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Abstract: In recent years, the use of wireless sensor networks (WSNs) has increased and there have been significant
improvements in this field. Especially with smarter, cheaper, and smaller sensor nodes, various kinds of information
can be detected and collected in different environments and under different conditions. WSNs have thus been used in
many applications such as military, surveillance, target tracking, home, medical, and environmental applications. As the
popularity of WSNs increases, problems related to these networks are being realized. The dynamic deployment problem
is one of the main challenges that have a direct effect on the performance of WSNs. In this study, a novel optimization
technique named the quick artificial bee colony (qABC) algorithm was applied to the dynamic deployment problem of
WSNs. qABC is a new version of the artificial bee colony algorithm (ABC) and it redefines the onlooker bee phase
of ABC in a more detailed way. In order to see the performance of qABC on this problem, WSNs that include only
mobile sensors or both stationary and mobile sensors were considered with binary and probabilistic detection models.
Some experimental studies were conducted for tuning the colony size (CS ) and neighborhood radius (r ) parameters of
the qABC algorithm, and the performance of the proposed method was compared with the standard ABC algorithm
and some other recently introduced approaches including a parallel ABC, a cooperative parallel ABC, a version of ABC
powered by a transition control mechanism (tlABC), and a parallel version of tlABC. Additionally, some CPU time
analyses were provided for qABC and ABC considering different dimensions of the problem. Simulation results show
that the qABC algorithm is an effective method that can be used for the dynamic deployment problem of WSNs, and it
generally improves the convergence performance of the standard ABC on this problem when r ≥ 1 .

Key words: Quick artificial bee colony algorithm, wireless sensor networks, dynamic deployment problem, probabilistic
detection model, binary detection model

1. Introduction
Wireless sensor networks (WSNs) are important topics in network science and one of the main focuses of
researchers is to improve their performance in order to make them more comfortable for different applications.
This kind of networking has many advantages like easy installation and low cost. In recent years, WSNs have
become more interesting worldwide. Especially with the growth of micro-electro-mechanical systems (MEMS)
technology, it is easy to develop WSNs that contain autonomous smart sensor nodes that are inexpensive and
small and have limited processing and computing resources [1, 2]. In addition, these sensor nodes have the
ability of sensing, measuring, and collecting information from the environment; transmitting the sensed data to
the user; and communicating with other sensors within a certain area [2].
∗Correspondence: bgorkemli@erciyes.edu.tr
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Sensor networks can be used to discover or monitor a variety of physical parameters or conditions, such
as pressure, composition of the soil, humidity, voice, light, vehicular movement, temperature, and quality of the
air or water [3]. Applications of WSNs can be classified as environmental, military, home, health, and other
commercial fields. Due to the increase in the use and development of WSNs, many research fields emerged.
One of the most important issues that directly affect the behavior and performance of WSNs is the deployment
problem of the sensors. The major subject of the deployment of a sensor network is finding the sensor positions
that are directly related to the coverage of the area of the interest [4]. Some sensor networks consist of many
sensor nodes deployed very close to the phenomenon or inside it, and the positions of these sensor nodes do
not need to be engineered or predetermined [5]. In inaccessible terrain or disaster relief operations, random
deployment can be used with the sensor network protocols and algorithms that have self-organizing capabilities
[5]. Dynamic deployment problems occur in such cases. Generally, every sensor knows its position by using some
technologies like Global Positioning System (GPS), and by communicating with their neighbor sensors, they
can also learn other sensors’ positions. Since there is no previous information about the interest area, sensors
are randomly scattered at the beginning in dynamic deployment problem. Then, if the type of the sensors is
stationary, they cannot change their initial positions. However, if the network includes mobile sensors, which
have the ability to change their positions, an optimization process can be carried out to achieve the maximum
total coverage.

