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Abstract: This article studies the impact of incommensurate communication time delays on stability regions defined in
proportional-integral (PI) controller parameter space for a two-area load frequency control (LFC) system. Distributed
power generations and large power plants increase the complexity and control issues of interconnected power systems. In
interconnected power systems, LFC systems need to have complex communication networks to exchange data between
control center and geographically dispersed generations. The receiving/transmitting of remote measuring data through
communication infrastructures causes inevitable time delays, which adversely affect controller performance and stability of
the LFC system. Time delays introducing feedback control loops of a multiarea LFC system could exhibit incommensurate
characteristics. In this study, a simple graphical method based on extracting a stability boundary locus is implemented
to get PI controller parameters responsible for stabilizing the LFC system having incommensurate delay values. The
boundaries of the stability regions in the PI controller parameter space are confirmed by time-domain simulations and
a numerical algorithm known as the quasipolynomial mapping-based root finder algorithm. Results illustrate that
incommensurate delays have remarkable effects on the stability region.
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1. Introduction
This study aims to compute all proportional-integral (PI) controller gains constituting a region in the parameter
space of the controller for a conventional two-area load frequency control (LFC) system with constant incom-
mensurate communication delays. In an interconnected power system, when sudden changes in load demands
are experienced, each generating unit is equipped with LFC systems to restore the frequency and to maintain
power exchange among control areas at the scheduled value [1]. Wide-area measurement/monitoring systems
(WAMSs) comprise extensively open and distributed communication networks that cause unavoidable time de-
lays in electrical power systems [2], particularly in LFC systems. The task of communication networks is to
transmit real-time measurement data using synchronous phasor measurement units and global positioning sys-
tems from power plants to control centers or vice versa. However, time delays observed because of the complex
communication networks and digital measuring devices cause a poor dynamic performance of the controller and
have an adverse effect on the dynamics and stability of the LFC system [3–-6].

Remote measuring data obtained from WAMSs must be transmitted to a control center at long distances
through open and distributed communication networks. Then the control signals for the regulating of the system
∗Correspondence: sahinsonmez@ohu.edu.tr
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frequency must be transmitted to power plants at remote. However, the communication signals for each control
area of the LFC system might have incommensurate time delays due to many reasons such as geographical
location of the distributed power system areas, technical specifications of communication technologies and
networks, or long distances between control centers and power plants. The incommensurate time delays
are introduced to the feedback control loop of each control area in the LFC system. It was reported that
communication delays observed in LFC systems are generally in the range of 5–15 s [7].

Many research studies on delay-dependent stability analysis of LFC systems have been presented in the
literature. These studies mainly compute the stability delay margin considering incommensurate or commen-
surate time delays such that two-area LFC systems with time delay for any given PI controller parameters will
be at least marginally stable. In order to calculate delay margins of time-delayed LFC systems, time-domain
and frequency-domain approaches are commonly used. The frequency-domain approaches aim to find critical
eigenvalues or roots of the system [8–12]. The indirect time-domain methods are based on the Lyapunov stabil-
ity theory and linear matrix inequality techniques [4,13–15]. For given PI controller gains, these methods could
effectively calculate stability delay margins. However, whenever the PI controller parameters are retuned or
changed, one of the important issues for these methods is that one needs to check the stability and determine
the stability delay margin, causing time-consuming stability checks. In order to avoid such a time-consuming
stability check and hence to save tuning time of the controller, it is essential to obtain all possible stabilizing
PI controller gain values ensuring a stable operation of the LFC system for a finite time delay.

This paper proposes a simple and efficient analytical method to determine all stabilizing PI controller
parameter values that constitute a stability region of an LFC system in controller parameter space. The
approach is based on the stability boundary locus that can be easily determined by equating real and imaginary
parts of the characteristic equation to zero [16,17]. The proposed method has been efficiently applied to the
computation of the traditional PI controller [18], fractional-order PD controller of time-delayed systems [19],
PI controller synthesis for wind turbine systems [20], and PI controller synthesis of microgrid systems with
time delay [10]. Due to uncertainties and perturbations in the controller parameters, some studies to evaluate
system performance focus on fragility analysis for any PI controller gains inside stability regions obtained using
different methods [21,22]. In our previous studies, the proposed method was used to compute the stability
regions for a single-area LFC system with time delay [23,24] and the gain-phase margins-based stability regions
of an LFC system whose control areas included identical time delays [25]. Unlike the identical time delay case
for each control loop [25], this study considers that each feedback control loop has a different time delay value,
especially incommensurate delays. This is a more realistic approach in LFC systems in which control signals
could be transmitted to control areas in different delay values. Therefore, the impact of the incommensurate
delays on the stability regions must be exhaustively investigated. The first main contribution of this work is
the identification of all possible stabilizing PI controller parameters for the two-area LFC system for various
incommensurate delay scenarios. Moreover, the consideration of incommensurate time delays in each control
loop of the LFC system could provide more flexibility compared to [25] in the stability regions as it evidently
makes it possible to investigate the impact of different time delay scenarios on the size and shape of stability
regions.

