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Abstract: Nearest neighbor algorithms like k-nearest neighbors (kNN) are fundamental supervised learning techniques
to classify a query instance based on class labels of its neighbors. However, quite often, huge volumes of datasets are
not fully labeled and the unknown probability distribution of the instances may be uneven. Moreover, kNN suffers from
challenges like curse of dimensionality, setting the optimal number of neighbors, and scalability for high-dimensional
data. To overcome these challenges, we propose an improvised approach of classification via depth representation of
subspace clusters formed from high-dimensional data. We offer a consistent and principled approach to dynamically
choose the nearest neighbors for classification of a query point by i) identifying structures and distributions of data; ii)
extracting relevant features, and iii) deriving an optimum value of k depending on the structure of data by representing
data using data depth function. We propose an improvised classification algorithm using a depth-based representation
of clusters, to improve performance in terms of execution time and accuracy. Experimentation on real-world datasets
reveals that proposed approach is at least two orders of magnitude faster for high-dimensional dataset and is at least as
accurate as traditional kNN.

Key words: Subspace-clustering, data-depth, information gain, nearest neighbor, classification

1. Introduction
The k-nearest neighbors (kNN) algorithm is a simple nonparametric classification technique which is efficient,
provided it is given a good distance metric and has enough labeled training data [1]. If we have no knowledge
of the underlying distribution, a decision to classify data point x into a class y depends on a set of known
samples (x1, y1), ..., (xn, yn) . Recommendation systems, text categorization, heart disease classification, and
market predictions are some of the applications of classification algorithms [2, 3]. However, with the advent of
high-dimensional data in rapidly developing domains such as medicine, finance, education, and genomics, the
unknown data distributions may be uneven which may affect the accuracy of classification results. Furthermore,
available data points may not be labelled fully. The existing techniques for classification of such datasets are
either not scalable or not accurate due to failure in identifying intricate relationships existing amongst the
features of data. Thus, traditional algorithms suitable for low-dimensional data, need to be improvised to suit
the existing scenarios.

One advantage of kNN over other algorithms is that it can be applied to data following any distribution [4–
6]. However, since it does not understand the data, its successful execution requires careful choice of parameters
k , feature weights w , and distance measure [7]. Most of the works focus on setting of k and w irrespective
of structure and distribution of data whose labels are to be found. Furthermore, kNN suffers from ‘curse of
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dimensionality’ and sparsity in higher dimensions that lead to expensive computational cost and high storage
requirements for voluminous data [4, 5, 8]. Hence, an efficient algorithm for classification of high-dimensional
data is required.

For instance, consider Figure 1 that shows two different distributions of instances in 2d space. A query
point q is to be classified to one of the two distributions, but since q is equidistant from the centers of both the
distributions, any value for k may lead to wrong classification. Similar is the case with high-dimensional data
where all points seem equidistant [8]. Thus, a good clustering mechanism is required to properly model the
data distributions with relevant features before applying kNN. Quite often, though the data is high-dimensional,
there exists many low-dimensional structures corresponding to several classes or categories. The points that
belong to a particular class are usually more similar to each other than points that belong to other classes
in these low-dimensional structures. Traditional clustering algorithms find clusters in the entire space of the
dataset. However, if the data is high-dimensional, such clusters may be difficult to comprehend. Hence, there
is a need for a different approach of clustering that finds clusters in the subspaces of the high-dimensional
dataset, called subspace clustering [9–12]. Various types of subspace clustering methods exist in the literature
such as CLIQUE [13], SUBCLU [14], and MAFIA [15] that finds clusters in all subspaces. There are other
types of subspace clustering methods called projective clustering such as PROCLUS [16, 17], FIND-IT [18],
IGSC [19] and δ -CLUSTERS [20] that find clusters in axis-parallel subspaces. We follow a previous work where
information gain-based semi-supervised-subspace clustering (IGSC) is suggested [19] to model the distributions
of high-dimensional data with relevant features. The details of IGSC algorithm are given in Section 4 and the
algorithm is given in Algorithm 2. The different subspace clusters so obtained may have different features.
Hence, a unique representation of all the clustered data is required to undermine the effect of subspaces. This
is achieved by a concept of data depth function [21] explained in Section 3.2

Figure 1. The query point q equidistant from the centers of two distributions P1 and P2.