Optimization of the total covered area is one of the main issues that directly affect the performance
of WSNs in dynamic deployment, and several evolutionary computation-based algorithms have been used to
solve this problem in the literature [4, 6–21]. The artificial bee colony (ABC) algorithm is also one of these
algorithms. In some studies, a binary detection model is used for the sensors in the network while in some
of them a probabilistic detection model is applied. Also, some studies consider only mobile sensors in the
network, while some of them use mobile and stationary sensors together. Ozturk et al. applied the ABC
algorithm to the problem of dynamic deployment of WSNs consist of only mobile sensors considering a binary
detection model [4]. They also used ABC with a probabilistic detection model for a WSN that includes both
mobile and stationary sensors [6]. Aslan et al. examined the performance of a parallelized implementation of
ABC on solving the dynamic deployment problem considering a probabilistic detection model and a network
that includes only mobile sensors [22]. Yadav et al. proposed a modified version of ABC by addressing two
drawbacks of the standard ABC algorithm using a crossover operator and a hybrid local search, and they tested
its performance on a dynamic deployment problem with mobile sensors and considered a probabilistic detection
model [23]. Aslan applied a parallel ABC and a cooperative parallel ABC to this problem by using a binary
detection model and a WSN consisting of only mobile sensors [24]. He also proposed a new modified ABC
by using a transition control mechanism and used it as a serial version and a parallel version for solving the
dynamic deployment problem of WSNs that include mobile sensors with a binary detection model [25]. Yu et
al. proposed a sensor deployment algorithm that is based on a modified ABC in which the updating equation of
the onlooker bees and scout bees of the original ABC is changed, and 100 mobile sensors are used in the WSN
for an ideal room [26]. They also carried out some experiments for a room with obstacles. He and Jiang used
an improved version of the ABC algorithm for WSNs’ dynamic deployment problem [10]. In their study, the
standard ABC is improved by introducing a distance factor, changing the scout bee’s working mode and the limit
for the scout. This literature review shows that many ABC-based algorithms are used for solving the dynamic
deployment problem. However, metaheuristics like ABC do not guarantee the optimum solution; rather, they
provide a near optimum solution in an acceptable time. Thus, researchers try to improve the performances of
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these methods by making some changes to them. In particular, the flexible and simple algorithmic structure of
ABC allows them to develop better versions.

Although the standard ABC has been successfully applied to many problems including dynamic deploy-
ment, it has some drawbacks. One of them is about the performance of ABC in terms of local search ability [27].
Karaboga and Gorkemli introduced a new version of ABC by redefining the onlooker bee phase of the algorithm
in a more detailed way in 2012 [28]. Since this new definition enhances the convergence performance of the
algorithm for the local minimum, they called it the quick ABC (qABC) algorithm [28, 29]. It improves the local
search ability of the standard ABC on numerical optimization problems [28, 29]. To the best of our knowledge,
this method has not been used for solving WSNs’ dynamic deployment problem. In this study, considering the
good results of the ABC algorithm for this problem and the advantages of qABC over the standard ABC, the
qABC algorithm was applied to the problem of dynamic deployment of WSNs to achieve better performance.
Also, this study was carried out to see the performance of qABC, which is a novel optimization algorithm,
on some challenging problems in a different field. Using various scenarios with different detection models and
network structures (according to sensor types), performance of the algorithm was examined in a detailed way.
For each scenario, some tuning studies on colony size and neighborhood radius parameters of the qABC were
carried out and the simulation results were compared with the results of the standard ABC algorithm. In order
to evaluate the speed of the qABC and ABC algorithms on this problem, some CPU time analyses were done.
Additionally, a comparison study was performed between the proposed method and some other approaches that
have been recently applied to the dynamic deployment problem.

The remaining parts of the paper are organized as follows. The dynamic deployment problem of WSNs
and the detection models are defined in Section 2. In Section 3, the qABC algorithm and the proposed approach
are explained. Experimental studies and simulation results are provided in Section 4, and finally the study is
concluded in Section 5.

2. Dynamic deployment problem

The performance of a sensor network depends on the sensors’ positions. Sensors must be deployed by maximizing
the quantity and quality of the information that they have the ability to get in the area of interest. After the
first positioning of the sensors, there will not be any additional mobility in the network in the static version of
the deployment problem. Optimal locations can be found as an optimization problem of the facility location
by an offline scheme. Conversely, some sensors have the ability to move in the mission space in the dynamic
version of the problem.

In the dynamic deployment problem, any prior information about the area of sensing is not found at
the beginning. Therefore, initial positions of the sensors are chosen randomly. The maximum coverage ratio is
sought by changing the positions of mobile sensors in the network. The coverage ratio (CR) can be formulated
as in (1):

CR =

∪
i∈S covi

A
, (1)

where covi represents the coverage of i and A represents the total size of the area of the interest. S is the set
of all sensors in the network.

