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Abstract: The heart is an important organ in the human body, and acute myocardial infarction (AMI) is the leading
cause of death in most countries. Researchers are doing a lot of data analysis work to assist doctors in predicting the
heart problem. An analysis of the data related to different health problems and its functions can help in predicting the
wellness of this organ with a degree of certainty. Our research reported in this paper consists of two main parts. In the
first part of the paper, we compare different predictive models of hospital mortality for patients with AMI. All results
presented in this part are based on real data of about 603 patients from a hospital in the Czech Republic and about
184 patients from two hospitals in Syria. Although the learned models may be specific to the data, we also draw more
general conclusions that we think are generally valid. In the second part of the paper, because the data is incomplete and
imbalanced we develop the Chow–Liu and tree-augmented naive Bayesian to deal with that data in better conditions,
and compare the quality of these algorithms with others.

Key words: Machine learning, data mining, classification, incomplete data, imbalanced data, Bayesian networks, acute
myocardial infarction

1. Introduction
An enormous amount of data is being generated every day. Analyzing big datasets is impossible without the
help of automated procedures. Machine learning [1] provides these procedures. The most commonly used form
of machine learning is supervised classification [2]. Its goal is to learn a mapping from the descriptive features
of an object to the set of possible classes, given a set of features-class pairs.

Probabilities play a central role in modern machine learning [3]. Probabilistic graphical models (PGMs) [4]
have emerged as a general framework for describing and applying probabilistic models. A PGM allows us
to efficiently encode a joint distribution over some random variables by making assumptions of conditional
independence.

A Bayesian network classifier (BNC) [5] is a Bayesian network applied to the classification task. BNCs
have many strengths, including good interpretability, the possibility of including prior knowledge about a
domain, and competitive predictive performance. They have been successfully applied in practice, e.g., [6–8].

Acute myocardial infarction (AMI) is commonly known as heart attack. A heart attack occurs when an
artery leading to the heart becomes completely blocked and the heart does not get enough blood or oxygen.
Without oxygen, cells in that area of the heart die. AMI is responsible for more than half of deaths in most
countries worldwide. Its treatment has a significant socioeconomic impact.
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One of the main objectives of our research is to design, analyze, and verify a predictive model of hospital
mortality based on clinical data about patients. A model that predicts mortality well can be used, for example,
for the evaluation of medical care in different hospitals. Evaluation based merely on mortality would not be
fair for hospitals where complicated cases are often dealt with. It seems better to measure the quality of health
care using the difference between predicted and observed mortality.

A related work was published by Krumholz et al. in [9], where the authors analyzed the mortality data
in USA hospitals using the logistic regression model. In another work [10], the authors designed and verified
a predictive model of hospital mortality in ST elevation myocardial infarction (STEMI). In another work [11],
the authors analyzed the medical records of patients suffering myocardial infarction from a third world country,
Syria, and a developed country, the Czech Republic, and presented an idea of how to deal with incomplete and
imbalanced data for tree-augmented naive Bayesian (TAN).

2. Data
Our dataset contains data from 787 patients from 2 different countries (603 patients from The Czech Republic
and 184 from Syria) characterized by 24 variables. The attributes are listed in Table 1. Most records contain
missing values, i.e. for most patients only some attribute values are available, and some attributes are not
available for Syrian patients, i.e. the data is incomplete. The thirty-day mortality is recorded for all patients;
89% of the patients survived, i.e. the data is imbalanced.

In The Czech Republic, the results of blood tests are reported in millimoles per liter of blood. In Syria
some of the measurements are reported in milligrams per liter and some in millimoles per liter. We standardized
all measurements to the millimoles per liter scale.

3. Machine learning methods

Since the explanatory variables may combine their influence and the influence of a variable may be mediated
by another variable, it is worth studying the relations of variables altogether. We will do it in two steps: (1)
since the mortality prediction is of our primary interest, we will compare how different classifiers are able to
predict mortality, (2) to get an overall picture of the relations between all variables, we will learn some Bayesian
network models from the collected data, (3) to handle incomplete and imbalanced data, we will provide an idea
of how to develop the Chow–Liu [12] and TAN algorithms [5] to be able to process this data.

