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Abstract: Energy use is increasing worldwide with industrialization and advancing technology. Following this increase,
renewable energy resources are increasingly preferred to reduce the costs of energy production. Wind energy is preferred
as a renewable energy resource because it is clean and safe. Wind turbines are used to meet the demand for wind
energy. They are placed close to each other to generate higher amounts of energy. However, the wake effect problem
arises in these types of layouts, and this hinders the turbines from producing the desired yield. A modified differential
evolution (MDE) algorithm was proposed in this study to solve the placement problem for wind turbines, and employed
a binary-real-coded method – obtained by combining binary coding and real coding. The proposed method contains
three different modifications: generation of the initial population, regeneration, and mutation. The effective distribution
of the wind turbines on land was achieved with a preliminary operation proposed to generate the initial population.
In addition, with the MDE method, population regeneration and elitism were carried out to increase the diversity of
population and to preserve the success of the method. Finally, a mutation operation was performed on the individuals
to alternate the presence or absence of wind turbines. To investigate the performance of the MDE method in solving the
wind turbine placement problem, the method was applied to a study area of 2 x 2 km. The results were compared with
those obtained with other methods used in the published literature for the wind turbine placement problem. The most
successful and productive placement was achieved using the proposed method, and experimental results showed that the
MDE is an efficient and successful tool to solve the wind turbine placement problem.
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1. Introduction
Electrical energy demand increases with increasing population and developing technology. To meet the funda-
mental needs of humans and contribute to the economic growth of a country, electrical energy is required [1].
In addition to gradually diminishing fossil fuel resources, other factors like climate change, air pollution, and
the greenhouse gas effect have also raised the importance of renewable energy resources. The use of renewable
energy resources is gradually becoming more prevalent thanks to its advantages of being safe, fuel-free, and
clean. Solar, wind, geothermal, hydroelectric, and wave power are classified as renewable energy resources.
Wind energy is one of the clean, low-cost, and commercially feasible energy types, and is therefore preferred
worldwide. According to data from the Global Wind Energy Council, its cumulative capacity has reached 486.8
GW in total following a 12.5% increase, and is projected to reach a cumulative installed capacity of 800 GW
in 5 years [2]. In light of this data, the increase in energy generation from wind indicates that wind turbines
∗Correspondence: hhakli@erbakan.edu.tr
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are more frequently used. Thus, the importance of wind turbine placement becomes more important. In a
wind farm, to obtain potential wind energy, the turbines are placed in appropriate positions using a process
called microplacement to achieve maximum energy generation. The microplacement optimization problem has
an important role in the convenient and successful placement of turbines to achieve the highest energy yield.

There are certain limitations in the turbine placement problem, which include the interturbine distance,
the service life of the turbines, the turbine noise, and the turbine (vortex) wake [3]. These limitations present
challenges in formulating the problem. The approximate results obtained by commercial software packages that
design turbines on a wind farm do not reach the desired levels, and therefore necessitate the development of
improved solutions to the turbine placement problem. Optimal control theory has a pivotal role in both science
and engineering [4]. Many researchers and practitioners have carried out studies to achieve better turbine
placements by employing various optimization algorithms. The first example of these studies was carried out
by Mosetti et al. in 1994 [5] in which the efficiency of genetic algorithms (GA) in solving the problem was
demonstrated. In their study, by considering generations with greater population numbers and of greater
problem size, Grady et al. [6] allowed enough time for candidate solutions to unify and solved the turbine
placement problem using GA. For the wind turbine placement problem, Gao et al. [7] obtained a solution that
aimed to generate maximum power with minimum investment cost by employing a multipopulation genetic
algorithm. By using a Jensen’s wake-based Gaussian model, Gao et al. [8] developed a 2-D analytical wind
turbine wake model and applied a multipopulation genetic algorithm to it. In their study, Emami and Noghreh
[9] optimized the turbine placement process with GA by developing an objective function used in the placement
of wind turbines on wind farms and compared the results to those obtained in previous studies. Moreover, by
assuming one turbine placement in each cell, they reported that the interturbine distance could be sufficient to
eliminate the wake effect. Wan et al. [10] used real coding and GA to place a certain number of turbines in
a certain area and showed that better results were achieved by comparing their results to those obtained by
Grady. To solve the optimum placement of wind turbines in a 100 square cell area, Pookpunt and Ongsakul
[11] used the binary particle swarm optimization (BPSO) algorithm and showed that the cost per power output
was lower. Chen et al. [12] carried out wind turbine placement by employing the binary-real coding method,
which combines binary coding and real coding methods. For their wind turbine arrangements, the linear wake
model was used to minimize the cost per unit of power output; or, to maximize the profitability of a wind
turbine farm, the placement process was optimized using genetic algorithms. Moreover, different optimization
algorithms such as the artificial algae algorithm [13], the viral-based optimization algorithm [14], and the cuckoo
search [15] have all been used to solve the wind turbine placement problem.

