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Abstract: Emotion recognition can be used in clinical and nonclinical situations. Despite previous works which mostly
used time and frequency features of electroencephalogram (EEG) signals in subject-dependent emotion recognition
issues, we used multiscale fuzzy entropy as a nonlinear dynamic feature. The EEG signals of the well-known Database
for Emotion Analysis Using Physiological signals dataset was used for classification of two and three levels of emotions
in arousal and valence space. The compound feature selection with a cost of average accuracy of support vector machine
classifier was used to reduce feature dimensions. For subject-dependent systems, the proposed method is superior in
comparison to previous works with 90.81% and 90.53% accuracies in two-level classification and 79.83% and 77.80%
accuracies in three-level classification in arousal and valence dimensions, respectively.
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1. Introduction
All of our thoughts, actions and decisions are rooted in our emotions [1]. The proper construction of emotional
human–computer interaction system depends on understanding of emotions [2, 3]. Emotion-based human–
computer interaction systems can be used in many areas such as healthcare, driving, marketing, and even
educational programs. Affective computing is a development of a system that can interpret and recognize human
affects, it is an emerging field of science [4, 5]. In the last few decades, researchers have done many studies on
affective brain–computer interface to recognize emotions through electroencephalogram (EEG) signals. Because
of high temporal resolution of EEG signals, the emotional response of a user can be detected in milliseconds
but still, due to the noise and low spatial resolution of EEG signals, the automatic emotion recognition in
subject-dependent issues remains unresolved. The majority of previous studies stimulated user emotions through
external stimulations such as international affective picture system (IAPS) [6] and international affective digital
sounds (IADS) [7]. In some other works, another type of stimulation like movie clips, music videos, or emotional
recall has been used; we will review some of these works here. In [8], authors used IAPS and IADS to stimulate
emotional states of the users and then with the spectral coherence of EEG signal and Multilayer perceptron
(MLP) classifier, they achieved an accuracy of 64% for classification among happy, natural, and unhappy.
Spectral features of EEG signals with naïve Bayes classifier achieved 60% and 40% accuracies for two and three
levels of arousal classification [9]. In [10], authors used music video clips as stimulation and extracted spectral
features from EEG signals for classification among three levels of arousal and valence with support vector
∗Correspondence: amaleki@semnan.ac.ir
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machine (SVM) classifier. As a result, 62% and 50% classification accuracies have been reported in arousal and
valence dimensions, respectively.

In [11], classification accuracy of five individual emotions ( joy, anger, sadness, fear, and relax) reached
42% with SVM classifier. In [12], authors evoked positive, negative, calm, and excited states of the users with
emotional recall stimulation. Finally, with frequency properties of EEG signals and SVM, they reported 56%
classification accuracy. In [13], spectral EEG features with naïve Bayes classifier was also used, and the results
showed 55.2% and 55.4% accuracies in arousal and valence dimension, respectively. In [14], a new technique is
defined for classification of emotions in 4 binary classes in 2D arousal–valence space. In [15], the authors used
2400 different features for emotion recognition in both arousal and valence dimensions. They used many feature
extraction techniques, and finally with 30 to 40 features they reported 89.84% and 89.61% accuracies in bilevel
and 75.02% and 75.70% accuracies in multilevel arousal and valence classifications, respectively.

The nonlinear dynamic structure of the brain signals appears at several successive levels. Therefore,
simple entropy calculated in one level such as sample or fuzzy entropy cannot fully define the nature of these
signals [16]. To overcome this issue, multiscale entropy (MSE) was defined; it extracts multiple scales of original
time series with a coarse-gaining method and then calculates the entropy of each scale separately [17, 18]. The
concept of MSE spans a wide range of areas such as information theory, statistical mechanics, biology, sociology,
ecology, and economics [19]. In biomedical-related researches, MSE usage improved diagnosis accuracy such
as human heartbeat fluctuation under pathologic conditions [16], MEG and EEG analysis in patients with
Alzheimer’s disease [20, 21], complexity analysis of human gait under various walking conditions [22], EEG
complexity changes with aging [23], and analysis of human red blood cell glimmering [24].