In 2D environments, the detection range of each sensor can be represented with a circular structure such
that the center of this circle is also the center of the related sensor, and the radius of the circle represents the
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sensor’s detection range.
The binary detection model supposes that readings of a sensor have no associated unreliability. If a target

is outside (inside) of a sensors’ detection range, it is not detected (is detected) with complete certainty by this
sensor [30]. The sensor field is considered as a 2D grid, every sensor has the same detection radius rd , and
sensor s is located at point Ps(xs, ys) . For any point P (x, y) , the Euclidean distance between P (x, y) and s

is denoted as d(s, P (x, y)) . The basic principle of the binary detection model is given by (2):

cxy(s) =

{
1 if d(s, P (x, y)) < rd

0 otherwise,
(2)

where cxy(s) denotes the probability of being covered by sensor s for point P (x, y) . In the case of the
Euclidean distance d(s, P (x, y)) is less than the detection radius and this indicates that point P (x, y) is within
the sensing range and covered by s . However, in the case of the distance being greater than the detection
radius, it is not covered by sensor s .

While the binary model is concerned with only the range of detection, the probabilistic model also
considers the detection uncertainty. For the probabilistic detection model, a new parameter re is introduced
such that re < rd , where rd represents the detection range similar to the binary detection model and re

represents the detection uncertainty range. According to this model, the probability of being covered by sensor
s is given by (3) for point P (x, y) [31]:

cxy(s) =


0 if rd + re ≤ d(s, P (x, y))

e
(
−λ1α

β1
1

α
β2
2

+λ2)

if rd − re < d(s, P (x, y)) < rd + re

1 if d(s, P (x, y)) ≤ rd − re,

(3)

where β1 , β2 , and λ1 are parameters to measure the detection probability; α1 = re − rd + d(s, P (x, y))

and α2 = re + rd − d(s, P (x, y)) ; and λ2 denotes the disturbing effect.
In the probabilistic detection model, all points in the area of interest are covered with different prob-

abilities by each sensor, and overlapping of the covered regions can be very important for recompensing the
potential low detection probability of the points far from a sensor node. By using S as the set of all sensors in
the network, (4) provides the probability of being covered for point P (x, y) considering the effect of all sensors
in S and their overlapping issues [32]:

cxy(S) = 1−
∏
i∈S

(1− cxy(i)). (4)

In order to calculate the CR, a desired coverage threshold cth is used to decide the effectiveness of the coverage
as shown in (5): {

Accept the point P (x, y) as covered if cxy(S) ≥ cth

Accept the point P (x, y) as not covered else.
(5)

3. qABC algorithm and proposed approach

qABC is a novel version of the ABC algorithm [28, 29]. It describes onlooker bees’ behavior more precisely and
improves the standard ABC’s local search ability [28, 29]. It was introduced in a lecture in 2012 [28]. In this
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algorithm, artificial bees are categorized into three different groups considering the colony’s foraging behavior.
The first group involves employed bees. These bees have a position of a food source in their mind when they
leave the hive. After they return to the hive, they perform dances according to their food sources in the area
of dancing. Some of the bees choose the food source regions by watching the employed bees’ dances. This bee
group is named onlookers. After selecting the region in the hive, they determine the food source to exploit when
they achieve that region. The last bee group includes scout bees. A scout finds a new food source randomly
and begins to consume it. She continues her mission as an employed bee. At the beginning, all employed bees
work as scouts, and they start with the food sources found randomly. Through the optimization process, an
employed bee can turn into a scout when her food source is abandoned. In the qABC algorithm, the position of
a food source is related to a possible solution and the nectar amount or the quality of a food source is related to
this solution’s fitness value as in the ABC algorithm. The number of the employed bees is equal to the number
of the food sources (SN ), and the amount of the onlooker bees is equal to the amount of the employed bees.
Food sources are randomly initialized by using (6):

xm,i = li + rand(0, 1)× (ui − li), (6)

where xm,i represents the ith dimension value of the mth solution. li and ui are the lower and upper bounds
for the ith dimension, respectively. In the algorithm, employed bees determine a candidate food source using
(7):

υm,i = xm,i + ϕm,i(xm,i − xk,i), (7)

where xk represents a food source selected randomly from the population (k ̸= m), i represents a dimension
chosen randomly, and ϕm,i is a number that is also chosen randomly within the range [−1, 1] . The solution’s
fitness fit(xm) is determined from its objective function value f(xm) by using (8):

fit(xm) =

{
1/(1 + f(xm)) if f(xm) ≥ 0

1 + abs(f(xm)) if f(xm) < 0.
(8)