We will work with different versions of data which vary depending on how we treat variables that have
more than two states: (1) real valued ordinal variables, (2) discrete valued variables (with five states at most),
and (3) binary variables. We will discuss the values’ transformation in more detail in the next sections.

3.1. Ordinal attributes
In our data, we have several categorical variables (sometimes also called nominal variables). These are variables
that have two or more categories. For example, sex is a categorical variable having two categories (male and
female). However, for some machine learning methods we need ordinal attributes which are attributes whose
values have an ordering of values that is natural for the quantification of their impact on the class. This is
satisfied by all attributes that can take only two values even if they are nominal, e.g. by sex (0 for male, 1 for
female), mortality (0 for survived, 1 for died). In our data it seems that the ordinality can be assumed for most
real valued attributes, but note that the fact that there might also exist laboratory tests whose values deviate
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Table 1. Attributes

Attribute Code Type Value range in data Country
Age AGE Real [23,94] SYR, CZ
Height HT Real [145,205] CZ
Weight WT Real [35,150] CZ
Body mass index BMI Real [16.65,48.98] CZ
Sex SEX Nominal {male, female} SYR, CZ
Nationality NAT Nominal {Czech, Syrian} SYR, CZ
STEMI location STEMI Nominal {inferior, anterior, lateral} SYR, CZ
Hospital Hospital Nominal {CZ, SYR1, SYR2} SYR, CZ
Kalium K Real [2.25,7.07] CZ
Urea UR Real [1.6,61] SYR, CZ
Kreatinin KREA Real [17,525] SYR, CZ
Uric acid KM Real [97,935] SYR, CZ
Albumin ALB Real [16,60] SYR, CZ
HDL cholesterol HDLC Real [0.38,2.92] SYR, CZ
Cholesterol CH Real [1.8,9.9] SYR, CZ
Triacylglycerol TAG Real [0.31,11.9] SYR, CZ
LDL cholesterol LDLC Real [0.261,7.79] SYR, CZ
Glucose GLU Real [2.77,25.7] SYR, CZ
C-reactive protein CRP Real [0.3,359] SYR, CZ
Cystatin C CYSC Real [0.2,5.22] SYR, CZ
N-terminal prohormone of
brain natriuretic peptide

NTBNP Real [22.2,35000] CZ

Troponin TRPT Real [0,25] CZ
Glomerular filtration rate
(based on MDRD)

GFMD Real [0.13,7.31] CZ

Glomerular filtration rate
(based on Cystatin C)

GFCD Real [0.09,7.17] CZ

from a normal range in both directions (i.e. both lower and higher values) may increase the mortality. We will
refer to the ordinal data as D.ORD.

3.2. Discrete attributes
Discrete variable is a variable that can take values from a finite set. Some classification methods require discrete
variables. To get a statistically reliable estimates of model parameters it is advisable to keep the number of values
as low as possible while still being able to express the significant relations. We performed discretization of all
real-valued attributes. It is not easy to find the optimum number and the values of split points in discretization.
Fortunately, there exists the Czech National Code Book that classifies numeric laboratory results, with respect
to age and sex, into nine groups 1, 2, . . . , 9 . The group 5 corresponds to standard values in the standard
population. We further reduced the number of states to 5 by joining some groups together. We will refer to
data in this form as D.DISCR.
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3.3. Binary attributes
Binary data are data whose variables can take on only two possible states, traditionally termed 0 and 1 in
accordance with the binary numeral system and Boolean algebra. In our case, all laboratory tests are encoded
using two binary attributes. The first attribute takes a value of 0 for the standard values of the test and a
value of 1 if the values are decreased. The second attribute takes a value of 0 for the standard values of the
test and value of 1 if the values are increased. The age, height, and weight attributes are removed. From the
demographic group of attributes only sex and body mass index (BMI) were kept with BMI being encoded using
two binary attributes BMI high and BMI low where the BMI greater than the mean takes a value of 1, otherwise
it takes a value of 0. We will refer to data in this form as D.BIN.