Multiscale fuzzy entropy has been introduced recently; it can measure multivariate complexity of complex
and noisy signals such as physiological signals. In [25], the authors have used multiscale fuzzy entropy to
find coupling between heart rate variability (HRV) and diastolic period variability (DPV). Results showed
that coupling between DPV and short-term HRV is reduced in multitemporal scales in patients with heart
failure compared with healthy subjects. Multiscale fuzzy entropy has shown great performance in real-time
uterine EMG complexity analysis, especially when we have a short duration of signals [26]. The emotion
classification accuracy will increase by increasing feature dimensions and using more EEG channels and also
reducing irrelevant data from the dataset. The objective of this paper is to choose a small number of EEG
channels without losing classification performance.

Based on the reviewed studies, we encouraged the use of multiscale fuzzy entropy as a nonlinear dynamic
feature to extract entropy of original EEG in different successive scales and to see how it can increase the
performance of emotion recognition problems. Despite previous studies which used various time and frequency
features with high feature dimensions, we expect better accuracy in arousal and valence classifications with
lower feature dimension and small number of EEG channels by using multiscale fuzzy entropy. The structure
of the present paper is as follows. In Section 2 we explain dimensional model of emotions. Section 3 presents
an emotion recognition model and the details of the proposed method. Results and discussion are explained in
Section 4. Finally, comparison with previous works and conclusion are given in Sections 5 and 6.

2. Dimensional model of emotions

Dimensional model of emotions was proposed by Russell [27] in 1980. It defines a variety of emotions in two
dimensional arousal–valence space. Valence dimension divides emotions into positive and negative parts and
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arousal dimension in vertical axis defines emotions as low and high awakens (see Figure ??).
In Russell’s emotion model, each discreet emotion will be mapped at a certain place in the 2D arousal

and valence space. For example, neutral emotion will be placed in the central part of the 2D space between
the arousal=5 and valence=5. Positive emotions with high arousal like happiness or joy will be mapped at
the top-right corner of this 2D space and negative emotions with low arousal like depression or sadness will be
placed at the bottom-left side of the 2D arousal and valence space.

3. Emotion recognition method

In this paper, a novel method which combines compound feature selection and kernel classifier is proposed. The
model takes one EEG channel signal and binds relevant features for recognition of several emotions.

3.1. DEAP dataset

We used EEG signals of publicly available Database for Emotion Analysis Using Physiological signals (DEAP)
[28]. The DEAP dataset consists of 32 EEG channels and other 8 peripheral signals including electrodermal
activity, body temperature, blood volume pulse, respiration, two-channel electrooculogram, and two-channel
surface electromyogram. In the stimulation procedure, each volunteer watched a 60-s stimulation of 40 different
affective music videos. At the end of the stimulation, the subject labeled each video in arousal, valence,
dominance, liking, and familiarity spaces with a score from 1 to 9. At the end of each trail, 32 EEG channels
(and other peripheral signals) which hold 60-s emotional content were obtained. These EEG channels have a
specific label (label provided by the subject at the end of trial) in arousal and valence dimensions which will
map them at a specific point in the 2D space of Russell’s emotion model. In arousal or valence classification,
we will divide arousal or valence dimensions into 2 or 3 classes such that each class has its own sets of EEG
signals. In Figure 1, all 32 EEG channels of DEAP dataset are illustrated with gray and green colors (green
color indicates the five selected channels for further analysis).
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Figure 1. Russell’s emotions model (left) and 32 EEG channels (gray and green colors) of the DEAP dataset (right).

4072



Hamze Lotfalinezhad and Ali MALEKI/Turk J Elec Eng & Comp Sci

3.2. Multiscale fuzzy entropy

Multiscale fuzzy entropy of a given time series can be calculated by using coarse gaining method (see Figure
2). In this method, we divide the original EEG signal into nonoverlapped subwindows with S (scale) number
of samples in each subwindow. Here we will define a new time series by calculating the samples average in each
subwindow [16] and the fuzzy entropy of this new time series is called S-scale fuzzy entropy of the original EEG
signal.
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Figure 2. Multiscale (scale = 30) fuzzy entropy with coarse gaining method.

In our study, we used 30 scales (S = 1, 2, , 30) and in each scale the fuzzy entropy was calculated. For a
given EEG signal, entropy is calculated as follows. Assume that we have an EEG signal with N -point samples
(u(i) : 1 ≤ i ≤ N) . For this time series, we proceed as follows to calculate the fuzzy entropy.

1. Perform phase space reconstruction on u(i) according to the sequence orders. At the end of this step, we
obtain a set of m -dimensional vectors (m ≤ N−2). The reconstructed vector is given in Eq.1. Moreover,
i is equal to i = 1, 2, , N −m+ 1 and u0(i) is the mean value in Eq.1 and Eq.2.

