bit and it will never be changed.

Using next(g, j) , for a vector entry x[i] = 0 encountered at iteration g , SkipPer computes

g(i) = min {next(g, j) : ai,j ̸= 0}

to find the earliest iteration that can make x[i] ̸= 0 . Hence, assuming x is the current vector at iteration g ,
the first iteration that can produce a nonzero prod value is

next(g) =

{
g + 1 if x[i] ̸= 0, for 1 ≤ i ≤ n

max{g(i) : x[i] = 0} otherwise.

It is indeed safe to jump from iteration g to next(g) for each 1 ≤ g < 2n−1 − 1 since all nonzero
contributions of all the iterations will still be taken into account. However, one also needs an efficient mechanism
to find the entries in vector x at iteration next(g) ; due to skipping, the algorithm only computes x for iteration
g and not for the iterations in between. Fortunately, this can be efficiently done by computing the bitwise
difference of Grayg and Graynext(g) as Algorithm 3 shows (lines 10–18).

By using the next(.) function, SkipPer skips the zero-contributing transversals as much as possible.
To increase the length of skips, an ordering is applied as a preprocessing step whose pseudocode is shown in
Algorithm 4. As described in the previous section, the ordering technique in SpaRyser was sorting the columns
based on their number of nonzeros. For SkipPer, a similar, sorting-like column ordering, SkipOrd, is used,
which dynamically updates the degree counts (degs in the pseudocode) after each column selection in such

4289

Kamer Kaya/Turk J Elec Eng & Comp Sci

a way that the degree of each unselected column is always equal to the number of its rows that are not yet
touched by previously chosen columns. That is, degs[j] is the additional number of rows touched for the first
time if column j is chosen. The ordering process always continues with the column having minimum degs

value (line 14). To ignore already chosen columns during this selection, degs[j] is immediately set to ∞ once
column j is selected (line 15 of Algorithm 4).

Algorithm 3 : SkipPer
Input: (rptrs, columns, rvals) - CRS of A

(cptrs, rows, cvals) - CCS of A
Output: perm(A)

1: for i = 1 to n do
2: sum = 0
3: for ptr = rptrs[i] to (rptrs[i+ 1]− 1) do
4: sum← sum+ rvals[ptr]

5: x[i]← rvals[rptrs[i+ 1]− 1]− sum
2

6: p←
∏n

i=1 x[i]
7: g′ ← 0
8: g ← 1

9: while g < 2n−1 do
10: grdiff = g ⊕ g′

11: for j = 1 to n do
12: if grdiff [j] = 1 then
13: grdiff [j]← 0
14: s← 2×Grayg [j] −1
15: for ptr = cptrs[j] to cptrs[j + 1]− 1 do
16: row ← rows[ptr]
17: val← cvals[ptr]
18: x[row]← x[row] + (s× val)

19: prod← 1
20: for i = 1 to n do
21: prod← prod× x[i]
22: p← p+ ((−1)g × prod)

23: g′ ← g
24: g ← next(g)

25: return p× (4× (n mod 2)− 2)

Algorithm 4 : SkipOrd
Input: A (n× n matrix)
Output: A′ (row/col permuted A)

1: rowPerm← [.]
2: colPerm← [.]
3: rowV isited← [.]
4: degs← [.]
5: for j = 1 to n do
6: degs[j]← 0
7: rowV isited[j]← false
8: for i = 1 to n do
9: for j = 1 to n do

10: if ai,j ̸= 0 then
11: degs[j]← degs[j] + 1

12: i← 1
13: for j = 1 to n do
14: curCol← argmin

ℓ
{degs[ℓ]}

15: degs[curCol]←∞
16: colPerm[j]← curCol
17: for all ℓ s.t. aℓ,curCol ̸= 0 do
18: if rowV isited[ℓ] = false then
19: rowV isited[ℓ]← true
20: rowPerm[i]← ℓ
21: i← i+ 1
22: for all k s.t. aℓ,k ̸= 0 do
23: if degs[k] ̸=∞ then
24: degs[k]← degs[k]− 1