Finally, the accuracy of the stability boundary locus determined by the proposed graphical method is val-
idated by the quasipolynomial mapping-based root finder (QPmR) algorithm [26] and time-domain simulations
[27], which is the second main contribution of this work. The QPmR algorithm computes the quasipolynomial
spectrum (zeros) over large regions of the complex plane. The algorithm was efficiently used in many research
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studies [28,29].

Figure 1. The LFC system model including incommensurate communication time delays.

2. Conventional two-area LFC system model

Figure 1 shows the conventional two-area LFC system model with incommensurate time delays into feedback
loops. Here, the traditional LFC system is modified to include incommensurate time delays (τ1 , τ2 ). In
Figure 1, ∆ Pm ,∆ Pd ,∆ f , and ∆ Pv are the mechanical output of the generator, control area load, deviation
in the frequency, and the valve position, respectively. Tg ,Tch , T12 , M ,D , R , and β represent the time constant
of the governor and turbine, tie-line synchronizing power coefficient between area 1 and area 2, inertia constant,
damping coefficient, speed drop of each control area, and frequency bias factor, respectively. The PI controller
gains are assumed to be identical in each control area, KP1 = KP2 = KP and KI1 = KI2 = KI . Finally, ACE

represents the area control error of each control area. As shown in Figure 1, due to exponential terms, ACE is
transmitted as a delayed signal for each control loop of the LFC system.

The usage of open communication networks leads to two types of time delays in feedback control loops of
LFC systems. These delays are known as controller-to-plant and sensor-to-controller delays. Sensor-to-controller
delay is defined as measuring the time delay between power system sensing devices and the controller at a remote
control center. Controller-to-plant delay is defined as time delay observed between the control center and power
generation units. The control center side is assumed to wait for reception of the remote measuring signal data.
The consideration is identical for each delay case. Consequently, such delays are aggregated into a single delay
from the control center [3,7]. Many research studies have mostly used the aggregation approach for stability
analysis of time-delayed LFC systems [3,14,30]. In Figure 1, τ1 and τ2 are incommensurate constant time
delays and represent the total amount of controller-to-plant and sensor-to-controller delay in each control area.
These delay terms are modeled as exponential transfer functions of e−sτ1 and e−sτ2 in Figure 1. In order to
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obtain the stability regions, the characteristic equation of the time delayed LFC system is required [6]:

∆(s, τ1, τ2) = a0(s) + a11(s)e
−sτ1 + a12(s)e

−sτ2 + a2(s)e
−s(τ1+τ2) = 0, (1)

where a0(s) , a11(s) , a12(s) , and a2(s) are polynomials in s and their coefficients depend on parameters of
the LFC system’s PI controller. The degrees of these polynomials with real coefficients are 9, 6, 6, and 3,
respectively, for the two-area LFC system shown in Figure 1.

Figure 2. Changing of τ1 and τ2 time delay values in a direction.

3. Computation of stability regions

3.1. Selection of incommensurate delays

The incommensurate time delays τ1 and τ2 are expressed in polar coordinate (θ , |τ |) as shown in Figure 2. All
points are defined as T (τ1, τ2) on a boundary depending on (θ , |τ |) in τ1 - and τ2 -space. Magnitude |τ | and
angle θ are defined as |τ | =

√
τ21 + τ22 and θ = tan−1 (τ2/τ1) [13,14]. By changing the angle in a range of

θ ∈ [00 − 900] while magnitude |τ | is kept constant, the polar coordinate representation of the time delays (τ1
and τ2 ) will enable us to investigate the impact of different cases such as tan θ = τ2/τ1 < 1 for θ ∈ [00 − 450) ,
tan θ =τ2/τ1 = 1 for θ = 450 , and tan θ = τ2/τ1 > 1 for θ ∈ (450 − 900] . To investigate the effect of
incommensurate delay cases on the stability regions, three different cases could be considered for a specified
|τ | : i) Case 1: Delay in area 1 is greater than that of area 2 (τ1 > τ2 ), ii) Case 2: Delay in area 1 is equal to
that of area 2 (τ1 = τ2 ), and iii) Case 3: Delay in area 1 is less than that of area 2 (τ1 < τ2 ).