As mentioned before, the onlooker bees select their food sources differently from the employed bees in the
qABC algorithm. An onlooker bee first watches the dances of the employed bees and she selects a food source
region. When she reaches this region, she examines the food sources and selects the best (fittest) one to exploit.
Onlookers choose the food source, which will be the center of their food source region, with a probability pm

and it is calculated by (9):

pm =
fit(xm)∑SN

m=1 fit(xm)
. (9)

Onlooker bees determine the candidate solution by (10) after selecting their central food source xm for the
region and finding the best one among all food sources in that region:

υbest
Nm,i = xbest

Nm,i + ϕm,i(x
best
Nm,i − xk,i), (10)

where xbest
Nm

is the best solution among the neighbors of xm and itself (Nm ). In order to obtain the neighborhood
of xm , a mean Euclidean distance mdm is calculated between xm and the rest of the solutions. d(m, j)
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represents the Euclidean distance between xm and xj , and the mean Euclidean distance mdm of xm is
calculated by (11):

mdm =

∑SN
j=1 d(m, j)

SN − 1
. (11)

For determining the neighbors of xm , a definition similar to the one given in (12) [28, 29] is used:

{
xj is a neighbor of xm if d(m, j) < r ×mdm

xj is not a neighbor of xm else.
(12)

In this definition, r is the neighborhood radius and it has to be used as r ≥ 0 . The neighborhood of xm shrinks
or enlarges as the r value decreases or increases, respectively. Thus, when r = 0 , the qABC algorithm works
as the standard ABC algorithm. The flowchart of the qABC algorithm is given in Figure 1.

In this study, the qABC was employed for the dynamic deployment problem of WSNs. This optimization
algorithm was used to maximize the network’s coverage rate that is given with (1). In this study, the objective
function of a solution xm for minimizing the uncovered area of the network is provided by (13):

f(xm) = 1− CR, (13)

where CR is the coverage rate calculated by (1). Coverage of a WSN depends on the sensor detection model.
The following assumptions are made, similarly to [6]:

• All sensors work with the same detection radius rd ,

• All sensors can communicate with other sensors,

• A WSN consists of only mobile sensors or both mobile and stationary sensors together,

• The mobile sensors are able to change their positions,

• The sensor field is represented by a two-dimensional (2D) grid,

• Each sensor realizes its location.

Figure 2 shows the basic steps for solving the dynamic deployment problem of WSNs simply.
Since the optimization process is carried out by changing the position of mobile sensors, a solution

(food source) of the qABC is structured by using the solution string with 2× numberofmobilesensors items.
Algorithm 1 is given to explain the qABC algorithm for the dynamic deployment of WSNs.

4. Results and discussion
In order to see the performance of the qABC on the dynamic deployment problem of WSNs, first a series of
experiments were carried out considering different scenarios. With these experiments, after the tuning studies of
the parameter colony size, the performance of the standard ABC algorithm and different r valued qABCs were
compared. Then CPU time analyses were provided for ABC and qABC on this problem. Lastly, the results of
the proposed method were compared with the results of some recent approaches given in the literature.
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Figure 1. Flowchart of the qABC algorithm.

4.1. Experimental settings

For the simulation studies, the same problem settings were used as in [6]. Accordingly, all of the sensors have
the same features and the detection range rd is 7 m for each sensor. The total area of interest A is 10000
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Figure 2. The basic steps for solving the dynamic deployment problem of WSNs.
m2 with 100 m length and 100 m width. When determining the coverage of a point P (x, y) , these points were
picked with 1-m fixed intervals starting from the point at (0, 0) in the region of 100 m × 100 m. Thus, there
are 10000 (100 × 100) points to cover in the area of interest. In this study, both binary and probabilistic
detection models were used. Parameters of the probabilistic detection model were set as λ1 = 1 , λ2 = 0 ,
β1 = 1 , β2 = 0.5 , cth = 0.1 , and re = 3.5 m . For each detection model two different cases were considered.
While the dynamic deployment of a WSN only consisting of mobile sensors was optimized in the first case (100
mobile sensors), in the second case, the network consisted of both mobile and stationary sensors together (20
mobile and 80 stationary sensors). The performance of the qABC algorithm was thus analyzed for four different
scenarios. It should be demonstrated that optimization of this problem has different kinds of difficulties for each
scenario. When a WSN contains only mobile sensors, since the total number of sensors is 100 for all scenarios
and the solution string contains the x and y coordinates of all sensor nodes, the dimension (D ) of the problem
is 200, while in the case of stationary and mobile sensors it is 40 with 20 mobile sensors. In the scenarios
that have stationary and mobile sensors together, since the stationary ones cannot change their positions and
are randomly deployed in the area of the interest, stationary sensors’ deployment also becomes a part of the
problem, and the optimization algorithm tries to achieve maximum coverage by only changing the positions of
mobile sensors. Therefore, in this case, the area in which the algorithm carries out the optimization process has
a more confusing structure than the one in the other case. The minimum coverage rate obtained by using only
stationary sensors was 0.65 for the WSNs that include mobile and stationary sensors together.