25: A′ ← A[rowPerm, colPerm]

In SkipOrd, the steps where the rows are touched for the first time are also taken into account (lines 17–
24 of Algorithm 4). Such a row ordering creates a structure with entries close to the diagonal in the lower
triangular part of the matrix. This is expected to increase the performance; when a vector entry x[i] = 0 with
a large i (close to n) is encountered, to increase the length of the jumps, one hopes that x[i] keeps its value as
long as possible. Since the Gray-code is unbalanced and the later bits are less frequently flipped, x[i] will be
zero for a long time if flipping the earlier bits does not yield an update on x[i] . This is what the row-ordering
in SkipOrd provides and this is why this ordering is expected to make SkipPer faster.

4290

Kamer Kaya/Turk J Elec Eng & Comp Sci

4.1. Parallel permanent computation with SkipPer

As Algorithm 3 shows, there are loop workloads at two levels where the size of the iteration space is 2n−1 − 1

for the first level (line 9) and n for the second level (lines 11 and 20). Since 2n−1 much larger than n and
a coarse-grain parallelism usually create less overhead, it is better to divide the permanent computation into
a number of tasks through the outer loop. Hence, the threads will process different iterations, i.e. different
chunks of consecutive Gray codes. Although it seems hard to start processing arbitrary chunks at first glance,
by using the technique in SkipPer, the threads can skip all the iterations until the first iteration of any chunk.
Hence, the previous approach can be used to divide all the iteration space into τ threads.

Let ti be the ith thread for 1 ≤ i ≤ τ . To parallelize SkipPer, one can simply divide the iteration space
into equisized chunks of size c = ⌊2n−1 − 1)/τ⌋ (the last thread may perform a few more iterations if τ does
not divide 2n−1). Each thread computes the first iteration of its chunk by computing gifirst = c × (i − 1) + 1

and process the Gray codes in the iteration space [gifirst, g
i+1
first) where for completeness, gτ+1

first = 2n−1 . The x
vector (as computed in line 5 of Algorithm 3) is copied to the private memory of each thread and the private
copy xi is updated based on gifirst by ti . After the initialization step, the threads process their chunks as in
the sequential SkipPer. Since the parallelized variant is quite similar, a separate pseudocode is not provided.

One problem with this simple approach using static scheduling is that although each iteration seems to
be equal in terms of its computational load, especially for sparse matrices, an unexpected number of iterations
are skipped in a single chunk. Since the number of skipped iterations can greatly vary for different chunks,
when static scheduling is used, the workload distribution among the threads can be highly irregular. To better
balance the loads, one can use more, smaller chunks and assign the chunks to the idle threads one by one
throughout the execution, i.e. perform dynamic scheduling.

5. Related work
There are a few studies on computing exact permanents for sparse matrices: Mittal and Al-Kurdi proposed an
algorithm that enumerates all the permanents by exploiting the efficiency of CRS and CCS representations [16].
Their algorithm is efficient for very sparse matrices with a small number of transversals. When the number of
transversals is large, which is usually the case in practice, the execution time increases significantly. Unlike their
algorithm, SkipPer does not enumerate the transversals and runs along the same lines as Ryser’s algorithms.

Forbert and Marx proposed an approximation algorithm for sparse permanents [22]. In the same study,
they also presented a decomposition scheme based on the following equation:

perm
([

a b c
d e A′

])
= perm

([
0 0 c
d e A′

])
+ perm

([
ae + bd A′]) , (3)

where for an n× n input matrix on the left side of equality, a and b are scalars, c is an (n− 2)-dimensional
row vector, d and e are (n − 1)-dimensional column vectors, and A′ is the (n − 1) × (n − 2) left-over
matrix. This decomposition scheme was exploited by Liang et al. [23] and a hybrid algorithm was proposed,
which recursively decomposes the matrices via (3) if there exists a row/column with less than or equal to four
nonzeros. If this is not the case, i.e. when all the rows/columns have more than four nonzeros, the algorithm
calls Ryser. This decomposition is also employed in the experiments of this work. The proposed algorithms in
this study, especially SkipPer, can be used instead of Ryser in this hybrid algorithm.