Looking for k-nearest neighbors for a new query example from a set of n data points has a straightforward
algorithm with cost O(nlog(k)) [1]. This is biased towards the choice of k and is quite expensive if the number
of data points, n , and the number of features per data point, d , is too large. Another approach is to use
indexing with k-d trees [22], which fails for high-dimensional data since it requires 2d examples for efficient
index. Furthermore, the kNN algorithm is inefficient without multivariate analysis and premodelling, where
dynamic classification is needed for large repository [23].
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In this paper, we offer a consistent and principled approach to dynamically choose the nearest neighbors
for classification of a query point by i) identifying structures and distributions of data, ii) extracting relevant
features, iii) deriving an optimum value of k depending on the structure of data by representing data using data
depth function. Thus, given a query point, q , we aim to find the best distribution of points, S , with relevant
features, that matches q , so as to minimize the distance between q and S to effectively retrieve appropriate label
for q . For this, we adapt an existing subspace clustering called IGSC to obtain informative clusters, each with
relevant dimensions using information gain [19]. Thereafter, we propose an improvised classification algorithm
using a depth-based representation of subspace clusters, to improve scalability and accuracy of classification for
high-dimensional data. Experimental results presented in Section 5 reveals that our approach is at least two
orders of magnitude faster for high-dimensional dataset and is at least as accurate as conventional kNN. Thus,
our contributions are as follows:

1. Identify different low-dimensional structures and varied distributions of partially labelled data consistent
with the available labels, by adapting subspace clustering technique, IGSC [19].

2. Apply the concept of data depth function on each of the low-dimensional structures identified, to give
each of them a unique representation by eliminating the influence of subspaces in individual clusters.

3. Propose an augmented nearest neighbor algorithm based on L1 data depth function for classification of
high-dimensional data on this newly formed depth space.

The rest of the paper is organized as follows. Section 2 focuses on related work on kNN and its variants.
Section 3 gives background and few important definitions and concepts. Section 4 presents the problem
formulation and the devised algorithms. Section 5 shows experimental results and performance evaluation.
Finally, Section 6 concludes the paper.

2. Related work
In practical scenarios, nonparametric techniques for classification, based on nearest neighbor strategy, such as
kNN [6] and parzen window classifier [24], are best suited for data whose distributions are either unknown or
that have different types of distributions [4]. Parametric techniques for high-dimensional classification such as
support vector machine (SVM) depends on the selection of the kernel function parameters, which is a major
drawback. Feature selection models that are computationally tractable is proposed in [25, 26] for classification
of high-dimensional data using SVM. However, the approach is only suitable for data that is linearly separable.
Hastie and Tibshirani [27] developed an adaptive method of nearest neighbor classification by using local
discrimination information to estimate a subspace for global dimension reduction. Parzen window classifier was
deployed in [28] to devise an active learning algorithm in order to address the problem in which large amounts
of unlabeled data are available. Parzen window classifier depends on a single parameter: the kernel window size,
which can be determined by cross-validation. In all these nonparametric approaches, the parameter k for kNN
and window size for Parzen window, is critical. Thus, if a strategy to explore the interrelationships amongst
data objects in subsets of features is applied, the crucial choice of k and window size can be made dynamic
depending on the varying distributions of data.