For a fair comparison, the maximum number of fitness evaluations was used as the termination criterion.
For all scenarios, first some experimental studies were carried out for determining the colony size (r = 1

[29]). After determining the colony size, some experiments were conducted for the neighborhood radius (r )
parameter of qABC algorithm. By trying different neighborhood radii, performances of different r valued qABC
algorithms were compared. When r = 0 , the qABC works as the standard ABC. These experimental studies
allow to compare the performance of the qABC with the standard ABC algorithm that has been successfully
used to solve the dynamic deployment problem of WSNs in previous studies. Table 1 shows the parameter
settings.
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Algorithm 1 The qABC algorithm for the dynamic deployment of WSNs.
1: Initialization phase:
2: Initialize the value of the parameters:
3: Problem settings: detection radius rd , size of the interest area A , number of mobile sensors ms , number

of stationary sensors ss .
4: Control parameters of qABC: colony size CS , limit l for the scout, neighborhood radius r , maximum

number of cycles MaxNum .
5: Determine the initial positions of ms mobile sensors randomly for each solution (food source) xm using

(6). Set the value of the trial counter as 0 for each solution.
6: Evaluate the solutions using (13) and (8).
7: Memorize the best solution.
8: c = 0 .
9: repeat

10: Employed bee phase:
11: for all employed bees do
12: Produce a candidate solution υm from xm using (7) and evaluate it using (13) and (8).
13: Apply a greedy selection process between xm and υm .
14: If υm is selected, then set the trial counter of this solution as 0; otherwise, increase the value of xm ’s

trial counter.
15: end for
16: Calculate the selection probability values pm of the solutions for the onlooker bees using (9).
17: Onlooker bee phase:
18: for all onlooker bees do
19: Select a solution xm depending on pm values.
20: Determine the Nm of xm .
21: Find the best solution xbest

Nm,i in Nm .
22: Produce a candidate solution υbest

Nm,i from xbest
Nm,i using (10) and evaluate it using (13) and (8).

23: Apply a greedy selection process between xbest
Nm,i and υbest

Nm,i .
24: If υbest

Nm,i is selected, then set the trial counter of this solution as 0 ; otherwise, increase the value of
xbest
Nm,i ’s trial counter.

25: end for
26: Memorize the best solution achieved so far.
27: Scout bee phase:
28: Find the solution that has the maximum trial counter value in the population. If this value is higher

than l , replace it with a new solution produced by (6) and set the trial counter of this new solution as
0 . Then evaluate it using (13) and (8).

29: c = c+ 1 .
30: until (c = MaxNum)

Table 1. The parameter settings.

Parameter Value
Number of evaluations 200000

CS 10, 20, 40, 80

Number of runs 30

r 0, 0.5, 1, 2, 3,∞

The value of the limit parameter ( l ) for the scout bee is calculated by using (14) [29, 33]:

l =
CS ×D

2
, (14)
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where CS is the colony size and D is the dimension of the problem. Since the aim is maximizing the total
covered area in this problem, the objective function, which gives the total uncovered area, was minimized
through the optimization process. This objective function is given by (13).

In this study, the algorithms were implemented using C Sharp programming language and the .net
framework was used.

4.2. Simulation results and discussion
For each scenario, simulation results were collected and analyzed in tables that show the mean, standard
deviation (Std Dev), best, and worst of the objective function values over 30 independent runs. Tables 2–
4 show the results of CS while Tables 5–7 provide the results of r experiments for the first, second, and
fourth scenario, respectively. In the third scenario, which considers the probabilistic detection model with the
WSN that contains only mobile sensors, the qABC algorithm found the optimum solution for every run with all
considered values of the CS and r parameters at the end of 200000 function evaluations. Therefore, convergence
graphs are used to analyze the effect of these parameters. Figure 4 illustrates the mean of the best objective
function values found in each run through the evaluations for different CS values, and similarly Figure ?? gives
the convergence graphs for different r values for the third scenario. Since the main advantage of the qABC
model is demonstrated as improving the local search ability and the convergence speed of the standard ABC in
the literature [28, 29], convergence graphs of the different r valued qABC algorithms are also presented for the
first, second, and fourth scenarios in Figures 5–7, respectively.