4291

Kamer Kaya/Turk J Elec Eng & Comp Sci

The experiments of Liang et al. showed that when the density of the matrix, i.e. the ratio of the number
of nonzeros to n2 , is 40%, the execution times of the hybrid algorithm and Ryser are comparable. They also
reported that for a 25 × 25 matrix having 25% density, the execution time ratio of Ryser and the hybrid
algorithm is 1.5 . In the preliminary experiments, SkipPer alone, even without decomposition, provided much
better speedups, especially when the sparsity was higher. Note that as n increases with a constant sparsity, the
decomposition technique becomes less and less effective since the expected number of nonzeros in a row/column
increases and becomes more than four. The hybrid algorithm in [23] was also used by Yue et al. [19], where the
matrix was first partitioned into two for a more efficient permanent computation. Similar to the aforementioned
studies, SkipPer can be used instead of the hybrid algorithm, or inside the hybrid algorithm, to improve the
performance.

Since the decomposition can yield many matrices, a trivial parallelization strategy would be assigning all
the final submatrices to a different thread/processor/node/etc. This strategy was considered in [24] with a load-
balancing technique based on estimating the hardness of the permanent computation for each submatrix. Similar
to the above, if decomposition is not applicable, one cannot divide the task into subtasks with this strategy.
However, even if this is the case, the proposed parallelization of SkipPer can be employed. Furthermore, as
the experiments will show, with dynamic scheduling this strategy yields almost linear speedups and hence it
can be used without hesitation even when decomposition is possible.

Computing permanents of special matrix classes, e.g., (0,1)-matrices, has been investigated in the litera-
ture [18]. As mentioned before, the permanent of a (0,1)-matrix is related to the number of perfect matchings in
the corresponding graph structure. A more recent study introduced a different approach specialized to compute
the number of perfect matchings in complex, weighted, undirected graphs [25]. The approach in [25] does not
directly exploit the sparsity; however, it uses an approach different than Ryser’s while computing the perma-
nent. Although SkipPer can work for any matrix, it can be specialized for (0,1)-matrices with a better memory
layout and further optimized by adapting the techniques in [18] and [25].

6. Experimental results

To analyze the performance of Ryser, SpaRyser, and SkipPer and measure the performance improvements
obtained due to exploitation of sparsity, Gray skipping, and parallelization, various experiments are conducted
on synthetic and real-life matrices. All the experiments are performed on a server running on 64-bit CentOS
6.5 equipped with 64GB RAM and two Intel Xeon E7-4870 v2 clocked at 2.30 GHz and having 15 cores each.
Each core has a 32KB L1 and a 256KB L2 cache, and the size of the L3 cache is 30MB. For the multicore
implementations, C++ and OpenMP 4.5 are used with gcc 8.2.0 and -O3 optimization flag.

6.1. Experiments with synthetic data

To generate synthetic data, the Erdös–Renyi model is employed; for an n × n matrix, each entry ai,j is
independently chosen to be a nonzero with a constant probability p , a parameter to the model. Hence, each
row/column is expected to have p×n nonzeros and the expected number of nonzeros is p×n2 . The probability
values p = {0.2, 0.3, 0.4, 0.5} and the matrix dimensions n = {32, 34, 36} are used in the experiments. For each
(n , p) tuple, 5 random matrices are created. Figure 2 (left) shows the execution times of the algorithms with
different orderings for n = 32 . Each bar is an average of five values, i.e. execution times for five matrices.
On the right of the figure, the coefficients of variation (CV) are given for each bar. Note that the CV values