This leads to the necessity of devising an efficient strategy for neighborhood algorithm by exploring
intricate relationships amongst the data objects in subsets of features. Such a problem requires clustering
approaches that explore various data objects to find clusters in different subsets of features. One such strategy
is subspace clustering [9–11]. However, the subspace clusters may have different features in different clusters.
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Hence, a unique representation of all the clustered data is required to undermine the effect of subspaces. We
brief the trends in subspace clustering and data-depth-based classification by reviewing some of the relevant
works in this area. We try to bring out the essence of existing algorithms and explain how our approach differs
from the state-of-the-art approaches.

Subspace clustering seeks clusters in different subspaces within a dataset. Based on the approach of
finding subspaces, subspace clustering (SC) can be classified into soft subspace clustering (SSC) and hard
subspace clustering (HSC). While HSC like CLIQUE [13], SUBCLU [14], and MAFIA [15] follow a bottom-
up approach to find exact subspaces, PROCLUS [16, 17, 29], FIND-IT [18], and δ -CLUSTERS [20] follow a
top-down approach by assigning weights to dimensions in each cluster. SSC can be considered an extension
of feature weighting clustering [19, 30–34]. The features in each subspace cluster may be different. Hence, for
classification, a unique representation of data so as to reduce the effect of subspaces is required for effective
classification. This can be achieved by data depth function [21] that orders data in a central-outward order
where each point is then identified by its depth in the representation.

Data depth representation was first proposed in [21], where Vardi and Zang proposed the idea of L1-
median and L1 data depth. The depth of a point relative to a given dataset measures how deep that point lies in
the data cloud. The data depth concept provides center-outward ordering of points in any dimension, and leads
to a new nonparametric multivariate statistical analysis, in which no distributional assumptions are needed
[35]. The paper gives three related results. The first one is, a new simple, fast, and monotonically converging
algorithm for deriving the L1-median of a distribution in Rd . The second is, a new general definition for depth
functions in terms of multivariate medians. The third is, a simple closed form formula of the L1-depth function
for a given data cloud in Rd . A depth-based modification of k-nearest neighbor method was proposed by
Ondrej Vencalek in [36]. The newly proposed method is based on the idea that points with similar location with
respect to two considered distributions will have similar depths with respect to the distributions. Depth-based
classification is also proposed in [37, 38] to avoid the parametric assumptions and to get better classifier for
skewed data. Depth-based classifiers are affine invariant; hence, the classification methods do not change, for
example, with the change in units (scale) of data [39]. Depth functions might be very slow in high-dimensional
data. Thus, our classification approach models the data using a subspace clustering technique, that reduces
the dimensions in each cluster and then depth function is applied. Reliable depth-based classifiers are available
in R-package ddalpha [40] but not for very high-dimensional data. For high-dimensional data up to 100 , an
approach based on transformation of the original data to the DD-space using spatial or localized spatial depth is
proposed in [41]. After transformation, these depths are used as explanatory variables in multinomial additive
logistic regression model.

In all these works, data depth of objects in subspace clusters is not leveraged. Moreover, the use of
labels, if available, are not taken into consideration for the formation of clusters. If data labels are available
then leveraging such information for subspace clustering can not only be useful for validating clusters but
can also enhance the learning process to be consistent with the available knowledge. Hence, our work adopts
entropy and information gain with respect to the knowledge about the available labels to guide the significance
of important attributes leading to subspace clusters.

3. Improvised classification algorithm

Our proposed classification approach is based on a principled combination of subspace clustering [7, 9, 11, 19, 28],
data depth representation [21, 35, 36], and nearest neighborhood using an optimization function. Here we
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specifically divide classification of high-dimensional data into three phases: (i) subspace clustering for feature-
based cluster formation, (ii) formation of data depth space for unique representation of data irrespective of
subspaces, and (iii) nonparametric classification of a given query point. The block diagram of the proposed
work is given in Figure 2.

Figure 2. Block diagram of the proposed nearest neighbor algorithm.

