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Abstract: Air pollution is considered a major health problem in urban areas. Small sensor technology integrated with
smart phones can be widely used to collect air quality information in real time using mobile applications. By applying
the concept of crowdsensing, citizens and authorities can be aware of exposure to pollution during their daily activities
in urban areas. This paper describes an on-road air quality monitoring and control approach based on the crowdsensing
paradigm. In addition to collecting air pollution data, we are exploring the possibility of using this technology to
effectively detect critical situations and redistribute all information through a proactive decision support framework.
This information can be combined with sensed air quality parameters for displaying, on an interactive map, the detected
pollutants’ concentrations using sensors attached to smart phones. The proposed framework provides users with real-time
traffic and air quality information, traffic recommendations and notifications, and environmental conditions. Moreover,
the authorities can use this system to improve urban mobility and traffic regulation. Such behavior and movements
related to geographic information can provide a better understanding of the dynamics of a road network. In this work,
we propose to combine the benefits of the crowdsensing paradigm with both machine learning and Big Data tools. An
artificial neural networks model and the A* algorithm are used for air quality prediction and the least polluted path
finding. All data processing tasks are performed over a Hadoop-based framework.

Key words: Air quality management, crowdsensing, mobile application, decisional system, pollution prediction, traffic
regulation

1. Introduction
Most economic activities involving the use of road transport are accompanied by emissions of air pollutants
which steadily degrades the environment. Figure 1 shows that increased road traffic in urban areas generates
chemical emissions into the air. With varying climatic conditions influenced by temperature, wind, humidity,
pressure, etc., these pollutants affect the quality of the air. When people are exposed to polluted air, they can
suffer from breathing problems and asthma and even the risk of heart attack for people with heart disease [1].

As global warming becomes a very important topic in government policy, authorities are increasingly
required to monitor and reduce harmful gas emissions in their regions. The collection, analysis and processing
of information related to these emissions is therefore necessary for long-term monitoring in relation to traffic and
weather data, in order to understand the contribution of traffic into environmental conditions. The development
of realistic air pollution control strategies is of crucial importance but at the same time requires knowledge of the
costs associated with their implementation, the economic benefits that can result from reducing the quantities
∗Correspondence: h.elalaoui@edu.uca.ac.ma
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and concentrations of pollutants emitted, and other possible benefits arising from the adoption of the proposed
strategies [2–4]. In this sense, the development of urban air pollution control strategies is a complex and
multidisciplinary process involving a wide range of actors with different skills and interests.

Figure 1. The chain of negative impacts of pollution on health.

One of the major projects that has proposed such a solution is Mobile Environmental Sensing Across Grid
Environments System (MESSAGE), a project developed by the Imperial College of Cambridge University. It
aims to develop fixed and portable devices for the measurement of high concentrations of carbon monoxide and
nitrogen oxides in urban areas. They demonstrated that the use of high-density, low-cost, fixed, and portable
devices can provide a much more accurate picture of the spatial and temporal structure of air quality in the
urban environment. Moreover, the MoDisNet project [5] aims to develop techniques for the measurement of
traffic emissions to monitor air pollution in urban areas. It is based on advanced technologies such as a wireless
sensor network (GUSTO), grid technology for air pollution and mining monitoring, and a distributed data
mining algorithm.

To date, information on a number of key factors, such as vehicle or driver behavior, pollutant concen-
trations, and human exposure, have never been sufficiently available at high levels of spatial and temporal
aggregations. The conventional approach is based on data collected from a network of permanent air quality
monitoring stations. These expensive stations are often located to measure ambient background concentrations
with low coverage since they are generally spaced several kilometers apart. However, the results provided by
these stations are offline and cannot provide real-time traceability. The goal, therefore, is to develop the ability
to measure, model, and predict a wide range of tropospheric pollutants using mobile sensors integrated with
driver smart phones. Several approaches have opted for the use of low-cost sensors, but few proposals have
targeted participatory sensing, better known as crowdsensing [6].