Today, various commercial software packages that offer wind farm designs and that identify installation
problems are available. Most of these software packages solve the microplacement problem by assuming that
the total number of turbine on a wind farm is fixed. In this case, the problem takes the form of a nonlinear,
single-decision variable problem in which the ideal power capacity of a wind farm is calculated by taking the
total number of turbines and all the turbine coordinates into account. In many turbine placement processes,
the wake effect is ignored; thus, microplacement of an excessive number of turbines is carried out. To overcome
this issue, a careful and meticulous approach should be adopted when establishing a wind farm, and attention
should be paid to their limitations [12]. Furthermore, in some studies, the farm is divided into a certain number
of cells, and the cell center is calculated by accepting it as the only turbine position in that specific cell, and
by ignoring any limitations. Chen et al. [12] turned the wind turbine placement problem into a nonlinear, two-
decision variable problem by using both binary and continuous variable methods to simultaneously decide ideal
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turbine numbers and their placement. Thus, the presence of the turbines is decided with binary coding using
“yes” and “no” questions, and the coordinates of the turbines are decided using real coding, which increases the
size and complexity of the problem [12].

In this study, the optimum turbine number determination and the optimum placement process were
simultaneously carried out using binary-real coding by taking the limitations into account. In its solution,
the initial distribution of the turbines is as important as the performance of the algorithm. The modified
differential evolution (MDE) algorithm was proposed to solve the problem with the three modifications. First,
a preliminary operation was used to establish the effective and efficient distribution of the initial population
over the search space. Secondly, improvements were performed to increase the diversity of population and to
preserve the success of the method. To achieve population diversity after a certain number of iterations, the
population regeneration process were added to the proposed method. In addition, the elitism operation was
used to prevent the loss of best solutions after the regeneration. Finally, a mutation operation was performed
on the individuals to overcome the disadvantages of binary-real coding. The proposed method was applied to
a test site of 2 x 2 km and compared to other studies in the literature. In the trial, the limitations in energy
calculations, such as interturbine distances and the wake effect, were taken into account [3].

2. Materials and methods
2.1. Problem formulation
The wake effect, which stems from the interaction of wind turbines with each other, was formulated by Jensen
in 1983 [16]. The formulation introduced by Jensen was first used by Mosetti in 1994 to optimize the layout of
wind turbines. Figure 1 shows the Jensen wake model employed in various studies.

u0
u0

u0
u0

u

x
wind turbine

rr

r1 = ax+rr 

Figure 1. Jensen wake model [13, 16, 17].
The wind striking the first turbine induces the wake effect behind it. The velocity of the wind striking the

first turbine is reduced and although the wind recovers after travelling a certain distance to resume its original
velocity; its velocity when it reaches the second turbine is determined using the wake model given in Figure 1.
The formula for the wake model is:

u = u0

[
1− 2a

(
1 +

αx

rr

)−2
]
, (1)

where u is the velocity in the wake at downstream distance x , u0 represents the free wind velocity, a represents
the axial induction factor, rr represents the rotor radius, and α is the entrainment constant:

α =
0.5

ln(z/z0)
. (2)

4661



HAKLI/Turk J Elec Eng & Comp Sci

Here z represents the hub height of the wind turbine and z0 represents the surface roughness of the wind
turbine. The thrust coefficient of the wind turbine is calculated as:

CT = 4a(1− a). (3)

The downstream rotor radius, r1 , is calculated as:

r1 = rr

√
1− a

1− 2a
. (4)

Assuming the kinetic energy deficit of a mixed wake is equal to the sum of the energy deficits, the resulting
velocity downstream of N turbines can be calculated as [18]:

(
1− u

u0

)2

=

N∑
i=1

(
1− ui

u0

)2

. (5)

Total energy generation in the wind farm is:

PTotal =

N∑
i=1

0.3 × u3. (6)

The cost model frequently used in the literature to determine the cost of a wind farm [3, 5, 11, 12, 19] is preferred
and this model is presented as:

Cost = N

[
2

3
+

1

3
e−0.00174N2

]
. (7)

The objective function given in Equation 8 is employed to carry out minimization: to produce maximum turbine
power with minimum investment cost in a wind farm [12, 19]. This function enables the minimum cost per unit
energy generation to be calculated.