3.2. Computation of stability regions of the LFC system with incommensurate time delays

In this section, all possible stabilizing PI controller parameters (KP ,KI) of the two-area LFC system for three
different delay cases mentioned are determined. Note that (KP ,KI) gains need to be extracted from (1) for
the computation of stability regions. Therefore, the characteristic equation in (1) is rearranged as follows:

∆(s, τ1,τ2) = M(s) + P (s) (KP s+KI) +R(s)(KP s+KI)
2
= 0, (2)

where:
M(s) = a0(s) =m9s

9 +m8s
8 +m7s

7 +m6s
6 +m5s

5 +m4s
4 +m3s

3 +m2s
2 ,

P (s)=
(
p15s

5 + p14s
4 + p13s

3 + p12s
2 + p11s

)
e−sτ1 +

(
p25s

5 + p24s
4 + p23s

3 + p22s
2 + p21s

)
e−sτ2 ,
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R(s)= (r1s+ r0) e
−sτ1e−sτ2 ,

where p and r are real coefficients of P (s) and R(s) polynomials without controller parameters (KP ,KI) .
The arranged characteristic equation in (2) is further represented as a second-order polynomial as shown below:

∆(s, τ1,τ2) = R(s)n2 + P (s)n+M(s) = 0, (3)

where n is an unknown variable defined by n =(KP s+KI) . By solving for the roots of (3) in terms M(s), P (s) ,
and R(s) with real coefficients, a set of PI controller parameters in the (KP ,KI) -plane can be calculated using
the stability boundary locus approach [16,17]. The unknown roots of the polynomial of (3) are first obtained
as follows:

n1,2 = (KP s+KI) =
−P (s)±

√
P (s)

2 − 4M(s)R(s)

2R(s)
. (4)

The boundary locus of the stability region could be calculated by substituting s = jωc (ωc > 0) into the roots
in (4):

(KP (jωc) +KI) =
−P (jωc)±

√
P (jωc)

2 − 4M(jωc)R(jωc)

2R(jωc)
. (5)

Please note that polynomials P (s) and R(s) in (2) contain the exponential terms of e−jωcτ1 and e−jωcτ2 .
Substituting e−jωcτi =cos (ωcτi) − j sin (ωcτi) , i = 1, 2 , into polynomials P (jωc) and R(jωc) in (5) and
separating the imaginary and real parts, the following equation is determined:

KPA (ωc) +KIB (ωc) + ℜ
{
P (ωc)∓

√
P (ωc)

2 − 4M (ωc)R (ωc)

}
+

j [KPD (ωc) +KIF (ωc)] + ℑm
{
P (ωc)∓

√
P (ωc)

2 − 4M (ωc)R (ωc)

}
= 0,

(6)

where ℑm {•} and ℜ{•} represent the imaginary and real parts of its argument. By equating the real and
imaginary parts of (6) to zero, the following two equations are found in terms of PI controller parameters,
incommensurate time delays, and the crossing frequency of s = jωc :

KPiA(ωc) +KIiB(ωc) + C1i(ωc) = 0,
KPiD(ωc) +KIiE(ωc) + F1i(ωc) = 0,

i = 1, 2,
(7)

where:
A(ωc) = 2r0ωc sin (ωcτ1 + ωcτ2)− 2r1ω

2
c cos(ωcτ1 + ωcτ2),

B(ωc) =2r0 cos (ωcτ1 + ωcτ2) + 2r1ωc sin (ωcτ1 + ωcτ2) ,
D(ωc) = 2r0ωc cos (ωcτ1 + ωcτ2) + 2r1ω

2
c sin (ωcτ1 + ωcτ2) ,

E(ωc) = −2r0 sin (ωcτ1 + ωcτ2) + 2r1ωc cos (ωcτ1 + ωcτ2) ,

C1i(ωc) =ℜ
{
P (jωc)∓

√
P (jωc)

2 − 4M(jωc)R(jωc)

}
,

F1i(ωc) = ℑm
{
P (jωc)∓

√
P (jωc)

2 − 4M(jωc)R(jωc)

}
.
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In the (KP ,KI)–plane, two stability boundary loci ℓ(KP ,KI , ωc) are obtained by simultaneously solving the
two equations of (7) for each root in (4):

KPi =
B(ωc)F1i(ωc)−E1(ωc)C1i(ωc)
A1(ωc)E1(ωc)−B1(ωc)D1(ωc)

,

KIi =
D1(ωc)C1i(ωc)−A1(ωc)F1i(ωc)
A1(ωc)E1(ωc)−B1(ωc)D1(ωc)

,

i = 1, 2.