3.4. Attribute selection
Before learning a model, we preprocess the data. Usually, one of the most useful parts of preprocessing is
the attribute selection, where irrelevant attributes are removed. Attribute selection is a process by which we
automatically search for the best subset of attributes in our dataset. The notion of “best” is relative to the
problem we are trying to solve, but typically means the highest accuracy. Three key benefits of performing
attribute selection on our data are:

• It reduces overfitting. Less redundant data means lower possibility of making decisions based on a noise.

• It improves accuracy. Less misleading data means that modeling accuracy improves.

• It reduces training time. Less data means that algorithms train faster.

The CfsSubsetEval method of Weka [13] selects the subsets of attributes that are highly correlated with the
class while having low intercorrelation. We searched the space of all subsets by a greedy best first search with
backtracking. Data D after the application of this attribute selection method will be suffixed as D.AS.

3.5. Tested classifiers
For tests, we used a large subset of classifiers implemented in Weka. Classifiers that performed best in the
preliminary tests qualified for the final tests. In the final tests we compared the following classifiers:

• Decision tree C4.5 [14].

• Logistic regression [15].

• Naive Bayes (NB) classifier [16] assumes that the value of a particular explanatory variable (attribute) is
independent of the value of any other attribute given the class variable.

• NB-tree generates a decision tree with naive Bayes classifiers at the leaves [17]

• Bayesian network (BN) classifiers (1) learned by K2 algorithm [18]—referred to as BN.K2 and (2) Tree
augmented naive bayes classifier referred to as BN.TAN [5].

All BN algorithms implemented in Weka assume that all variables are discrete finite variables. We will use NA
in the results of these classification methods.

We use the leave-one-out cross-validation as the model evaluation method. It means that N separate
times, the classifier is trained on all the data except for one point and a prediction is made for that point. After
that, the average error is computed and used to evaluate the model.
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3.6. Prediction quality
For each data record classified by a classifier there are possible classification results. Either the classifier got a
positive example labeled as positive (in our data the positive example is the patient not survived) or it made
a mistake and marked it as negative. Conversely, a negative example may have been mislabeled as a positive
one, or correctly marked as negative. This defines the following metrics:

• True positives (TP): number of positive examples, labeled as such.

• False positives (FP): number of negative examples, labeled as positive.

• True negatives (TN): number of negative examples, labeled as such.

• False negatives (FN): number of positive examples, labeled as negative.

We used the following measures of the prediction quality:

• Accuracy measures how often the classifier makes the correct prediction. It is the ratio between the
number of correct predictions and the total number of predictions.

ACC =
TP + TN

TP + TN + FP + FN

• Recall is also known as sensitivity. It is the fraction of positive instances that are correctly classified as
positive (rate of true positives).

REC =
TP

TP + FN

• Precision is the fraction of true positives over the number of all reported positives.

PRE =
TP

TP + FP

• F-measure is the harmonic mean of the precision and the recall

F = 2 · PRE ·REC

PRE +REC

• Specificity is the fraction of true negatives over the number of all negatives.

SPE =
TN

FP + TN

• Area under the ROC curve (AUC). The ROC curve shows how the classifier can sacrifice the true positive
rate (recall or sensitivity) for the false positive rate (1-specificity) by plotting the TP rate to the FP rate.
In other words, it shows you how many correct positive classifications can be gained as you allow for
more and more false positives. As an example, in Figure 1 we report the ROC curve for the naive Bayes
classifier with the ordinal attributes. Its area under the curve is 0.782.
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Figure 1. ROC for the naive Bayes classifier with ordinal attributes.

3.7. Results of experiments

In Table 2, we compare the results of different classifiers on different versions of data. The C4.5 classifier with
D.DISCR has the highest accuracy of 0.942, its recall and precision are also among the best achieved. However,
its area under the ROC curve is very low, only 0.371, which suggests that this classifier cannot be satisfactorily
tuned if we want to sacrifice precision to recall or vice versa.

The contribution of attribute selection method (CfsSubsetEval method of Weka) to the performance of
models was pretty good where the accuracy was improved in general except C4.5 with D.ORD, and LOG.REG
with D.ORD and D.BIN. Moreover, the AUC and F-measure were improved in most of the models. Moreover,
Precision, recall, and F-measure values of almost all methods are very low because of imbalanced data where
we predict patients who will not survive.