3.1. Phase 1: subspace clustering based on entropy and information gain

Let D be a dataset in Rd with each instance t ∈ D defined by a set of attributes A = {a1, ..., ad} . Each
instance t is labeled with y = pi or unlabeled with y = 0 , where pi ∈ P = {p1, .., pc} , with c being the total
number of class labels. We define subspace cluster Si as a cluster of instances that are most similar to each
other along Ai ⊂ A attributes. |Ai| = l and l ≤ d . Each cluster has a representative element mi ∈ D , called
medoid, with label y . In this context, an objective function F is devised to find an optimal set of K subspace
clusters S = {S1, ..., SK} so as to reduce the entropy of each subspace cluster Si in Ai dimensions with mi as
the medoid. The subspaces so formed are axis aligned subspaces [16].

Formally, let K denote the number of clusters, M ⊂ D denote the set of potential representative elements
called medoids, and P denote the set of class labels with |P | = c . Each subspace cluster Si is defined by a subset
of dimensions Ai ⊂ A and a medoid mi ∈ M . Then, the objective function F is defined as a minimization
function given by (1)

F (K,M,P ) = minimize
K∑
i=1

H(Si, P )
|Si|
|D|

, (1)

where
H(Si, P ) = −

∑
pj∈P Pr(pj , Si)log2Pr(pj , Si)

Pr(pj , Si) =
1

|Si|Σ
N
k=11pj

(xki)

Here H(Si, P ) is the entropy of the cluster Si with dimensions Ai and medoid mi with respect to the
available set of labels P . Pr(pj , Si) is the probability of an instance xki ∈ Si being classified as pj . The details
of finding medoids mi and composing Ai for each subspace cluster Si are given in Section 4.

3.2. Phase 2: formation of data depth space

The concept of data depth was introduced in [42]. As the name suggests, data depth represents the depth of
a data point with respect to the given probability distribution of each subspace cluster. The depth of a point
relative to a given dataset measures how deep that point lies in the data cloud. The data depth concept provides
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center-outward ordering of points in any dimension and leads to a new nonparametric multivariate statistical
analysis in which no distributional assumptions are needed [21, 35, 36]. It is a very useful tool for nonparametric
multivariate data inference. Data depth provides some ordering of points in the multidimensional space with
respect to some probability measure defined on the space. Those functions that generate such ordering are
known as depth functions. According to [35, 42], there are four main properties of a depth function as follows.

• Affine invariance: According to this property, the depth of a certain point x should not change while
performing any transformation. Thus, it should not depend on the underlying coordinate system.

• Vanishing at infinity: This property suggests that the depth of a point x should be very small when the
point is far away from others.

• Maximality at center: Consider a symmetric probability distribution with a unique point which can be
called the center of symmetry, then that point should be the deepest point, i.e. the depth function should
attain its maximum value there.

• Monotonicity relative to deepest point: As a point x ∈ Rd moves away from the ‘deepest point’ (the
point at which the depth function attains maximum value; in particular, for a symmetric distribution, the
center) along any fixed ray through the center, the depth at x should decrease monotonically.

Vardi and Zang proposed the idea of L1−median and L1− depth [21]. L1− depth is defined as follows.
Definition : L1 −median : Let P be a probability distribution of a random vector X on Rd such that

Ep||X|| <∞ , where ||.|| denotes the Euclidean norm in Rd . The L1−median of the distribution P is defined
as in Eq. (2):

M(Q) = argminy∈RdEP ||X − y||. (2)

The L1 − depth of a point x ∈ Rd with respect to the distribution P is defined as in Eq. (3):

D(x;P ) = 1− inf
{
w >= 0 : M

( w

1 + w
δx +

1

1 + w
P
)
= x

}
, (3)

where δx is a point mass at x . That is, 1−D(x;P ) is the minimum incremental mass w needed at x for x to
become the L1–median of the mixture ( w

1+w δx + 1
1+wP ) .