(8)

With the help of (8), stability regions corresponding to each root given in (4) are determined. It is to be noted
that the boundaries of these stability regions have to be extracted. These boundaries are known as complex
root boundaries (CRBs), as complex roots are crossing the imaginary axis [17]. In addition to these stability
boundaries, some roots of (2) can cross the jω -axis through the origin. As seen from (7) and (8), this crossing
of roots will happen only for KI = 0 since the term of B(ωc = 0) ̸= 0 in (7) while all other terms are zero
for ωc = 0 , A(ωc)=C1i(ωc)=D(ωc)=E(ωc)=F1i(ωc)=0 . This stability boundary is known as a real root
boundary (RRB) [17]. These CRB and RRB loci divide the (KP ,KI)–plane into unstable and stable regions
of the LFC system with incommensurate time delays.

4. Results
In this section, the stability boundary locus is computed by the proposed method in [16,17] for incommensurate
time delays in each control area using (8). The verification of the results obtained is validated by both time-
domain simulations and the QPmR algorithm. Two-area LFC system parameters are given in the Table.

Table 1. Two-area LFC system parameters [3,6].

Parameters Tch(s) Tg(s) R D β M
Area 1 0.3 0.1 0.05 1.0 21.0 10.0
Area 2 0.4 0.17 0.05 1.5 21.5 12.0

T12=0.0796 pu

K I
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Figure 3. Stable and unstable CRB loci for |τ | = 2s , θ = 150 .

|τ | = 2s and θ = 150 are first chosen and thereby time delays for areas 1 and 2 are calculated as
τ1 = 1.9318s and τ2 = 0.5176s using the equations of |τ | cos(θ) and |τ | sin(θ) , respectively. Stability regions
for the desired crossing frequency in the range of ωc ∈ [0, 2.50] rad/s are determined in the (KP ,KI)–plane
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Figure 4. Dominant roots distribution and dynamic responses for two-area LFC system.
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Figure 5. Dominant roots distribution of two-area LFC system for PI controller gains to the left of RRB.
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Figure 7. Impact of different time delays on stability regions for fixed θ = 450 .
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Figure 9. Impact of angle θ on stability region for |τ | = 1s .

and demonstrated in Figure 3. Two CRBs denoted by the solid and dashed lines in Figure 3 are illustrated and
the RRB locus is determined by KI = 0 . Figure 3 also separates the regions called R1, R2, R3, R4, and R5 to
verify the accuracy of the computed stability regions and investigate the LFC system response for the selected
(θ , |τ |). All roots of the two-area LFC system for any PI controller gains inside region R1 that provide a set
of PI controller parameters lie in the left half plane. Figure 4a shows dominant roots’ distribution determined
by the QPmR algorithm and time-domain simulations in frequency and tie-line power exchange deviation for
KP = 0.5 , KI = 0.619 in stable region R1. It is clear that there are oscillations in frequency and tie-line
power exchange deviation decay, indicating the stability. A pair of complex conjugate roots of the LFC system
will be located on the imaginary axis for PI controller gains (KP = 0.5 , KI = 0.7) chosen on the stable CRB
as shown in Figure 3. It is seen from Figure 4b that the LFC system is marginally stable due to undamped
responses for KP = 0.5 , KI = 0.7 , except for the frequency response of area 2 shown in the middle of the
three time-domain simulations. Figure 4c depicts the dominant roots’ distribution and the dynamic responses
for KP = 0.5 , KI = 0.78 in region R2. The system will be unstable due to growing oscillations of the system
responses and a pair of complex roots located in the right half of the complex plane as seen from Figure 4c. For
any PI controller gains (KP = 0.5 , KI = 1.044) selected on the unstable CRB described in Figure 3, another
pair of complex roots of the characteristic equation(2) will be on the imaginary axis as shown in Figure 4d. It
is clear that the LFC system is unstable from Figure 4d. The LFC system also has two additional roots in the
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right half of the complex plane from dominant roots’ distribution for KP = 0.5 , KI = 1.16 outside the unstable
CRB, in region R3. The instability of the system for the given PI controller gains is clearly shown in Figure 4e.
Furthermore, recall that KI = 0 is the RRB locus. The dynamic response of the LFC system around RRB is
investigated. It can be seen from (2) that the LFC system has a root at the origin (KI = 0) defining the RRB
locus and all other dominant roots of the two-area LFC system are located in the left half plane. Figure 5a
illustrates that the LFC system is stable for KP = 0.5 , KI = 0 . For all PI controller parameters, the system
will have a stable response due to a root at the origin on the RRB locus. Moreover, the LFC system has a real
positive root for any PI controller parameters to the left of the KI = 0 line, as depicted from the dominant
roots’ distribution in Figure 5a. Therefore, the LFC system exhibits exponential or nonoscillatory instability
in region R4 shown by time-domain simulations in the aforementioned Figure 5b. Likewise, Figure 3 shows the
exponential instability of the LFC system for any PI controller gains of region R5. Finally, similar to region
R2, region R5 in Figure 3 presents the set of PI controller parameters for which the LFC system is oscillatory
unstable.