In Figure 2, we present the tree structure of the C4.5 learned from the discrete data. It has achieved
the highest accuracy from all tested classifiers. Its structure is surprisingly simple. If the patient is Czech
then it is predicted to survive if the patient is Syrian then the LDL cholesterol value should be checked. If
it is below 4.78 then the patient is predicted to survive, otherwise, if LDL cholesterol value is between 4.78
and 6.28 then it depends on the Syrian hospital in which he/she is treated. If he/she is treated in the public
hospital (SYR1) then he/she dies; if he/she is treated in the private one (SYR2) then he/she survives. If his/her
LDL cholesterol values are higher than 6.28 then he/she dies (no matter what Syrian hospital he/she is treated
in). The simplicity of the C4.5 classifier is in line with the general recommendation that in order to avoid the
overfitting of training data the models should be as simple as possible. This is probably the best we can learn
from data but most probably it oversimplifies the reality. More data would be needed.

The highest AUC was achieved by naive Bayes classifier with the ordinal attributes. The highest value
of F-measure was achieved by BN.K2 with discrete attributes selected by the method CfsSubsetEval method
of Weka [13]. The learned BN model is actually also a naive Bayes model, see Figure 3. We can conclude
that there is no single winner—a classifier that would be the best in terms of all considered criteria. Moreover,
the classifiers differ in what variables they consider to be important for AMI mortality prediction. We believe
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Table 2. Results of experiments.

Classifier Criteria D.ORD D.ORD.AS D.DISCR D.DISCR.AS D.BIN D.BIN.AS
ACC 0.855 0.925 0.860 0.914 0.875 0.911
AUC 0.782 0.722 0.744 0.781 0.695 0.717

Naive Bayes Recall 0.439 0.158 0.351 0.368 0.246 0.140
Precision 0.234 0.450 0.215 0.396 0.203 0.276
F-measure 0.305 0.234 0.267 0.382 0.222 0.186
ACC 0.935 0.933 0.942 0.921 0.926 0.927
AUC 0.527 0.621 0.371 0.627 0.528 0.273

C4.5 Recall 0.263 0.105 0.246 0.123 0.070 0.035
Precision 0.625 0.750 0.875 0.368 0.444 0.333
F-measure 0.370 0.185 0.384 0.184 0.121 0.063
ACC 0.930 0.925 0.907 0.919 0.926 0.919
AUC 0.746 0.755 0.622 0.746 0.675 0.746

LOG.REG Recall 0.140 0.018 0.193 0.140 0.070 0.140
Precision 0.571 0.250 0.289 0.364 0.364 0.364
F-measure 0.225 0.033 0.232 0.203 0.118 0.203
ACC 0.932 0.936 0.914 0.920 0.913 0.920
AUC 0.658 0.480 0.701 0.726 0.701 0.726

NB-tree Recall 0.211 0.228 0.228 0.088 0.070 0.088
Precision 0.600 0.684 0.310 0.313 0.211 0.313
F-measure 0.312 0.342 0.263 0.137 0.105 0.137
ACC NA NA 0.886 0.918 0.900 0.926
AUC NA NA 0.750 0.775 0.687 0.671

BN.K2 Recall NA NA 0.316 0.368 0.193 0.105
Precision NA NA 0.265 0.429 0.256 0.462
F-measure NA NA 0.288 0.396 0.220 0.171
ACC NA NA 0.908 0.925 0.904 0.927
AUC NA NA 0.721 0.768 0.653 0.642

BN.TAN Recall NA NA 0.193 0.228 0.088 0.053
Precision NA NA 0.297 0,464 0.179 0.333
F-measure NA NA 0.234 0.306 0.118 0.091

Figure 2. Decision tree C4.5 learned from D.DISCR has the highest accuracy 0.943 of all tested models.
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that it is worth learning diverse classifiers since it may help medical specialists to get a deeper insight into the
modeled problem.