Xm
i = u(i), u(i+ 1), , u(i+m− 1)− u0(i), (1)

u0(i) = 1/m

m−1∑
j=0

u(i+ j). (2)

2. Calculate the distance between the two vectors, Xm
i and Xm

j . The distance is defined as the maximum
difference values between the corresponding elements of the two vectors.

3. Fuzzy membership function µ(Dm
ij , n, r) is an exponential function and in this function, r and n are

width and gradient. The similarity degree Dm
ij of the two vectors, Xm

i and Xm
j , is defined in Eq. 3:

Dm
ij = µ(Dij

m, n, r) = exp(−(Dm
ij )

n/r). (3)
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4. By defining the function ϕ(n, r) as Eq. 4 and repeating steps from (1) to (4) , a set of (m+1) -dimensional
vectors are constructed.

ϕ(n, r) =
1

(N −m)

N−m∑
i=1

[
1

N −m− 1

N−m∑
j=1,j ̸=i

Dm
ij ]. (4)

5. Finally, Eqs.5 and 6 which is the fuzzy entropy of given signal are described.

ϕ+1(n, r) =
1

(N −m)

N−m∑
i=1

[
1

N −m− 1

N−m∑
j=1,j ̸=i

Dm+1
ij ], (5)

FuzzyEntropy(m,n, r) = lim
N→∞

[lnϕm(n, r)− lnϕm+1(n, r)]. (6)

If the number of given time series samples (N) is limited (like EEG signals), the fuzzy entropy can be
defined as lnϕm(n, r)− lnϕm+1(n, r) . For details about fuzzy entropy, see [29]. See Figure 3 for an example of
multiscale fuzzy entropy of EEG signal.
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Figure 3. Example of 30-scale fuzzy entropy of arousal and valence in bilevel (high and low) emotions of channel Fz.

3.3. Compound sequential search

Large feature dimensions can cause curse of dimensionality for most of the classifiers [30]. There are many pro-
posed methods in the literature for feature selection. Compound sequential feature selection is a wrapper-based
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method which is a combination of sequential forward selection and sequential backward selection techniques.
In this method, first, we run the L consecutive forward selection on all features to find L optimal subset of
features and then after the L steps were finished, we apply R backward elimination steps on these L features.
We continue this L and R steps until the algorithm reaches a stopping criterion [31]. By early analysis, we set
the optimal steps of forward and backward search to L = 5 and R = 2 .

3.4. SVM classifier and classification levels
SVM is binary and well-known supervised classifier [32]. In an SVM network, the classifier trains with a training
set with predefined features and then is tested with unknown test samples. There are many proposed methods
for multiclass SVM classification among which one versus all (OVA) [33] and one versus one (OVO) [34] are the
two common approaches. In this paper, we use the OVO method because of its advantages in comparison to
OVA in terms of performance [35]. In OVA and OVO, we consider C and C(C-1)/2 SVM classifiers, respectively.
Each classifier is trained with samples of train data and finally with majority voting strategy [35], we test the
classifiers with unknown test samples. In this work, the k-fold (k is an integer number) cross-validation (rotation
estimation) technique was used for our model validation [36]. We set the k-fold cross-validation average accuracy
as a feature selection criterion which can prevent the overfitting of the kernel-SVM classifier. For kernel-SVM,
we used radial basis function (RBF) as a kernel function.

To increase the accuracy of the SVM classifier, RBF-sigma (γ ) as a kernel parameter was set to the value
of 1 and a penalty factor (C ) was set to its optimal value by using grid search [37]. The range of grid search
was set to [0.1, 28] with the interval of 0.1. For unbalanced data, we set the misclassification cost of minority
classes to a higher value to prevent overfitting of classifier to majority classes.

In bilevel arousal–valence recognition, the range of arousal and valence (from 1 to 9) was divided into
two equal classification classes ([1,5), [5,9] high arousal (valence) versus low arousal (valence)), respectively,
and in multilevel emotion recognition, this range was divided into three equal classification classes ([1,3.66),
[3.66,6.33), [6.33,9]) which divides the arousal and valence dimensions into 3 classes of high arousal (valence),
neutral, and low arousal (valence), respectively.