4292

Kamer Kaya/Turk J Elec Eng & Comp Sci

are usually at most 0.25 and more than 0.30 only when the average execution time is small. As the results
show, SpaRyser is better than the naive algorithm Ryser especially when the sparsity is high. However, when
p = 0.5 , there is not much sparsity to exploit and SpaRyser becomes slower. As the results confirm, the impact
of the ordering (SortOrder) on the performance of SpaRyser is significant.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

Natural Natural SortOrder Natural SkipOrder

Ryser SpaRyser SkipPer

E
xe

cu
ti

o
n

 T
im

e p = 0.2 p = 0.3 p = 0.4 p = 0.5

Ryser SpaRyser SkipPer
p Nat. Nat. Ord Nat. Ord.
0.2 0.01 0.28 0.29 0.32 0.39
0.3 0.01 0.10 0.23 0.20 0.33
0.4 0.00 0.05 0.12 0.15 0.25
0.5 0.01 0.08 0.01 0.09 0.18

Figure 2: The execution times (in seconds) for n = 32 and p = {0.2, 0.3, 0.4, 0.5} of the algorithms Ryser, SpaRyser,
and SkipPer with and without ordering on randomly generated matrices (left) and variations of coefficient for the
execution times on five matrices used for each (n, p) pair (right). The bars labeled as Natural show the executions where
no ordering is applied to the given matrix and the natural order is used.

The proposed algorithm SkipPer improves the performance drastically; although it can perform much
worse when the matrix is unordered, with SkipOrder its performance improves significantly. Even for p = 0.5 ,
SkipPer is 1.6× faster than Ryser. For p = 0.2 , the speedup is around 40× . The speedups of SkipPer with
SkipOrd over Ryser with different n and p values are given in Table 1.

Table 1: Speedups of to SkipPer over Ryser with different n and p values.

p

n 0.2 0.3 0.4 0.5

32 40.1× 10.8× 2.5× 1.6×
34 119.7× 11.2× 3.8× 1.6×
36 140.9× 13.2× 4.2× 1.6×

Table 2 compares the algorithms in a pairwise manner for n = 32 and p = {0.2, 0.3, 0.4, 0.5} . As
described above, 20 matrices are generated for n = 32 with different p values. To compare two algorithms,
for each matrix, the execution time of the former is divided into that of the latter and the averages of these
20 values are reported in the table. As the results confirm, SkipPer performs much better than the other
two algorithms. Furthermore, SortOrd is a better ordering for SpaRyser, and SkipOrd yields around 20%
better performance for SkipPer compared to SortOrd. Although better orderings may still exist, these
two observations show the validity of the rationale behind the orderings designed specially for SpaRyser and
SkipPer.

The performance of the proposed approach described in the previous section to parallelize SkipPer is
evaluated with 16 threads and coarse-grain parallelism. The parallelism is employed first by dividing the
iteration space of length 2n−1 − 1 into 16 static chunks. The performance is also measured with much
smaller chunks created and assigned by dynamic scheduling. The speedup results with 16 chunks, i.e. static
scheduling (columns 10–13), and 512 chunks with dynamic scheduling (columns 6–9) are presented in Table 3.
The results confirm that with smaller chunks, one can have almost linear speedup, i.e. between 14.4 and 15.2

with τ = 16 threads. However, especially for sparser matrices, where the number of skipped iterations can

4293

Kamer Kaya/Turk J Elec Eng & Comp Sci

Table 2: Pairwise performance comparison of the algorithms for n = 32 . For each row, the performances are normalized
w.r.t. to the algorithm whose name is given in the leftmost column at that row. Each value in the table is the average
of normalized execution times for 20 different executions since four different p values are used and five matrices are
generated with each p .