TRPT NT.BNP CysC CRP LDLC ALB KREA Age

Mortality

Figure 3. BN learned by BN.K2

4. Dealing with incomplete and imbalanced data

As we can see from Section 2, our dataset contains incomplete and imbalanced data. In [11] we presented an
idea to develop TAN [5] to handle incomplete and imbalanced data (Algoritms 1 and 2), where the conditional
mutual information (CMI) is defined as:

I(X,Y |Z) =
∑
x,y,z

f(x,y,z) log f(z)f(x,y,z)
f(x,z)f(y,z) ,

where the sum is only over x,y,z such that f(x,z) > 0 and f(y,z) > 0.

Algorithm 1 TAN For Incomplete Data
1: Read D = {u1, . . . ,uN},um = (a1, . . . , an, c),m ∈ {1, . . . , N}
2: procedure CMI(Ai, Aj , C}) ▷ // Conditional Mutual Information
3: D = {u1, . . . ,uN},um = (ai, aj , c),m ∈ {1, . . . , N}, such that um = (a1, . . . , an, c) ∈ D

4: Foreach um ∈ D
5: If(ai == NA|aj == NA)

6: Delete um from D
7: endfor
8: Compute Ip = I(Ai, Aj |C) from D
9: return Ip

10: Endprocedure
11: Compute Ip = I(Ai, Aj |C)) between each pair of attributes, i ̸= j , using the Procedure CMI.
12: Build a complete undirected graph in which the vertices are the attributes A1, A2, . . . , An . Annotate the

weight of an edge connecting Ai to Aj by Ip = I(Ai, Aj |C)) .
13: Build a maximum weighted spanning tree.
14: Transform the resulting undirected tree to a directed one by choosing a root variable and setting the direction

of all edges to be outward from it.
15: Construct a TAN model by adding a vertex labeled by C and adding edges from C to all other nodes in

the graph.
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Algorithm 2 Procedure for WeightMatrix computation with incomplete and imbalance data
1: var
2: M The number of samples for the majority class
3: N The number of samples for the minority class
4: DT All instances of the majority class, DT ⊂ D
5: DF All instances of the minority class, DF ⊂ D
6: integer division L = M/N
7: Divide DT to L parts, DTk

, k ∈ {1, . . . , L}
8: Foreach DTk

9: Dk = DTk
∪DF

10: EndForeach
11: Compute WeightMatrix Ipk

foreach Dk

12: Îp = the average of Ipk
, k ∈ 1, . . . , L ▷ // Îp is the final WeightMatrix

In a similar way, we can create a procedure that enables the Chow–Liu algorithm to deal with incomplete
data, where a normal Chow–Liu algorithm [12] just deals with complete data. The procedure is shown in
Algorithm 3, where the mutual information (MI) is defined as:

I(X,Y ) =
∑
x,y

f(x,y) log f(x,y)
f(x)f(y) ,

where the sum is only over x,y such that f(x) > 0 and f(y) > 0.

Algorithm 3 Procedure Chow–Liu for incomplete data
1: Read D = {u1, . . . ,uN},um = (a1, . . . , an),m ∈ {1, . . . , N}
2: procedure MI(Ai, Aj ) ▷ // Mutual Information
3: D = {u1, . . . ,uN},um = (ai, aj),m ∈ {1, . . . , N}, ai, aj ∈ um, such that um = (a1, . . . , an) ∈ D

4: Foreach um ∈ D
5: If(ai == NA|aj == NA)

6: Delete um from D
7: endfor
8: Compute Ip = I(X,Y ) from D
9: return Ip

10: Endprocedure
11: Compute Ip = I(Ai, Aj) between each pair of attributes, i ̸= j , using the Procedure MI.
12: Build a complete undirected graph in which the vertices are the attributes A1, A2, . . . , An . Annotate the

weight of an edge connecting Ai to Aj by Ip = I(Ai, Aj) .
13: Build a maximum weighted spanning tree.
14: Transform the resulting undirected tree to a directed one by choosing a root variable and setting the direction

of all edges to be outward from it.

The idea behind Algorithms 1 and 3 is that we think if we use more data then the estimates of mutual
information and conditional mutual information are more reliable.