Table 2. Effect of CS on the performance of the qABC
for the WSN that contains only mobile sensors with the
binary detection model.

CS Mean Std Dev Best Worst
10 0.00158 0.00051 0.00060 0.00290
20 0.00109 0.00035 0.00030 0.00170
40 0.00090 0.00038 0.00030 0.00180
80 0.00105 0.00045 0.00040 0.00230

Table 3. Effect of CS on the performance of the qABC
for the WSN that contains stationary and mobile sensors
with the binary detection model.

CS Mean Std Dev Best Worst
10 0.09589 0.01071 0.07540 0.11770
20 0.08518 0.00081 0.08410 0.08740
40 0.08464 0.00087 0.08260 0.08670
80 0.08401 0.00071 0.08260 0.08590

Table 4. Effect of CS on the performance of the qABC for the WSN that contains stationary and mobile sensors
with the probabilistic detection model.

CS Mean Std Dev Best Worst
10 0.02786 0.00782 0.01370 0.04250
20 0.04294 0.00099 0.04130 0.04530
40 0.04238 0.00121 0.03950 0.04470
80 0.04175 0.00119 0.03830 0.04490

For the first scenario, all CS values except 10 give similar results and the better objective function values
are achieved with 40. Also, when r ≥ 1 , better results are obtained and the best one was achieved with the
value of 3 for mean, best, and worst fields. The highest mean value was found when r = 0 . By comparison
with the performance of the standard ABC algorithm (r = 0), it can be said that qABC gives better results
for this scenario in the meaning of both the final best result and general convergence performance, especially
when r ≥ 1 .
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Table 5. Effect of r on the performance of the qABC
for the WSN that contains only mobile sensors with the
binary detection model.

r Mean Std Dev Best Worst
0 0.00163 0.00048 0.00060 0.00240
0.5 0.00161 0.00052 0.00070 0.00280
1 0.00090 0.00038 0.00030 0.00180
2 0.00094 0.00035 0.00030 0.00170
3 0.00079 0.00037 0 0.00160
∞ 0.00083 0.00031 0.00040 0.00160

Table 6. Effect of r on the performance of the qABC for
the WSN that contains stationary and mobile sensors with
the binary detection model.

r Mean Std Dev Best Worst
0 0.08474 0.00077 0.08360 0.08640
0.5 0.08454 0.00069 0.08330 0.08610
1 0.08401 0.00071 0.08260 0.08590
2 0.08408 0.00081 0.08270 0.08600
3 0.08375 0.00065 0.08230 0.08500
∞ 0.08391 0.00081 0.08250 0.08580

Table 7. Effect of r on the performance of the qABC for the WSN that contains stationary and mobile sensors
with the probabilistic detection model.

r Mean Std Dev Best Worst
0 0.04457 0.00119 0.04210 0.04640
0.5 0.04390 0.00138 0.04010 0.04680
1 0.02786 0.00782 0.01370 0.04250
2 0.04465 0.00092 0.04310 0.04680
3 0.04425 0.00130 0.04050 0.04720
∞ 0.04464 0.00105 0.04270 0.04700

While the value of CS increases, the qABC generally finds better solutions for the second scenario, and
the best mean, standard deviation, and worst results were achieved when CS = 80 . In this scenario, there are
small differences between the results, and the algorithm’s performance is slightly better when r ≥ 1 in terms
of final objective function values (after 200000 evaluations). However, it is clear that, when r = 3 , it gives the
best results. When the general convergence performances are examined, this time a remarkable difference can
be seen between the performances of the qABC with r ≥ 1 and r < 1 . Especially in early evaluations, the
algorithm provides much faster convergence with r ≥ 1 . The results also point out that, by tuning the value of
the neighborhood radius to be greater than or equal to 1, the qABC algorithm achieved a performance superior
to the performance of the standard ABC for the dynamic deployment of the WSN that contains both stationary
and mobile sensor nodes according to the binary detection model.

In the third scenario, the qABC algorithm found the optimum solution for every run with all considered
values of CS and r . However, the general convergence performance seems better when CS = 10 , and the
worst convergence performance was shown when CS = 80 . Also, the convergence graphs show that the qABC
outperforms the standard ABC in this scenario when r ≥ 1 .