Ryser SpaRyser SkipPer
Algorithm Ordering Nat. Nat. Sort Ord Skip Ord Nat. Sort Ord Skip Ord
Ryser Natural 1.0 - - - - - -
SpaRyser Natural 0.9 1.0 - - - - -

SortOrd 1.8 1.9 1.0 - - - -
SkipOrd 1.7 1.8 0.9 1.0 - - -

SkipPer Natural 2.9 2.6 1.3 1.4 1.0 - -
SortOrd 11.0 9.5 4.7 5.0 3.4 1.0 -
SkipOrd 13.7 12.1 5.9 6.3 4.1 1.2 1.0

greatly vary, the parallel efficiency is low with static scheduling. Columns 2 -5 in the table present the speedups
w.r.t. sequential Ryser when τ = 16 threads are used. Overall, parallel SkipPer is around 600×–2000×
faster than Ryser and the speedups decrease with decreasing sparsity.

Table 3: Speedups of parallel SkipPer-SkipOrd with τ = 16 threads: columns 2–5 show the improvement with
dynamic scheduling w.r.t. the traditional Ryser. Columns 6–9 present the speedups w.r.t. the sequential algorithm.
To show the benefits of dynamic scheduling, columns 10–13 show the speedup values with static scheduling.

Speedup w.r.t. seq.
Ryser
(dyn., #chunks = 512)

Speedup w.r.t. seq.
SkipPer-SkipOrd
(dyn., #chunks = 512)

Speedup w.r.t. seq.
SkipPer-SkipOrd
(stat., #chunks = 16)

p p p

n 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

32 605 161 37.2 23.7 15.2 15.1 14.8 15.3 6.6 10.3 11.1 11.7
34 1790 172 57.4 24.4 14.4 15.2 15.2 15.5 6.1 9.8 9.8 10.7
36 2050 180 49.2 24.2 14.6 15.0 15.5 15.6 6.8 9.0 10.6 13.7

6.2. Experiments with real-life matrices
In addition to synthetic matrices, five real-life matrices are used to further evaluate the performance of the
proposed algorithms. The properties of the matrices and the results of the experiments are given in Table 4.
For each matrix, the decomposition technique (3) in [22, 23] is used to recursively decompose the matrix into
two. The decomposition is performed until there is no row/column having less than 5 nonzeros or n ≤ 32 .
Each algorithm is run with a 30-min time limit and computes the permanent of as many submatrices as it can.
For each algorithm alg , Table 4 reports the number of submatrices alg processes, the number of submatrices
on which alg is the fastest, and alg ’s average relative performance with respect to that of SkipPer-SkipOrd.
The relative performance is computed only over the matrices processed by alg . Since SkipPer is the fastest
algorithm and the time limit is the same for all the algorithms, SkipPer’s execution times are known on
these matrices. An algorithm is considered best for a matrix if its execution time does not exceed 1.05× the
minimum permanent computation time for that matrix. As the table shows, although there are matrices for

4294

Kamer Kaya/Turk J Elec Eng & Comp Sci

which SpaRyser is better than SkipPer, i.e. 6 submatrices for c100 and one submatrix for chesapeake, the
average performance of SkipPer is much better than the other two algorithms.

Table 4: This table shows the number of matrices processed, number of matrices with the fastest execution time, and
the relative performance with respect to SkipPer for each algorithm. For each row, several submatrices are generated
by using the decomposition given in Eq. 3. The last two columns present the speedup values for SkipPer with static
and dynamic scheduling, respectively.

Prop. Ryser SpaRyser-SortOrd SkipPer-SkipOrd SkipPer-SkipOrd
τ = 16, speedup

Matrix n nnz Solved Best Perf. Solved Best Perf. Solved Best Perf. static dynamic
bfwb62 62 202 15 - 37.8 49 - 11.7 520 520 1.0 7.1× 14.7×
c100 100 300 15 - 4.3 38 14 1.2 42 36 1.0 14.9× 15.9×
cage5 37 233 10 - 22.2 10 - 6.2 10 10 1.0 6.7× 13.6×
chesapeake 39 340 15 - 11.8 44 7 5.5 84 83 1.0 5.6× 14.8×
will57 57 281 15 - 69.2 64 - 13.4 609 609 1.0 8.3× 14.7×

In addition to the individual performances of Ryser, SpaRyser, and SkipPer, the last two columns
of the table present the speedups for SkipPer both with static and dynamic scheduling and τ = 16 w.r.t.
sequential SkipPer. The results confirm the previous experiments; static scheduling can fail to balance the
load distribution, whereas parallelization with dynamic scheduling yields close to linear speedups.