The principle of crowdsensing is based on encouraging people to collect contextual information to help
in the study of several phenomena. Several projects and applications have emerged, particularly those for
the collection of information on air quality and other measures of urban pollution (noise, electromagnetic
waves, etc.). For example, ’Common Sense’ [7] communicates with mobile phones using Bluetooth technology
to measure various air pollutants like CO2 . This is done using the air quality sensing devices available on
users’ mobile phones. In the same perspective, the authors in [8] focused on the spatiotemporal distribution
of ultrafine particles that have a severe impact on human health. Measurements were made over a year using
mobile sensors installed on public transport vehicles in Zurich, Switzerland. Similarly, HazeWatch [9], deployed
in Sydney, measures air pollution concentrations with low-cost mobile sensors attached to vehicles and uses
crowd mobile phones to download data in real time.

These solutions, however, remain reserved only for the collection of data and do not give a clear view
on the degree of exposure for individuals. In this work, we propose a participatory decision-making system
able to establish air quality indexes in urban areas, generate relevant information for users and provide on-
road recommendations. This framework is based on pollutant data collected from mobile devices that provide
information on road infrastructure and air quality. It must take into account spatial and temporal constraints
and the dynamics of the problem as air quality levels change over time according to the volume of road traffic.
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In order to manage all the data that the system requires, we propose the use of a crowdsensing technology-
based approach and Big Data analysis tools [10] to measure, monitor, and control air quality with a higher
spatiotemporal resolution while involving users in monitoring their exposure to pollution through mobile tools
to better understand the quality of air breathed by the citizens. We suggest the use of the Hadoop framework
to provide great flexibility and speed in the execution of the prediction and analysis algorithms needed for
large scale data. The objectives of this research will be comprehensive and will include the collection, storage,
analysis, and processing of air quality data to achieve a smart transportation framework. As such, the main
functions of the framework proposed in this paper are:

• Defining a data collection tool based on the concept of mobile crowdsensing.

• Defining a tool for extracting and loading weather and pollution data from fixed monitoring stations in a
data warehouse.

• Calculating real time air quality indexes and generating an interactive map for the distribution of pollution
level in the study area.

• Predicting the pollution level in an urban area and calculating the least polluted paths.

The rest of the paper is organized as follows: Section 2 presents the mobile crowdsensing concept and
compares several crowdsensing-based platforms developed for air quality monitoring. Section 3 describes the
proposed approach and its structure while Section 4 presents the technologies and algorithms used to implement
the framework. To test the proposed solution, a case study is fully detailed in Section 5 which also discusses
the obtained results. The paper is concluded in Section 6.

2. Mobile crowdsensing (MCS) and air quality management

Following the smart city paradigm and focusing on air quality data collection, the concept of crowdsourcing [6]
was introduced to refer to scenarios in which a large group of people, through different devices and technologies,
are actively involved in the data acquisition process. Once the data is collected, it is sent to a central server for
analysis. The feedback will be available to citizens and stakeholders through actions and services that aim to
improve the air quality.

Crowdsensing [6] is a derivative of crowdsourcing where sensors are the real sources of data. If air
quality sensors are used, citizen participation becomes an appropriate alternative to traditional data collection
stations, where small sensors are distributed to a large number of people who contribute transparently to the
data collection while performing these tasks on a daily basis. In this section, we present a synthesis of the
solutions proposed recently in this field and for each solution, we quote: its main characteristics, its strong
points, and its limits.

AirSense [10] is a system proposed to monitor air quality through a crowd-based adapted collection
that does not require the involvement of citizens. Data collection is done using modern, lightweight, and less
expensive air quality management devices (AQMDs). The collected data is then subjected to an analysis whose
purpose is the generation of a map of indicators determining indoor and outdoor air quality. This map, available
only for competent authorities and participants, informs only about current data and does not give any future
forecasts.