3.5. The proposed method
3.5.1. Channel reduction
For each subject, we have 32 available EEG channels. To reduce the complexity of subject-dependent classifi-
cation and processing time, among 32 available channels, we manually chose a set of channels which was used
in previous studies as the best channels for emotion recognition tasks. Here we will review the papers which in-
spired us in the channel reduction step. The frontal lobe of the brain is related to negative and positive emotions
and also sudden change of emotions [38–40]. In [41], eleven channels (P8- P7- AF3-AF4-FC5-FC6-PO3-FC6-
F3-F4-C3) in the valence dimension and 9 channels (F7-F8-F3-P4- Oz- C3-C4- PO3-PO4) in the arousal dimen-
sion are reported as the best channels with better results. In [42], the authors chose 12 pairs of channels from
the left and right hemispheres of the brain ( (FP1,FP2), (AF3,AF4), (F3,F4), (F7,F8), (FC3,FC4), (FC1,FC2),
(C3,C4), (T7,T8), (CP5,CP6), (CP1,CP2), (P3,P4), (P7,P8), (PO3,PO4), (O1,O2)) for classification of emo-
tions in the arousal–valence space. In [43], F3-F4-C3-C4-P3-P4-O3-O4-Fp1-Fp2 were 10 best channels which
were used in classification of emotions in both arousal and valence dimensions. In [28, 44], the authors showed
that among 32 channels of the DEAP dataset, 8 channels (AF3-FP1-P7-FC2-C4-T8-CP6-PO4) are best chan-
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nels for emotion recognition in arousal and valence space. In [14], initially 4 channels (F3, F4, C3, and C4)
were considered, and finally, two channels (F3 and C4) were selected as the best two channels. By reviewing
the results of the mentioned papers, we used five channels (Fz, F3, F4, C3, and C4) which are located in the
frontal and central parts of the brain for classification of emotions in the arousal and valence space.

3.5.2. Feature extraction, selection, and classification

For each subject, we have five selected channels (F3, F4, C3, C4, and Fz) and 40 EEG signals each of which
refers to a specific emotion in the arousal and valence space. We applied feature extraction, selection, and
classification as follows. The feature extraction, selection, and classification steps for each subject is as follows:

1. Select one channel among five channels (F3, F4, C3, C4, and Fz).

2. The selected channel has 40 EEG signals and each signal has 7068 samples (60-s signal with a sampling
frequency of 128 Hz).

3. Extract 30 features from these 40 EEG signals with the 30-scale fuzzy entropy method. At the end of this
step, we have a feature matrix with 40 samples and 30 feature dimensions.

4. To reduce the feature dimensions, we use compound sequential search. In compound sequential search,
features are selected in sequence. In the first step, the best single feature is selected among all the
features. The criterion for this selection is the average k-fold cross-validation accuracy obtained using the
SVM classifier. In the next step, the best combination of features is obtained by combining the feature
obtained from the previous step with other features. This forward and backward search allows the classifier
to choose the best combination of features which can lead to the best accuracy. See Figure 4 for the block
diagram of the proposed method.

4. Results and discussion
There are 31 available participants in the DEAP dataset which have two and three levels of labeling in the
arousal–valence space. Furthermore, 30 features (thirty-scale fuzzy entropy) were extracted from five different
channels (Fz, F3, F4, C3, and C4) in both the arousal and valence dimensions. The classification results were
divided into three sections, including the classification without any feature selection by providing the classifier
with all of the thirty features in order to observe whether the feature selection has any effect on the obtained
results, the classification using a single channel in order to observe which channel had the best results, and
the classification using all five channels to observe whether the accuracy improves. For each channel, the mean
classification accuracy of subjects with or without feature selection is reported in Table 1. Considering the five
channels in question (Fz, C3, C4, F3, and F4), channel Fz had a higher accuracy of about 1–4% in the two-level
arousal-valence classification and three-level valence classification. Furthermore, channel C3, which is primarily
located in the central and left side of the brain, had the highest level of accuracy compared to other channels
in the three-level valence classification. The classification accuracy of all five channels is reported in Table 1.
As indicated by the results given in Table 1, when five channels were used instead of one, the classification
accuracy increased in both the two-level and multilevel classifications.

According to the results given in Table 1, channel Fz has a higher level of performance in emotion
classification when we merely compare single channels, regardless of their classes. In the case of utilizing
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Figure 4. Block diagram of the proposed emotion recognition method.