In our proposed model, we use the concept of L1 − depth so that the second phase shifts informative
subspace clusters generated in the first phase to a depth space using L1-depth function[21]. In order to do
an impartial classification, we need to get rid of the influence of subspaces in individual clusters. Hence, the
clusters need to be represented in such a way that, instead of their original features, each element now gets
shifted to a feature space where each feature represents the ”amount of influence” from individual clusters in
the clustering as shown in Figure 3. This ”amount of influence” is known as ”depth” of data point. Even the
test sample will be shifted to this depth space so that we will be able to do an impartial classification. Finally,
we adapt kNN in this newly generated depth space as shown in Figure 4.

Let S = {S1, S2, ..., SK} be the set of final subspace clusters, from phase one, with important attributes
Ai ⊂ A where 1 ≤ i ≤ K . Each data point s is represented by K clusters where s|Ai| → sK is as given in Eq.
(4):

D(s) = [D(s, S1, A1), · · · , D(s, SK , AK)] (4)
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Figure 3. Depth of data point q with respect to center of
cluster P1 and with respect to center of cluster P2 using
L1-depth function.

Figure 4. Depth representation of all points with respect
to 2 clusters.

D(s, Si, Ai) is the L1-depth of s, with respect to each cluster Si and respective dimension set Ai as in
Eq. (5).

D(s, Si, Ai) = 1− EP

∥∥∥∥∥∥ s|Ai| − S
|Ai|
i∥∥∥s|Ai| − S
|Ai|
i

∥∥∥
∥∥∥∥∥∥ , (5)

where Si is the set of instances in ith subspace cluster. s|Ai| restrict the dimensions of s from A to Ai

with |Ai| = li . EP is the expectation with respect to the distribution Si .
Figure 4 shows the depth representation of all instances in Figure 1 with respect to 2 clusters.

3.3. Phase 3: classification of points in depth space

The third phase classifies a test data instance by applying nearest neighbor algorithm on the depth space,
formed in second phase. Each test data instance is also represented in the depth space by following (4). This
test data instance is initially compared with the cluster medoids to find the nearest medoid. Once the nearest
medoid is found, nearest neighbor algorithm is applied in the respective subspace cluster to find the class label
of the test instance based on majority voting.

4. Algorithms

As explained in previous subsection, the proposed approach consists of three phases. The first phase identifies
subspace clusters in the dataset, the second phase performs the depth space representation of generated clusters,
and the third phase performs classification by applying nearest neighbor algorithm on depth space. The
notations used in the algorithms are described in Table 1.

Algorithm 1 gives an outline of the proposed strategy.
For subspace clustering, we adapt an iterative approach of IGSC [19]. The outline of IGSC is shown in

Algorithm 2.
The main difference in this algorithm as compared to other subspace clustering algorithms is the objective

function and the strategy to find subspace for each cluster based on entropy and information gain. Furthermore,
our subspace clustering involves finding a potential set of medoids that can form the representatives for subspace
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Table 1. Notations used in the algorithm.

Notations Description
D Partially labeled numerical dataset
A Set of attributes in D. A = {a1, ..., ad}
K Number of subspace clusters
k Number of nearest neighbors
l Avg. number of dimensions per subspace cluster
T Test dataset
C Set of class labels for each data point in T
S Set of subspace clusters. {S1, ..., SK}
Ai Set of dimensions associated with a subspace cluster Si

Ã Set of Ai’s for each subspace cluster Si.{A1, ..., AK}
Mcurr Medoid set from the current iteration
Mbest Best set of medoids found so far
δ Distance between two instances.
E,F Constant integers
V Points at δ distance from each medoids

Algorithm 1: Depth-based classification
Input : D,K, l, T = {T1, · · · , TM}
Output: C = {C1, · · · , CM}

1 S, Ã← IGSC(D,K, l) // Information gain based susbpace clustering

2 Dp ← Depth(S, Ã) // Depth of each data point in subspace clusters as per Eqs. 4

and 5

3 C ← L1depthNN(Dp, S, Ã, T ) // Classification in depth space

cluster. If K clusters are required to be formed from dataset D , we choose more than K representatives, called
medoids. As given in Algorithm 2, e ∗K medoids are chosen, where e is a positive integer constant. We choose
more medoids than the required number of clusters, to ensure that during iterative process of finding subspace
clsuters, if some outliers are formed, those can be discarded and better subspace clusters can be found. A
greedy technique has been used to generate optimal set of medoids [16]. The greedy algorithm adapted from
[16] is given in Algorithm 3. We reproduce the algorithm here for ease of understanding the search for potential
medoids.