In the same perspective, the authors of SecondNose [11] offers an Android application linked to mobile
devices, for the collection of environmental parameters. The solution also incorporates analytic components
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to visualize indicators on air quality through a web interface. The goal of SecondNose is to give citizens the
opportunity to get an idea about the quality of the air they breathe. Nevertheless, these indicators (7-day
history) only concern CO and NO2 pollutants, in addition to atmospheric pressure and temperature.

We also mention the SmartBike [12] initiative of the city of Turino in Italy, which is an IoT platform
that uses bicycles as data collection devices on urban air quality. This platform offers important services
including geolocation of bicycles, an antitheft system, and a web map to present the routes taken and the level
of pollution in each area crossed. Just like the previous solution, few parameters are taken into account for air
quality management and more focus has been put on the other features offered by SmartBike.

Another work done in the same context is Third-Eye [13], an approach based on 2 neural networks,
allowing users to know the real-time concentrations of PM2.5 particles in a given area. No device is necessary,
since the estimation of the concentrations is carried out thanks to a processing of the images captured by mobile
phones (based on the intensity of the light in the photo). Despite the originality of this approach, it is still
questionable given the difficulty of obtaining precise values of concentrations from an image processing.

3. The proposed air quality management framework

3.1. General overview
Road traffic contributes significantly to the following pollutant emissions: nonmethane organic compounds
(VOCs), carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO2 ), particulate matter (PM10 , PM5 , and
PM2.5 ) and sulfur dioxide (SO2 ). In order to monitor these pollutants and analyze their effects on the envi-
ronment, we propose a framework to collect real-time pollution data on the main aspects: traffic conditions,
emissions, ambient pollutant concentration, and human exposure. With the emergence of small sensor tech-
nology with energy consumption, low enough to be integrated into various mobile devices, the crowdsensing
principle has the advantage of providing real-time measurements in addition to contextual information such as
location, temperature, etc. In addition, static air quality monitoring stations provide a set of measurement data
for various pollutants as well as meteorological parameters (wind speed and direction, pressure, etc.) at a few
fixed points in the study area.

Following these measures, the proposed approach is based on the development of a decision support
framework for the management and optimization of air quality of the roads. The objective is to enable users
to receive recommendations on the least polluted roads with contextual information for traffic regulation in
addition to historical preference data collected from users’ mobile phones. This hybrid solution uses all of this
data to generate a network that makes it easy to find the most environmentally friendly routes and predict
pollution levels for a given segment.

3.2. The framework infrastructure
To implement the main objectives of the proposed framework, we establish its infrastructure which will be based
on 3 major steps as illustrated in Figure 2.

3.3. Data collecting and gathering

This essential step relies on a network of mobile sensors and fixed stations. The mobile units allow the collection
of real-time metrics obtained from users’ mobile phone, in addition to contextual data such as GPS location,
date and time, direction, etc. Fixed stations provide data on different pollutants as well as weather information
such as temperature, wind speed, etc.
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Figure 2. The Framework infrastructure.

3.4. Data processing and storage

All data collected during the first stage is transmitted to several sensor gateways. They control the flow of data
from different sensors and transfer them to an SQL database. Through a data loading service, this database is
linked to a data warehouse that stores all archived data: captured data, road traffic data, and road infrastructure
as well as data on user preferences collected from their mobile phones.

3.5. Analysis and reporting

This step is entirely managed by a ’computational module’ which provides relevant recommendations to the
users. First, using an ANN prediction model, meteorological data and contextual parameters can predict the
concentration of pollutants in a specific area. The predicted results then help determine air quality using the air
pollution index (API) by referring to Murena’s method. Subsequently, the framework allows the development
of a weighted road network using the road infrastructure data. Finally, the generated network is then used to
find the most environmentally friendly routes, provide forecasts of the pollution level on the roads, and make
recommendations to road users based on their preferences.

4. Modeling and implementation

4.1. Data collection
In this work, we analyze the case where several users are equipped with ozone sensors with a GPS module.
These sensors are connected (via Bluetooth) to mobile devices equipped with a 4G communication unit. Each
sensor sends the collected data to the servers in addition to the location of the sensor obtained using GPS or
GSM geo-location of mobile devices. These measures will be achievable thanks to the APISENSE application
[14] (https://apisense.io/) to make the nonintrusive computer link between smart phones and measured data.
The collection process will therefore follow the path presented in Figure 3.