4.1. Results
We will refer to TAN and Chow–Liu which deal with incomplete and imbalanced data as TANI and CLI. We
used 10-fold cross-validation to compare how the results change. The results are summarized in Table 3. We
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compare the results of our methods with those of TAN in bnclassify1 we will refer to it as (TB), Chow–Liu [12]
(we will refer to it as CL), EM algorithm [19] for Chow–Liu using Hugin2 (we will refer to it as EMCL), normal
TAN [5], and [20] (this algorithm deals with TAN based on the EM principle, where they have proposed an
adaptation of the learning process of tree augmented naive Bayes classifier from incomplete data, where any
variable can have missing values in the dataset) (we will refer to it as FL), and SMOTE algorithm [21] for TAN
(we will refer to it as ST), on two versions of dataset (binary and discrete attributes). For measures of the
prediction quality, we use log-likelihood (LL) and AUC. Moreover, we use the 10-fold cross-validation as the
model evaluation method. Algorithm TANI with D.BIN has achieved the highest AUC (ROC = 0.953) and
the highest LL with −2744.4279 . The results of Algorithm 1 is better than those of the normal TAN algorithm
in both datasets D.DISCR and D.Bin. However, ST has achieved the second highest LL with D.DISCR (LL=
−6043.0785) but the AUC is (ROC = 0.802), also its ROC is better than the ROC(s) of Algorithm 1 with
D.DISCR and Algorithm 3 with both datasets. We can conclude that the TANI is a single winner with D.Bin.

Table 3. BN results.

D.DISCR D.Bin
TB AUC 0.804 0.448

LL –7340.9414 –7497.461
FL AUC 0.77081 0.871

LL –11319.6 –6368.38
ST AUC 0.802 0.818

LL –6043.0785 –7168.8239
CL AUC 0.723 0.69

LL –12763.4 –6396.2673
EMCL AUC 0.6917 0.71

LL –11508.2 –8869.63
BN.TAN AUC 0.62 0.67

LL –11321.406 –6368.453
Algo1 AUC 0.77 0.93

LL –19914.4937 –2819.3032
Algo3 AUC 0.75 0.73

LL –6145.0196 –2755.7778
TANI AUC 0.82 0.953

LL –9393.4688 –2744.4279
CLI AUC 0.476 0.8956

LL –6317.81655 –2953.3373

1 Comments on bnclassify package runtimes (2015). R[online]. Website: https://cran.r-project.org/web/packages/
bnclassify [accessed 10 May 2018]

2Hugin Expert A/S (2010). Wibsite: http://www.hugin.com [accessed 20 May 2018]
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5. Quality of classifiers tested on artificial data

The data we have is not big enough to have a very good result. Where TAN [5] is a reliable model and has
been tested on many datasets, we decided to use the model BN.TAN [5]; its results are presented in Table 2 to
generate a sequence of datasets with those sizes (3000, 5000, 7000, and 10,000) and 10% missing completely at
random, with 26 attributes including the class in two different types of probability (basic probability distribution
and binary distribution) to test the Algorithms (Algo 1, TANI, and FL [20]). See Figures 4 and 5. We can see
that our Algorithm 1 is better than the others, and TANI does not seem good with the big binary datasets.
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8
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Figure 4. AUC quality of classifiers (D.Bin).
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Figure 5. AUC quality of classifiers (D.DISCR).

6. Conclusion
We used medical data on patients with AIM to compare the results of (a) classification models and (b) Bayesian
networks modeling the relations found in data. Although the conclusions might seem to be specific only for the
data used here, we also report general observations.

In principle, the BN learning algorithms are able to discover the mediated correlation, since they test not
only pairwise independence but also the conditional independence given values of other variables.

Bayesian networks are a tool of choice for reasoning in uncertainty, with incomplete data. However, often,
Bayesian network structural learning only deals with complete data. We have proposed here an adaptation of
the learning process of the Chow–Liu and TAN from incomplete and imbalanced datasets. These methods have
been successfully tested on our dataset. We have seen that the TANI algorithm is a single winner with D.Bin.
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