In the fourth scenario, similar performances are shown when CS equals 20, 40, and 80, and by considering
only these values it can be said that, as the colony size increases, the mean and best values are improved slightly.
However, when CS = 10 , the algorithm gives the best results for the mean, best, and worst values. Values of the
mean and best fields decrease while the value of the r parameter increases until 2. When r ≥ 2 , the algorithm
gives worse results than when r = 1 . Actually, in terms of the mean, best, and worst values, the best results
are obtained when r = 1 and the other values of r cause worse performances. However, the qABC produces
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Figure 3. qABC algorithm’s convergence performance for
different CS values for the WSN that contains only mobile
sensors with the probabilistic detection model.
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Figure 4. qABC algorithm’s convergence performance for
different r values for the WSN that contains only mobile
sensors with the probabilistic detection model.
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Figure 5. qABC algorithm’s convergence performance for
different r values for the WSN that contains only mobile
sensors with the binary detection model.
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Figure 6. qABC algorithm’s convergence performance for
different r values for the WSN that contains stationary
and mobile sensors with the binary detection model.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10 5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Evaluations

O
b

je
ct

iv
e 

F
u

n
ct

io
n

 V
al

u
e r=0

r=0.5
r=1
r=2
r=3
r=infinite

Figure 7. qABC algorithm’s convergence performance for different r values for the WSN that contains stationary
and mobile sensors with the probabilistic detection model.

similar results for all r values except 1. In this scenario, the qABC gives lower mean objective function values
than the standard ABC algorithm if parameter r is equal to 1, 0.5, or 3. On the other hand, the standard ABC
shows slightly better performance than the qABC when the value of parameter r equals 2 or ∞ .

4.3. CPU times of the ABC and qABC algorithms on the dynamic deployment problem

In this section, some experiments were conducted to compare the CPU times of the ABC and qABC algorithms
on the dynamic deployment problem of WSNs. In this comparison, the binary detection model is used, and
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all sensor nodes are mobile. CS is 40, the total number of function evaluations is 2000, and for the qABC, r

is 1. In order to assess the CPU times of the algorithms considering different dimensions, they were executed
with different numbers of mobile sensors (25, 50, and 100 mobile sensors). Other parameters were set as in the
previous experiments. The means and standard deviations of 30 independent runs are presented in Table 8.
For these experiments, the algorithms were implemented by using C Sharp programming language and .net
framework 4.6.1 was used, and the runs were performed on Windows 10 Education on an Intel Core M-5Y51
1.20 GHz processor with 8 GB RAM. The qABC algorithm needs more time than the ABC since it has additional
operations in the onlooker bee phase. The results in Table 8 show that, although the CPU times are increased
when the mobile sensor number is increased for both algorithms, the increment rates for the qABC are lower
than the ones for the ABC.

Table 8. CPU times of the ABC and qABC for the dynamic deployment problem with different numbers of mobile
sensors.

ms ABC qABC
Mean Std Dev Mean Std Dev

25 10.71558 1.10840 13.78004 0.20462
50 11.86260 1.43462 14.92413 0.22802
100 13.42507 1.62656 15.79890 0.20315

4.4. Additional study
Performance of the qABC was compared with some other optimization methods including the ABC, a parallel
ABC (pABC) [24], a cooperative parallel ABC (coop-pABC) [24], a version of the ABC powered by a transition
control mechanism (tlABC) [25], and a parallel version of the tlABC (p-tlABC) [25] on the dynamic deployment
problem of WSNs. Details of these algorithms can be found in [24, 25]. Since the results of the ABC, pABC, and
coop-pABC algorithms were taken from [24] and the results of the tlABC and p-tlABC algorithms were taken
from [25], similar parameter settings and scenarios were used in this comparison study. The binary detection
model is considered with 100 mobile sensors, rd is 7 m, and the area of interest is 10000 m2 with 100 m length
and 100 m width. CS = 20 and the total number of fitness evaluations is 1000, 2000, and 10000. For the
qABC, the value of the parameter limit was calculated by (14) as in the previous experiments and r = 1 . In
addition, the other algorithms used in the comparison were applied to this problem by considering the position
information of a sensor (both x and y coordinates) as the value in one dimension while the qABC handle the
coordinate information in different dimensions. As in [24, 25], 20 independent runs were executed, and the
means and standard deviations of them are given in Table 9.

According to the table, the performance of the qABC is better than the performance of all the other
algorithms for all considered numbers of evaluations. Since the qABC strengthens the convergence performance
of the ABC algorithm, the difference between the mean values of the qABC and the algorithm that performs
best after the qABC is the highest for 1000 evaluations and the smallest for 10000 evaluations.