This choice is justified by the fact that the platform is quite complete but, above all, it respects the
privacy of the participants. In addition, developers are continually working on development leads to improve
performances, secure data propagation, evaluate the quality of information collected, save energy, etc.
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Figure 3. The MCS process.

4.2. Air quality prediction

In this study, ANNs were used to predict the concentration of pollutants in each road segment. The me-
teorological and geological data will allow the calculation of the final API using Murena’s method for each
segment.

4.2.1. Prediction of pollutant levels using an ANN

ANNs are mathematical models inspired by the functioning of biological neurons, mostly exploited for prediction
problems [15]. Multilayer perceptron was used in this work to predict pollutant concentrations by following the
3 phases of the prediction process:

• The data extraction step relies on the choice of the most demonstrative data for the learning and testing
phases. The data used in this study are three-year time records of pollutant concentrations and weather
records. Each record contains 13 attributes: percentage of 5 pollutants concentration, temperature, wind
speed, relative humidity, solar radiation, year, month, day, and time.

• The learning step consists of finding the optimal configuration of the hidden layers, the transfer function,
and the performance index in order to minimize the prediction error. Retro-propagation has been chosen
as a learning rule since it is well suited to prediction problems. The choice of the number of layers and
neurons in each layer as well as the learning rate was done following several configuration tests until
convergence to the mean squared error (MSE). The best results were obtained using 1 hidden layer and 4
neurons with a sigmoid transfer function.

• At the prediction step, for a given time and location, the concentration of pollutants is predicted. The
result is represented by the output of the last layer of the neural network (O3 concentration). Ozone
concentrations are influenced by weather conditions and on the levels of SO2 , NO2 , PM10 , and CO.
Figure 4 presents the generated ANN model for the prediction of ozone concentrations.

It should be noted that each neuron of the first layer is linked to the four neurons of the second layer but
in order not to overload the diagram, only the few links (blue) have been schematized.

4.2.2. Calculation of API pollution index using Murena’s method

The API is an approach to express simply the state of air pollution in an urban area [16]. In this study, we use
the Murena method [17] and the concentrations of each pollutant previously predicted for the calculation of the
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Figure 4. The 3-layer perceptron of the ANN model generated for the prediction of ozone concentrations.

API defined by Equation 1 and scores presented in Table 1.

PIs,p =

[
PIhi − PIlo
BPhi −BPlo

(
Cp −BPlo

)
+ PIlo

]
s,p

, (1)

where PIs,p , the value of the pollution index for a pollutant p at the site s. BPhi and BPlo are
respectively the highest and lowest break-points of a pollutant p that are respectively greater and lower than
or equal to Cp . PIhi and PIlo are respectively the PI values corresponding to BPhi and BPlo . Cp is the
pollutant p daily concentration [17].

Table 1. Breakpoints for the proposed API (µg/m3 for all polluants and mg/m3 for CO) [17].

Pollution level API PM10 NO2 CO SO2 O3

Unhealthy 85-100 238-500 950-1900 15.5-30 500-1000 223-500
Unhealthy for sensitive groups 70-85 144-238 400-950 11.6-15.5 250-500 180-223
Moderate pollution 50-70 50-144 200-400 10-11.6 125-250 120-180
Low pollution 25-50 20-50 40-200 4-10 20-125 65-120
Good quality 0-25 0-20 0-40 0-4 0-20 0-65

4.3. Generation of the weighted road network and recommendation of paths
Before applying the shortest path algorithms, we first present a simple method to adapt these algorithms to
human needs. It combines a knowledge-based approach with the performance of classical algorithms. The first
step is the formation of the grid, i.e. the partition of the route network into smaller subnets of the grid based
on two important knowledge about the road network: (i) Routes type: in a normal road network, roads are
either major roads, minor roads or expressways and (ii) any major road or highway naturally partitions the
entire network into small areas or subnetworks. At the base of these 2 rules, Figure 5 illustrates the 3 cases of
the grid formation. Major roads are represented by thick lines and minor roads with fine lines:

1. Major roads surround minor roads that are all connected to each other. This is the simplest case since
the subnet of the grid is already extracted thanks to the first rule of knowledge.