Objective =
Cost

PTotal
(8)

2.2. Coding methods for wind turbine placement
Although swarm intelligence and evolution-based methods are developed by drawing inspiration from different
structures found in nature, they all have common properties; these include: 1) preparing an initial population,
2) evaluating the fitness function, 3) changing poor solutions, and 4) producing new solutions [20]. During
their application to real-world problems through these stages, they may not be used directly depending on
the structure of the problem, the coding type, and whether the method requires improvement. As previously
mentioned, the wind turbine placement problem was modeled in different coding forms comprising binary, real,
and binary-real coding, which are demonstrated in Figures 2a–2c, respectively [12]. Binary coding is obtained
through combining the grids given in Figure 2a with each other. Each grid either contains a value of one or zero.
Each value of “one” in the grids denotes the presence of a wind turbine, while each value of “zero” denotes the
absence of a wind turbine. For this purpose, wind turbine placement is converted into a series of ones and zeros.
With binary coding, the turbines are only placed in the middle of the grids. Since it fails to place the turbines
in positions within continuous values, this operation is at a disadvantage in the turbine placement problem. On
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the other hand, binary coding allows a change in the number of turbines, i.e. the algorithm decides how many
turbines will be placed in a specific area. Real coding is represented in Figure 2b. In real coding, turbines
are positioned within continuous coordinates, but the number of turbines is constant. Therefore, real coding is
disadvantageous in terms of turbine numbers, while offering advantages in terms of coordinate placement. This
coding type proposes a better solution to the turbine placement process through using continuous coordinate
values. However, since the number of the wind turbines is constant in real coding, a different method can be
employed to determine the number of the turbines to achieve an optimal layout [12]. Binary-real coding is
shown in Figure 2c. It is developed by combining binary coding with real coding. While the positions of the
turbines are determined by each value of x and y, the presence or absence of the turbines is determined by the
values of 1 and 0. Both the positions and the number of wind turbines can be adjusted for a better layout.
The binary-real coding method was preferred in the MDE method because of the advantages offered by not
assigning a turbine number and providing positioning through continuous coordinates. The application of these
methods to the problem is discussed in the relevant following sections.

(a) Binary coding (b) Real coding (c) Binary-real coding

Figure 2. Diagrams of the coding methods [12].

2.3. Differential evolution algorithm

The differential evolution algorithm developed by Storn and Price in 1995 [21] is commonly used in optimiza-
tion problems. In addition to its easy coding, differential evolution (DE) has a strong searching capability.
Population-based DE can yield effective results in solving the optimization problems in a continuous search
space. In the DE method, an advanced and effective mutation operation is applied [22]. In the mutation oper-
ation, three different individuals are selected and these individuals are used to obtain the mutation individual
as:

Vm,t+1 = xr3,t + F × (xr1,t − xr2,t). (9)

Here Vm,t+1 represents the mutation individual at the t+1; xr1,t , xr2,t , and xr3,t are randomly selected
individuals and they are not equal to each other and the current individual. F is scaling factor which controls
the impact of differential variation.

Moreover, the crossover operation is applied in addition to the mutation operation to generate a trial
chromosome from a parent chromosome [23]. After the mutation process, crossover phase is performed as:

xj,u,t+1 =

{
vj,m,t+1 ifrand[0, 1] ≤ CR or j = jrand

xj,i,t otherwise.

}
(10)

A random number is determined for each gene, if the random number is less than crossover ratio (CR)
the gene is added to new individual from the mutant individual, otherwise from the current individual. After
generating the new individual, fitness values of new and current individuals are compared in the selection

4663



HAKLI/Turk J Elec Eng & Comp Sci

phase. If the new individual is better than the current individual, the new individual is transferred to the next
generation, otherwise the current is kept in memory. The DE has certain advantages over other methods such
as its rapid operation, applicability to large-scale complex problems, and its requirement for a small number of
control parameters. The DE has been applied in various fields including machine design [24], traffic flow models
[25], pattern recognition [26], energy demand estimation [1], the training of artificial neural networks [27], the
solution of chemical engineering problems [28] and the planning of unbalanced radial distribution systems [29].