|τ | and θ are two important parameters used for the identification of stability regions. Recall that the
selection of incommensurate delays (τ1, τ2) is achieved by using the polar coordinates and the values of (τ1, τ2)

are specified by choosing |τ | and θ as described in Figure 2. The effect of |τ | on the stability regions is first
investigated for three different cases mentioned in Section 3.1. Case 1, Case 2, and Case 3 correspond to θ = 150

(τ1 > τ2 , 00 ≤ θ < 450 ), θ = 450 (τ1 = τ2 , θ = 450 ), and θ = 750 (τ1 < τ2 ,450 < θ ≤ 900 ), respectively.
The magnitude |τ | for each case is selected as 1s , 1.5s , 2s , and 2.5s . The stability regions for θ = 150

(τ1 > τ2 ) are obtained and shown in Figure 6. Time delay values (τ1, τ2) corresponding to θ = 150 for Case 1
are computed as (0.969s, 0.259s) , (1.449s, 0.388s), (1.932s, 0.518s) , and (2.415s, 0.647s) , respectively. As the
magnitude of |τ | increases, stability regions are becoming smaller, as seen from Figure 6. Next, the stability
regions obtained for Case 2 (θ = 450 ,τ1 = τ2 ) and Case 3 (θ = 750 ,τ1 < τ2 ) are illustrated in Figure 7 and
8, respectively. Similar to the results presented in Figure 6, an increase in the delay magnitude |τ | results in
decrease of size of the stability regions for both Case 1 and Case 2. As a result, Figures 6, 7, and 8 indicate
that the stability regions shrink for each case defined by θ ∈ [00 − 450) , θ = 450 , and θ ∈ (450 − 900] when
magnitude |τ | is increased for fixed θ . Furthermore, the impact of angle θ on stability regions is investigated
when the magnitude of |τ | is kept constant. Figure 9 depicts stability regions for θ = 150, 450 , and 750 when
the magnitude of the delay is fixed at |τ | = 1s . As seen from Figure 9, the size of stability regions decreases
when angle θ is increased for θ ∈ [150 − 750] . Also, it is clear from Figure 9 that the largest of PI controller
sets is obtained for Case 1, in which τ1 is greater than τ2 (τ1 > τ2 ). Figure 9 clearly illustrates that the size of
the regions is significantly affected by the incommensurate time delays in each control area. For example, the
region becomes larger when the delay in area 1 is greater than that of area 2 as compared to the case of two
identical delays in each region (τ1 = τ2 ). On the other hand, the stability region shrinks for Case 3, in which
the time delay in area 1 is less than that of area 2 (τ1 < τ2 ).

5. Conclusions
This paper has presented the implementation of a stability boundary locus method to determine all stabilizing
PI controller parameters that constitute a stability region in the PI controller parameter space for two-area
LFC systems with multiple incommensurate time delays. Stability regions have been determined for different
delay variation scenarios. The size of the regions is significantly affected by the incommensurate time delays
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as compared with the identical time delay case in each control area. Furthermore, it is clearly seen from the
results that the largest PI controller set is obtained for the delay case in which the delay for area 1 is greater
than the delay for area 2. Results indicate that incommensurate delays need to be taken into account in the
computation of stability regions for a realistic PI controller design of LFC systems.

Clearly, in addition to the stability, other performance criteria such as gain and phase margins, maximum
overshoot, a fast dynamic response, and smaller settling time in the frequency deviation could be considered
and an optimal subset of PI controller parameters inside the stability region could be identified. With the help
of various soft optimization techniques including genetic algorithms or particle swarm optimization, stability
regions could be optimized and thus proper PI controller parameter values ensuring a good dynamic performance
could be computed. As future work, different optimization techniques will be implemented to identify a subset
of optimal PI controller parameters inside stability regions.
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