2. Minor routes in the grid subnets are not connected. In this case, the system will automatically isolate the
subnetworks.
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3. The road network contains underpasses or bridges. This case is less obvious and is done semiautomatically
with minimal human assistance.

Figure 5. Different grid formations.

After this partitioning, each road segment is weighted by its size and the calculated final API. The system
will make it possible then to find the least polluted paths of the entire network. In this work, this task will be
carried out by the algorithm A* [18] that determines the shortest path between two vertices (initial and final
both known) of a graph. This algorithm is lighter than Dijkstra and more suitable for large-scale graphs.

4.4. The data analysis process based on Hadoop Map Reduce

The data analysis process including the generation of weighted graphs and shortest paths is fully managed
by MapReduce through several phases. In the first phase, the meteorological and geological data are loaded
from Hadoop HBase. They are used to predict pollutant concentrations and calculate final APIs for each road
segment. In the second phase, calculated API values are combined with user data and route infrastructure
(segment length) for weighted network generation. The latter helps to find the shortest paths thanks to the
application of the algorithm A*. Figures 6 and 7 show respectively the first and second phase of the MapReduce
process:

Figure 6. Pollutant concentration and API calculation.

Figure 7. Weighted network generation and path finding.
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4.5. The user mobile application

Several researchers have realized the importance of the mobile application modeling step because a deficient
design leads, thereafter, to defects and maintenance problems. In this section, we explain the development
of the mobile application allowing users to launch queries and receive recommendations on the least polluted
paths. We present the application analysis and specification based on the goal model i* schematized in Figure
8.

Figure 8. The goal model i*.

After the validation of the models, the specifications are used to implement the user interface. It gets the
user input message and displays the system output. Figure 9 presents the user’s interface for sending a request.

Figure 9. User mobile interface.
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5. Results and discussion
5.1. Presentation
The case study will focus on the prediction of ozone concentrations in different areas of the Marrakesh city, espe-
cially a simulation area with heavy traffic. The recordings, provided by the National Meteorology Department,
spread over 4 years (2010, 2015, 2016, and 2017) are data from 3 static monitoring stations (JEF, M’Hamid,
and Daoudiat) containing frequency records of different pollutants’ concentrations and meteorological records,
resulting in a total of 518,661 observations after the preprocessing phase. In addition, the sensor set provided
4000 to 10,200 records for each road segment. This difference is due to the time deficiency between the sensors.
For the prediction model, 80% of these measurements were used during the learning phase and the remaining
20% during the test phase.

In this section, we evaluate the performance of the predictive model by the averages of observed and
predicted concentrations and present the main features of the proposed framework; namely the road traffic
regulation (recommendation of the least polluted paths) and the display of information on an interactive map
to citizens regarding public health.

5.2. Air quality prediction and performance evaluation

For a thorough evaluation of the implemented predictive model (Figure 4), we perform in this part different
comparisons between observed and predicted ozone concentrations. These comparisons concern predictions
by hours, by days, and by months. And for an overall assessment, we discuss the overall performance under
different performance measures for the 3 monitoring stations.

5.2.1. Hourly, daily, and monthly predictions

To test the performance of the ANN model, a comparison of the changes between observed and predicted ozone
concentrations over a 24-h period is presented in Figure 10. These changes concern 1-h intervals throughout
the year of the study for a road segment (JEF station).
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Figure 10. Comparison between observed and predicted ozone concentration values over hours.