5. Conclusion
In this study, a novel artificial intelligence optimization technique, the qABC algorithm, was applied to the
dynamic deployment problem of WSNs. First, the proposed approach was explained in a detailed way and
then its performance was examined by using four different scenarios. In the first scenario, the deployment
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Table 9. Performance comparison.

Algorithm 1000 evaluations 2000 evaluations 10000 evaluations
Mean Std Dev Mean Std Dev Mean Std Dev

ABC [24] 0.88257 0.00410 0.91207 0.00638 0.96755 0.00226
pABC [24] 0.87507 0.00594 0.90887 0.00483 0.96904 0.00372
coop-pABC [24] 0.87970 0.00457 0.91530 0.00362 0.97063 0.00553
tlABC [25] - - 0.92330 0.00574 0.96932 0.00280
p-tlABC [25] - - 0.91632 0.00553 0.95702 0.00694
qABC 0.91154 0.01538 0.94556 0.01078 0.98792 0.00309

of a WSN that contains only mobile sensors was optimized considering the binary detection model. Also, in
the second scenario the binary detection model was used. However, this time the WSN consisted of both
stationary and mobile sensor nodes. Based on studies about the dynamic deployment problem that calculate
the effectively covered area with the probabilistic detection model to get more realistic results, we used a
probabilistic detection model, too. The qABC was tested on a WSN that included only mobile sensors in the
third scenario and both stationary and mobile sensors in the fourth scenario with the probabilistic detection
model. For each scenario, the algorithm was tested using different values of CS to see the effect of this control
parameter on the performance of the qABC. The most appropriate CS value was determined and was used
for the experiments of r . By trying different neighborhood radii, the performances of different r valued qABC
and standard ABC algorithms were compared. Also, some CPU time analyses were provided for both qABC
and ABC algorithms considering different dimensions of the problem. In addition, a comparison study was
carried out between the proposed approach and some other recent ones given in the literature. According to
the simulation results, some concluding remarks can be demonstrated as follows:

• In the first scenario, better results are obtained when r ≥ 1 and the best mean value was achieved when
r = 3 by the qABC. The worst performance was shown by the ABC algorithm. Compared with the ABC,
the qABC gives better results in terms of not only the final best result but also the general convergence
performance, especially when r ≥ 1 .

• In the second scenario, qABC’s performance is slightly better when r ≥ 1 in terms of the final objective
function values. It finds the best results with r = 3 . When the performances are evaluated considering
the general convergence to the optimum through the evaluations, a remarkable difference can be seen
between the qABC with r ≥ 1 and r < 1 . The qABC (with r ≥ 1) provides much faster convergence
than the ABC, especially in early evaluations.

• In the third scenario, all of the algorithms achieved optimum results in every independent run. When the
convergence graphs are examined, it can be seen that qABC outperforms the standard ABC when r ≥ 1 .

• In the fourth scenario, the best results were found by the qABC algorithm when r = 1 and the other
considered values of r gave similar results. The performance of the qABC is better than the ABC’s
performance if the value of parameter r is equal to 1, 0.5, or 3.

• Since the qABC algorithm has some additional operations in the onlooker bee phase, it needs more CPU
time compared to the ABC. For both algorithms, the time spent is increased when the dimension of the
problem is increased. However, the increment rates for the qABC are lower than those for the ABC.
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• The comparison between the proposed approach and the other optimization algorithms including the ABC,
pABC, coop-pABC, tlABC, and p-tlABC shows that, for every considered number of evaluations, the
qABC performs best. Also, the results demonstrate the powerful effect of the qABC on the convergence
performance of the ABC since all the other algorithms used in the comparison are based on ABC, too.

Consequently, it can be said that the qABC algorithm can be used to solve the dynamic deployment problem
of WSNs effectively. With this study, it is also observed that the new definition of the onlooker bee phase that
is provided in the qABC generally improves the performance of the standard ABC on not only the literature
benchmarks but also the dynamic deployment problem of WSNs when r ≥ 1 .

As future work, first, it is suggested to compare the performance of the qABC algorithm on the dynamic
deployment problem with a wider set of well-known optimization techniques. Secondly, the algorithm can be
applied to different deployment scenarios with different assumptions (there could be some obstacles in the area
of interest or different detection radius values can be used for each sensor). Additionally, an experimental design
study can be carried out for the control parameters of the qABC algorithm such as the limit, maximum number
of evaluations, colony size, and neighborhood radius.
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