2.4. Implementation of the MDE

The generation of the initial population directly affects the convergence rate and quality of the final solution;
therefore, it is a process of great importance in evolutionary methods [30, 31]. If general information on the
solution is not available, the initial population is randomly generated [30]. In the wind turbine placement
problem, the wind turbines should be spread over the land in an orderly fashion. Determining turbine positions
through random initial populations may cause clustering in certain regions, which can lead to late convergence
and decreasing solution quality. A strategy was developed to achieve the complete distribution of the initial
population over the land. As seen in Figure 3, the land was divided into 400 squares in the form of a 20 x 20
grid. By taking the initial population and number of sizes into consideration, turbine positions are determined
in a way that allows each square to contain an equal number of turbines. For example, for 40 individuals and
10 sizes, the X and Y positions of the turbines are generated at specified intervals so that each square from (40
x 10)/400 contains one turbine. Thus, an even distribution of the wind turbines over the land is achieved by
avoiding clustering in a certain region. Figure 3 shows the turbine positions of the initial populations created
using the random and diversification generation methods for 40 individuals and 10 sizes. Figure 3a reveals that,
in the randomly generated population, no turbines were placed in some squares and clustering emerged in some
regions, whereas as seen in Figure 3b turbine placement was achieved in each square and the turbines were
evenly distributed over the search space.

(a) (b)

Figure 3. Generating the initial population with (a) random and (b) diversification generation methods.

The wind turbines were suitably distributed over the search space for the final solution through the
strategy employed in the MDE by benefiting from the contribution of the efficient determination of the initial
population. After preparing the initial population, their quality was determined using the objective function.
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Following this stage, the basic mutation and crossover operations of the MDE method were performed. However,
the equations used in the original DE method results in the formation of continuous data, whereas binary-real
coding contains both continuous and binary data. There are three different data for each gene in the individuals,
and these data are evaluated as a whole. This structure will be disrupted if the equations in the original DE
method are used. Since each gene was considered as a whole, the original DE was represented by discrete values
and then applied to the problem. Kitayama et al. developed a technique for the implementation of the DE in a
discrete search space [32]. This technique was used in the proposed method to solve the wind turbine placement
problem with binary-real coding. In the MDE method, each individual in the initial population was individually
subjected to the operation. Three individuals that are different from each other and from the current individual
are randomly selected and then put through certain operations to obtain a mutated individual. First, two
randomly selected individuals are subjected to the operation by considering the F and a temporary individual
is obtained. Instead of the equation used in the original DE method, a random number in the range [0,1] is
generated for each gene, and genes from the individual are copied depending on whether the number is greater
or smaller than the scaling factor. The same process is repeated for the temporary individual and the three
randomly determined individuals to obtain the mutated individual, this time using a value of 0.5. Figure 4
shows the process for obtaining the mutated individual.

Figure 4. Obtaining the mutated individual for the MDE method.
After obtaining the mutation individual, a random number is generated for each gene of the current

individual and mutation individual. The new individual is obtained by copying genes from the mutation
individual if the number is below the CR and by copying genes from the current individual if the number is
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above the crossover ratio. Figure 5 shows the process for obtaining the new individual. To subject the activity
and passivity of the wind turbines of the new individual to change, the mutation modification given in Figure
6 is applied. The fitness value of the new individual is calculated using the objective function, and if the new
individual is of higher quality than the current individual, the current individual is cancelled and the new
individual is stored in the memory, otherwise no change is made.
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Figure 5. Obtaining the new individual for the MDE method.
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Figure 6. Implementation of mutation modification for the MDE method.

Since each gene is handled as a whole, the initially generated turbine positions are not changed. In this
case, both this problem and the rapid convergence of the MDE method result in rapidly diminishing population
diversity. Hence, population regeneration is carried out after a certain number of iterations to overcome this
issue, while inevitably transferring a certain part of the best solutions determined by this process to the new
population through elitism. Through this operation, both the population with increased similarity is diversified
and the new turbine positions are introduced into the population. This process is only repeated until the
specified iteration number is reached. Figure 7 shows the operation diagram for the MDE method used in the
wind turbine placement problem.