Figures 11–13 below presents the ozone rates observed and calculated for all the days of 2017 (week
assessment) and the average ozone concentrations during the year 2017 (monthly assessment) respectively for
the segment 1, segment 2, and segment 3, each belonging to a different monitoring station.
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Figure 11. Comparison between observed and predicted
ozone concentration values over days and months for the
segment 1.
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Figure 13. Comparison between observed and predicted ozone concentration values over days and months for the
segment 3.
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5.2.2. Overall performance
We note that, to test the predictive model based on artificial neural network, different comparisons can be
established. However, in a regression problem, measures can be considered to globally evaluate a predictive
system. In Table 2 below, we give the overall performance of the model through 5 statistics, their values will
be discussed next. Relative squared error (RSE), MSE, and root mean squared error (RMSE) are squaring the
difference between the predictions and the ground truth. They are very helpful since any significant difference
is made more substantial when it is being squared. Otherwise, r-squared (R2 ) and adjusted r-squared (A-R2 )
help to understand how independent variables influence the model. R2 improves as the number of variables
increases. A-R2 camouflages this vulnerability since it improves only by adding significant variables to the
model.

Table 2. The predictive model performance measures.

Stations
Measure RSE MSE RMSE R2 Adjusted-R2

JEF 0.32 3.83 1.95 0.682 0.6819
M’Hamid 0.40 2.39 1.54 0.603 0.6029
Daoudiat 0.43 2.44 1.56 0.575 0.5749

5.3. Path finding and user recommendation
The road graph is generated in a specific location of the study area, according to the needs of the users. For
each segment of this location, the system calculates or updates the calculated costs based on the available data,
and the algorithm A* is then applied. Figure 14 describes an example of a road network for a user who wants
to navigate from node N1 to N14 and the least polluted path represented by green lines.

Figure 14. The weighted graph generated and the least polluted path.

5.4. Interactive map for the public health activities
In this section, we generate an interactive map of a simulation area of Marrakesh city with all the data related
to the pollution levels in the study areas to provide an overview of relevant public health data. A subindex is
calculated for each pollutant based on its measured concentrations. Each level has a number from 1 to 10 and
a state from ’very good’ to ’very bad’ distinguished by different color codes.

As an example, we present the data of a single day (November 5th , 2017) gathered over 2 h. Table 3 below
displays the corresponding level of the calculated atmospheric index for two stations with the corresponding
states and color codes.
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Table 3. Levels and corresponding states for 2 monitoring stations calculated every 2 h (November, 5th 2017).

Time slot JEF station level Corresponding state Mhamid station level Corresponding state
0:00-2:00 6 Poor 5 Medium
2:00-4:00 5 Medium 4 Good
4:00-6:00 5 Medium 3 Good
6:00-8:00 6 Poor 4 Good
8:00-10:00 10 Very Bad 8 Bad
10:00-12:00 7 Poor 8 Bad
12:00-14:00 5 Medium 4 Good
14:00-16:00 4 Good 3 Good
16:00-18:00 5 Medium 6 Poor
18:00-20:00 6 Poor 6 Poor
20:00-22:00 9 Bad 6 Poor
22:00-0:00 9 Bad 6 Poor

In addition, the proposed framework gives citizens easy access to information about their local air quality,
which is an important basis for dialogue and for the decisions needed to preserve the health of citizens, especially
in cities. Figure 15 shows an interactive tool (map) that displays the daily API level calculated for both
monitoring stations (JEF and M’Hamid) in November 5th, 2017.

Figure 15. Interactive air quality map for Marrakech city.

The interactive map allows a citizen to visualize the times of the day during which the pollution indexes
are the lowest. This visualization is important since it can be used by a user who would like to know the
most opportune time for sports for example. For example, if the maximum is obtained between 4:00 PM and
6:00 PM, it is then very ill-advised to exercise outdoors in suburban environment from 6:00 PM to respect the
prerogatives of Moroccan sanitary norms1.

1Decree 2-09-286 of 8 December 2009 setting standards for air quality and air monitoring procedures, vol. 1430. Minister of the
Spatial Planning, the Environment, the Town Planning and the Habitat
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5.5. Discussion
The brief summary of previous work presented in Section 2 proves the integrity of the contributions presented in
this paper. The proposed solution is quite comprehensive since it starts from data collection to the development
of a system for predicting future concentrations of pollutants, a system for regulating road traffic, a least polluted
paths recommendation system, and generating an interactive map of public health.