7. Conclusion and future work
In this work, a parallel algorithm for efficient computation of permanents of sparse matrices is proposed.
Compared to the original algorithm Ryser, around 2000× speedups are obtained for matrices with high
sparsity. The proposed techniques can be used to improve the performance of the existing solutions in the
literature since at one point they almost all use Ryser. The best algorithm, SkipPer, uses Gray skipping,
whose impact heavily depends on the nonzero pattern in the matrix. Although SkipOrder’s effectiveness
is shown empirically, it would be an interesting future work to generate the best ordering that enables the
algorithm to cover the iteration space with the fewest number of skips and yield the best theoretical complexity.
In addition, one can also combine the current work with the technique proposed by Servedio and Wan [17],
which adds a row/column to the original matrix to obtain an augmented matrix to encounter many zero terms
in Ryser. In addition to these, it could be interesting to analyze further optimizations within SkipPer for
matrices with a specific pattern/structure such as structurally and numerically symmetric matrices.

Another possible research avenue is parallelizing SkipPer on many-core devices such as GPUs. The
problem is harder indeed; balancing the load with nonuniform and dynamic task sizes is not a straightforward
job when thousands of cores are available. However, the Gray skipping technique as well as the proposed
ordering technique can be easily adopted since they create independent tasks with possibly varying but small
computational loads; one can easily increase the number of chunks to millions. Unfortunately, a possible
architectural problem with this approach can be the existence of intervals with no impact on the permanent.
Especially when these intervals are distributed evenly among all the intervals, a naive task-to-thread assignment
will weaken the utilization of the GPU. This problem can be solved by computing the permanent in a warp-
centric approach instead of a thread-centric one. In the future, this path is planned to be investigated to have
an efficient GPU parallelization of SkipPer.

4295

Kamer Kaya/Turk J Elec Eng & Comp Sci

References

[1] Kılıç E, Tasçı D. On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas
numbers. Rocky Mountain Journal of Mathematics 2007; 37: 1953-1969. doi: 10.1216/rmjm/1199649832

[2] Balakrishnan N. Permanents, order statistics, outliers, and robustness. Revista Matematica Complutense 2007; 20
(1): 7-107. doi: 10.5209/rev_REMA.2007.v20.n1.16528

[3] Aaronson S, Arkhipov A. The computational complexity of linear optics. In: Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing; New York, NY, USA; 2011. pp. 333-342.

[4] Wu J, Liu Y, Zhang B, Jin X, Wang Y et al. A benchmark test of boson sampling on Tianhe-2 supercomputer.
National Science Review 2018; 5 (5): 715-720. doi: 10.1093/nsr/nwy079

[5] Narahara M, Tamaki K, Yamada R. Application of permanents of square matrices for DNA identification in
multiple-fatality cases. BMC Genetics 2013; 14 (1): 72. doi: 10.1186/1471-2156-14-72

[6] Mahajan M, Raghavendra RBV, Sreenivasaiah K. Monomials, multilinearity and identity testing in simple read-
restricted circuits. Theoretical Computer Science 2014; 524: 90-102. doi: 10.1016/j.tcs.2014.01.005

[7] Minc H. Permanents (Encyclopedia of Mathematics and Its Applications). Cambridge, UK: Cambridge University
Press, 1984.