3. Experimental results

In this study, the MDE method was used for the wind turbine placement problem to carry out the microplace-
ment process. A square area of 2000 x 2000 m was used as the turbine site. Surface roughness was accepted to
be 0.3 m. The common properties of the wind farm, such as power curve, wake model and optimal curve were
obtained from scientific literature [3, 5, 6, 12]. The main purpose in using these properties is to minimize the
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Figure 7. Operation diagram of the MDE method for the wind turbine placement problem.

wake effect of turbines on each other by using the condition of not allowing an interturbine distance to be below
5D or 200 m. With the wake effect, by keeping total energy (PTotal ) at a maximum level, and cost (COST )
at a minimum level, the objective function (COST /PTotal ) is minimized [3, 12]. Table 1 shows the wind farm,
wind turbine and wake model characteristics.

Table 1. Characteristics of the wind farm, wind turbine, and wake model [3].

Wind farm information
Farm area (m2) 2000 x 2000
Wind turbine specifications
Turbine diameter (m) 40
Turbine rated power (Pr) (kW) 630
Hub height (Z)(m) 60
Coefficient of thrust (CT ) 0.88
Surface roughness (Z0)(m) 0.3
Wake model information
Model Jensen
Jensen constant (kw) 0.0944
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In order to evaluate the effects of the improvements and to show its performance, the MDE was firstly
compared with the basic DE. Also, modifications, performed for the MDE method, were tested on the basic DE
method separately to investigate the effects of modifications. The basic DE method was respectively modified
with the generation of initial population (DE-InitPop), mutation (DE-Mut), and regeneration (DE-Reg). Three
modifications were used jointly on the MDE method. In the experiments for all methods, the crossover rate
was 0.8, the mutation rate was set to 0.2, and F was determined as 0.5. The maximum number of function
evaluations (FEs) was used as a termination condition and it was set to 3 × 105 . All the variants were run
30 times for the wind turbine placement problem and the best, the worst, and the mean values were given in
Table 2.

Table 2. A comparison of DE variants and the MDE algorithm.

DE DE-InitPop DE-Mut DE-Reg MDE
Best 0.0013606 0.0013617 0.0013471 0.0013434 0.0013372
Worst 0.0014032 0.0013928 0.0013843 0.0013813 0.0013678
Mean 0.0013795 0.0013773 0.0013672 0.0013629 0.0013545

When Table 2 is considered, it is seen that the MDE method has a better performance than the basic
DE algorithm and its variants. The proposed method obtains the best results for three cases, while the basic
DE has the worst mean value of 30 runs. The primary reason of this is that the basic DE algorithm is exposed
to stagnation due to the similarity of individuals and the lack of population diversity. It is clearly seen that
mutation and regeneration modifications, used to overcome these problems, improve the performance of basic DE
considering the experimental results given in Table 2. DE-InitPop is slightly better than the basic DE, while the
regeneration modification (DE-Reg) provides the most significant improvement on the basic DE algorithm. The
best performance for wind turbine placement problem is obtained when the three modifications are used jointly
as the MDE method. For the proposed method, the regeneration and mutation modifications have a pivotal
role on the diversification of population. In addition, efficiently generated initial population helps to achieve
solution quickly for the MDE method. According to experimental results given in Table 2, the modifications on
the MDE are beneficial and these modifications increase its performance on wind turbine placement problem.

A more suitable fitness value (COST /PTotal ), which is given in Table 3, was determined for the MDE
by comparing the methods to the previous approaches [3, 5, 6, 10, 12, 13]. As seen in the Table 3, two methods
(Chen et al.’s method and the proposed method), in which the binary-real coding was used, outperformed the
other methods in terms of fitness value. Binary-real coding determines both how many turbines are needed
on a certain size of wind farm land and enables placement of the turbines in the desired positions because the
coordinate system is made up of continuous values. The COST /PTotal value is an indicator of the higher
success of the result in the placement of the turbines, which was achieved by applying the MDE method to the
problem by also using binary-real coding. The higher amount of total power generation obtained with the MDE
method is also an indicator of the greater success of the methods compared with the others. In the placement
carried out by taking the interturbine distance into account, the MDE method placed 2 more turbines compared
to the method applied by Chen et al.. The effective placement achieved by the MDE method yielded maximum
energy generation through successfully managing the wake effect, albeit with an increase in cost. By further
decreasing the fitness value in comparison to other methods, the MDE method increased the efficiency of the
turbine layout. Wan et al. used the real coding method and although obtaining the same turbine number and
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layout as Grady et al., the total power output and efficiency obtained by Wan et al. were better than those
obtained by Grady et al.. However, Wan et al. performed calculations by ignoring the interturbine distance
factor and Figure 8 reveals the excessive proximity of the turbines to each other [12]. The MDE method used
in this study yielded results better than those of Mosetti et al., Grady et al., Wan et al., Mittal et al., Beskirli
et al., and Chen et al. by 21.1%, 15.0%, 8.2%, 7.6%, 5.1%, and 0.6%, respectively. Moreover, the FEs value
used in the studies of Chen et al. and Beskirli et al. is twice as much as the FEs value used for the proposed
method. Considering the algorithms given in Table 3, all studies implemented the GA algorithm to wind turbine
placement problem except Beskirli et al. and the present study.