To demonstrate the effectiveness of these contributions, we have presented in this section a case study
that begins with the evaluation of the predictive model performance through comparisons at different scales.
These comparisons show that the proposed ANN model generates rather interesting predictive values compared
to the actual values. For example, in the case of daily predictions (per hour), the neural network was able
to detect the same pollution peaks as those actually observed at 12:00 PM and 2:00 PM and 6:00 PM. The
same conclusions can be drawn from weekly predictions as the adopted ANN model has determined the same
maximum percentages actually detected for the 3 road segments (Wednesday for the segment 2 and Sunday
for the other two segments). The annual comparison also shows that the estimated values are close to those
observed except for June (the model did not give the best estimation for segment 3). This very significant
variance can be explained by the unpredictable atmospheric changes experienced by the city during this period
of the year (from June to September). In fact, some areas may experience thunderstorms and sudden storms
while another region is perfectly intact at the same time, which explains this variance between the 3 road
segments that belong to different areas.

The closeness between the true values and the estimated ones was evaluated through several measures
presented in Table 3. The error measurements (RSE, MSE, and RMSE) give an idea about the distance between
the predictions made and the true value of interest. The smaller the result, the better the model. We note
that for the 3 regions of the city, these differences remain minimal. Moreover, the best configuration of the
model allowed to obtain determination coefficients (R2 and A-R2 ) close to or exceeding 60% depending on
each region, an interesting percentage for a regression problem where environmental factors (variable and little
predictable) are the first-order predictors.

The proposed model is of major importance as it allows the implementation of a powerful system for
good decision-making in urban air quality management. It can predict, effectively, future levels of air pollution,
take appropriate measures, and present control strategies. Thanks to this model, an interactive map has been
generated giving citizens the opportunity to be aware of pollution concentrations at any time of the day.

On the other hand, the interactive map shows that, in the suburban area of the Marrakech city, the
concentrations of primary pollutants are low and those of ozone are higher than in the center of the city [19].
Ozone is produced in the troposphere following a photochemical reaction between nitrogen oxides and volatile
organic compounds. In urban areas, precursor emissions (hydrocarbons and nitrogen oxides) are important. A
lot of ozone will form but it will react with nitric oxide whose contribution is constant. Ozone will therefore
be consumed at the level of agglomeration in small quantities. By moving away from the city, ozone will no
longer react (nitric oxide concentration is almost zero). The ozone concentration will then increase. For the
center of the city, it is essential to use a deterministic modeling based on a transport chemistry model such as
the CHIMERE model [20].

6. Conclusion and perspectives
The article demonstrates a crowdsensing application for monitoring air quality through the use of mobile sensors
of mobile devices. The goal is to be able to better increase the accuracy of observations, refine estimates, and
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develop diagnostics. Our solution is an energy efficient spatiotemporal decision support framework for urban-
scale air pollution control that enables flexible data acquisition in mobile environments. It uses an artificial
neural network for strategic air pollution assessment and data analytics techniques for the processing, storage,
and analysis of the collected data. Unlike most of the approaches currently employed, the presented approach
allows an assessment of pollution control in terms of impact combined with air quality and social well-being, by
correlating environmental aspects and users’ needs (the incorporation of traffic regulation and recommendations
for stakeholders) are constituting alternative solutions to reduce air pollution.

The approach adopted is successfully implemented in the case of the Marrakesh region of Morocco,
notwithstanding the fact that the application involved only small measures due to the lack of required input
data. In addition, in the case study presented, nontechnical measures, which would undoubtedly reduce the
overall cost of control, were omitted due to lack of data on available costs and controversy over their social
acceptance. The calculation of the overall social cost with the inclusion of more pollutants, nontechnical
measures and other categories of receivers (e.g., crops and building materials) for the Marrakech region remains
a critical future challenge.
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