Table 1. Average accuracy of 31 available subjects of all five channels and compound feature selection.

channel 2-classes accuracy 3-classes accuracy
Compound feature
selection

All features Compound feature
selection

All features

Arousal Valence Arousal Valence Arousal Valence Arousal Valence
F3 80.59 81.28 66.59 69.82 69.00 68.60 50.94 50.67
F4 80.8 78.99 67.21 66.41 72.33 67.54 52.84 51.69
C3 78.38 80.56 64.33 65.46 70.93 70.54 51.09 52.66
C4 80.35 80.45 66.13 66.57 69.83 68.90 50.47 50.29
Fz 85.04 81.84 69.37 68.04 72.58 69.93 51.73 50.18
All channels 90.81 90.53 – – 79.83 77.80 – –

all channels, the accuracy increases about 5–10% compared to a single channel (Fz) with a maximum of 10
features. The accuracy of subjects when all of the five channels (two- and three-level classification) are being
used is illustrated in Figure 5. With respect to the arousal dimension, the mean accuracy was determined at
90.81% in the two-level labeling and 79.83% in the three-level labeling. As for the valence dimension, a mean
accuracy of 90.55% and 77.80% was reached for the two- and three-level labeling, respectively.

5. Comparison with previous studies

A comparison was made between our proposed method and previous studies using the same dataset and threshold
in the two- and three-level classifications, as shown in in Table 2. In a three-level recognition using a maximum
of 10 features and five channels, an accuracy of 90.81% for the arousal dimension and 90.53% for the valence
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Figure 5. The average accuracy for each subject in two- (top) and three-level (bottom) classification.

dimension was reached, which is approximately 17% higher compared to values obtained in other studies [10]
and [45]. In another research [45], more than 20 different features (time and frequency features) were employed
for the two- and three-level classification, which is exactly twice the number of features used in our study.

For the two- and three-level subject-dependent emotion recognition, a more significant improvement was
observed by using much smaller feature dimensions (a maximum of 10 features) and only five EEG channels.
This, in turn, indicates that our proposed method plays a positive role in emotion recognition applications. In
another research [15], the highest percentage of accuracy among the studies conducted on emotion recognition
was achieved. In other words, accuracy levels of 89.61% and 89.84% were reached in a two-level classification for
the valence and arousal dimensions, respectively, while accuracy levels of 75.02% and 75.70% were achieved in a
three-level classification for the arousal and valence dimensions, respectively. Moreover, the reported accuracy
was about 1–3% lower compared to our study even though 30 to 40 features were used. Therefore, a higher
accuracy with a maximum of 10 features and five EEG channels was obtained in our research.

6. Conclusion
This research introduced a multiscale fuzzy entropy based on compound sequential feature selection in order to
increase the accuracy of two-level and multilevel subject-dependent emotion recognition. The EEG channels in
the front and central parts of the brain have been repeatedly used in previous studies, and their positive effect
in emotion recognition have been confirmed. Moreover, it should be noted that our results are not far from what
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Table 2. Comparison among previous subject-dependent studies with the same DEAP dataset.

Authors Classification class Arousal Valence
Atkinson [45] 3 60.7 62.33
Soleymani [10] 3 62.1 50.5
Yoon [13] 3 55.2 55.4
Piho [15] 3 75.70 75.02
The proposed method (70% train, 30% test) 3 78.52 75.22
The proposed method (10-fold cross-validation) 3 79.83 77.80
Atkinson [45] 2 74.51 72.98
Yoon [13] 2 70.9 70.1
Piho [15] 2 89.84 89.64
The proposed method (70% train, 30% test) 2 89.43 89.91
The proposed method (10-fold cross-validation) 2 90.81 90.53

has been achieved in previous studies. We individually employed five different EEG channels (F3, F4, C3, C4,
and Fz) and the Fz channel, located in the front part of the brain, had slightly higher accuracy in comparison
with the other four channels. We also utilized all five channels at the same time in order to observe whether
they can enhance the final results. Overall, simultaneous application of all five channels in the front and central
parts of the brain had the highest level of accuracy in terms of both the arousal and valence dimensions.

Using the smallest number of EEG channels in the emotion recognition problems can, in fact, increase
user comfort and reduce the associated computational costs. In the subject-dependent emotion recognition, a
classification model should be individually developed for each subject since the training time is a key factor. In
[15], 12 h was needed for one subject to be fully trained; however, the training time was around 20 min for both
the two-level and three-level classifications in our proposed method. Finally, our method outperformed those
in previous works in both the two-level and multilevel arousal-valence classifications.
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