[8] Valiant LG. The complexity of computing the permanent. Theoretical Computer Science 1979; 8 (2): 189-201. doi:
10.1016/0304-3975(79)90044-6

[9] Jerrum M, Sinclair A, Vigoda E. A polynomial-time approximation algorithm for the permanent of a matrix with
nonnegative entries. Journal of the ACM 2004; 51 (4): 671-697. doi: 10.1145/1008731.1008738

[10] Štefankovič D, Vigoda E, Wilmes J. On counting perfect matchings in general graphs. In: Theoretical Informatics,
LATIN 2018; Cham, Switzerland; 2018. pp. 873-885. doi: 10.1007/978-3-319-77404-6_63

[11] Gurvits L, Samorodnitsky A. Bounds on the permanent and some applications. In: FOCS ’14 Proceedings of the
2014 IEEE 55th Annual Symposium on Foundations of Computer Science; Washington, DC, USA; 2014. pp. 90-99.
doi: 10.1109/FOCS.2014.18

[12] Linial N, Samorodnitsky A, Wigderson A. A deterministic strongly polynomial algorithm for matrix scaling and
approximate permanents. Combinatorica 2000; 20: 545-568. doi: 10.1007/s004930070007

[13] Dufossé F, Kaya K, Panagiotas I, Uçar B. Scaling Matrices and Counting the Perfect Matchings in Graphs. Research
Report RR-9161. Inria Grenoble Rhône-Alpes, 2018.

[14] Anari N, Gurvits K, Gharan SO, Saberi A. Simply exponential approximation of the permanent of positive
semidefinite matrices. In: 58th IEEE Annual Symposium on Foundations of Computer Science; Berkeley, CA,
USA; 2017. pp. 914-925.

[15] Eldar L, Mehraban S. Approximating the permanent of a random matrix with vanishing mean. In: 59th IEEE
Annual Symposium on Foundations of Computer Science; Paris, France; 2018. pp. 23-34.

[16] Mittal RC, Al-Kurdi A. Efficient computation of the permanent of a sparse matrix. International Journal of
Computer Mathematics 2001; 77 (2): 189-199. doi: 10.1080/00207160108805061

[17] Servedio S, Wan A. Computing sparse permanents faster. Information Processing Letters 2005; 96 (3): 89-92. doi:
10.1016/j.ipl.2005.06.007

[18] Bax E, Franklin J. A permanent algorithm with exp[ω(n1/3/2 lnn)] expected speedup for 0-1 matrices. Algorithmica
2008; 32: 157-162. doi: 10.1007/s00453-001-0072-0

[19] Yue B, Liang H, Bai F. Improved algorithms for permanent and permanental polynomial of sparse graph. Com-
munications in Mathematical and in Computer Chemistry 2013; 69: 831-842.

[20] Ryser HJ. Combinatorial Mathematics. New York, NY, USA: Mathematical Association of America, 1963, doi:
10.5948/UPO9781614440147

4296

Kamer Kaya/Turk J Elec Eng & Comp Sci

[21] Nijenhuis A, Wilf HS. Combinatorial Algorithms. New York, NY, USA: Academic Press, 1978.

[22] Forbert H, Marx D. Calculation of the permanent of a sparse positive matrix. Computer Physics Communications
2003; 150 (3): 267-273. doi: 10.1016/S0010-4655(02)00683-5

[23] Liang H, Huang S, Bai F. A hybrid algorithm for computing permanents of sparse matrices. Applied Mathematics
and Computation 2006; 172 (2): 708-716. doi: 10.1016/j.amc.2004.11.020

[24] Wang L, Liang H, Bai F, Huo Y. A load balancing strategy for parallel computation of sparse permanents. Numerical
Linear Algebra with Applications 2011; 19: 1017-1030. doi: 10.1002/nla.1844

[25] Björklund A, Gupt B, Quesada N. A faster Hafnian formula for complex matrices and its benchmarking on a
supercomputer. Journal of Experimental Algorithmics 2019; 24 (1): 1.11:1-1.11:17. doi: 10.1145/3325111

4297

	Introduction
	Background and notation
	SpaRyser: An algorithm for sparse permanents
	SkipPer: Faster sparse permanents with Gray skipping and parallelization
	Parallel permanent computation with SkipPer

	Related work
	Experimental results
	Experiments with synthetic data
	Experiments with real-life matrices

	Conclusion and future work