Table 3. A comparison of other studies within the present study.

Mosetti
et al.

Grady
et al.

Wan
et al.

Mittal
et al.

Beskirli
et al.

Chen
et al.

Present
study MDE

Cost/PTotal 0.0016197 0.0015436 0.0014475 0.0014386 0.0014054 0.0013456 0.0013372
Total Power 12352.00 14310.00 15262.00 20742.54 23422.00 22624.30 23682.60
Number of
turbines

26 30 30 44 49 45 47

Algorithm GA GA GA Hybrid-GA AAA GA DE
Coding
format

Binary Binary Real Gradient
based solver

Binary Binary-real Binary-real

FEs 8× 104 1.8× 106 NA 3.15× 105 6× 105 6× 105 3× 105

(a) (b)

Figure 8. Optimal layout according to (a) Wan et al. [10] and (b) Chen et al. [12].

The positions of the turbines in the turbine placement problem optimized using the MDE and other
methods are simulated in Figure 9. The MDE method placed 47 turbines on the turbine site.

The efficiency obtained in the study by Mosetti et al., in which 26 turbines were placed in the study
area, is far behind the efficiencies obtained in other studies, and it fails to effectively use the site. Although the
study by Grady et al. yielded relatively better results than that of Mosetti, the single-line and parallel layout
of the wind turbines of that study resulted in an unsuccessful wind turbine distribution. Mittal et al. managed
to increase the efficiency by achieving a layout of 44 turbines but failed to effectively use the middle section
of the study area, which was subject to higher levels of wake effect. The MDE method increased the turbine
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Grady et al. MDE MethodMittal et al.Mosetti et al.

Figure 9. Turbine layouts for MDE and other methods [3].

number and achieved effective placement of the turbines, thereby achieving a successful wind turbine layout.
The result obtained by Grady et al. is far away from those of the other methods. Although the result obtained
by Wan et al. was considerably promising, the study optimized a fixed number of turbines and the interturbine
distance was ignored. A constant number of turbines is not an optimal situation but can be remedied by using
binary-real coding, which provides ideal turbine numbers and a better layout [12]. The result obtained by Chen
showed a good performance thanks to the layout they introduced by carrying out binary-real coding. In their
study, Chen argued that they obtained better results through randomly generating the initial population and
thereby achieving population diversity. The MDE method outperformed the other methods according to the
results given in Table 3 and the placement shown in Figure 9. The successful results obtained in this study are
attributable to the use of the MDE, and binary-real coding methods, generating the initial population with the
strategy, and performing improvements on the methods.

4. Conclusion and future works
In this study, the wind turbine placement process was carried out by modifying the DE method, which have
not been previously used by other studies in scientific literature to solve the wind turbine placement problem,
and by using the continuous coordinate system with binary-real coding and without pre-specifying the number
of turbines. A preliminary operation was applied to obtain the efficient distribution of the turbines on the site
and the success rate of the method was increased. In the MDE method, stagnation was avoided by applying
the elitism and population regeneration operations after a certain number of iterations. The methods were
applied to a trial site of 2 x 2 km by taking interturbine distance into account. The results obtained with the
placement were simulated and compared to the results obtained in other studies. The results obtained by the
MDE method achieved a more effective layout than the results obtained by other studies in the literature. The
MDE method achieved maximum energy generation that produced an effective turbine layout by reducing the
wake effect in spite of the increase in cost. In conclusion, the MDE method is a successful and efficient tool for
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solving the wind turbine placement problem and, it can be implemented to various problems as a future work.
Moreover, wind turbine placement problem can be solved with restriction of total power instead of limitation
on the study area.
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