One of the important aspects of this clustering is to identify important subset of features for each subspace
cluster. We use the concept of information gain and entropy [43] for subspace search as given in [19]. Our
approach makes use of labels to identify important attributes in each cluster. This helps in forming subspace
clusters consistent with the labeled dataset, and aid in modifying and extending the labels to reflect the hidden
structures in low-dimensional data. The proposed model searches for a good partition by formulating the
objective function that aims at minimizing the entropy of each cluster.

The relevant features are found by computing information gain of each feature that helps in deciding the
label of an instance. Let Si be a cluster represented by medoid mi . Let A = a1, ..., ad, y be the set of features
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Algorithm 2: Information-gain-based subspace clustering: IGSC(D,K, l)

Input : D,K, l
Output: S = {S1, · · · , SK}, Ã = {A1, · · · , AK},Mbest = {M1, · · · ,MK}

1 M ← Medoids(D, e ∗K );// Find e ∗K potential medoids from D where e is a positive

integer constant

2 BestObjV al←∞ ;
3 Mcurr ←Get K medoids from M randomly;
4 while (BestObjVal not converged) do
5 for mi ϵ Mcurr do
6 δi ← argminmj∈Mcurr,i!=j |mi −mj | ;
7 Vi ← Points at distance δi from mi ;
8 end
9 V ← {V1 · · ·VK} ;

10 dimensionSets ← ExtractDim(K, l, V )// as per Eqn. 6, 7, 8

11 S ← Assign(dimensionSets);
12 Obj ← ClusterEval(S, dimensionSets) ;
13 if Obj < BestObjV al then
14 BestObjV al← Obj ;
15 Mbest ←Mcurr ;
16 end
17 Replace bad medoids in Mbest ;
18 Mcurr ←Mbest ;
19 end
20 Ã← dimensionSets ;
21 Refine(S, Ã,Mbest) ;

where y is the label feature. Each instance xk ∈ Si has yk ∈ P = {p1, ..., pc} . In order to find relevant features
with respect to the class label of the instances in Si , we find the entropy of Si and information gain [43] of
each feature ai . This method is similar to the one adopted in [19]. Formally, entropy and information gain are
defined as follows.

Entropy : Let D be a set of N examples and let P be a set of c classes. Let Pr(pi, D) be a fraction of
instances in D , which belongs to class pi ∈ P . Then, the entropy of D is computed as given in Eq. (6). Higher
entropy value of D indicates higher information content in D .

Entropy(D) = −
c∑

i=1

Pr(pi, D)× log(Pr(pi, D)). (6)

Let Di be the set of examples having value vi for attribute ai . Let v be the number of distinct values
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Algorithm 3: Finding potential medoids: Medoids(D, z)

Input : Dataset : D = {D1, ..., Dn} , Required number of medoids z
Output: Potential medoids M = {m1, ...,mz}

1 Initialize M = {m1} , where m1 is a random point from D ;
2 Initialize Dist = {d1, ..., dn} where di is distance between ti ∈ D \M and m1 ;
3 for i = 2 to z do
4 Choose a point tj ∈ D \M having highest dj in Dist ;

// Farthest point from existing medoid
5 mi ← tj ;
6 M = M ∪ {mi} ;
7 Compute distance of each ti ∈ D \M to the closest medoid in M ;
8 Update Dist to latest distance for each point tj ;
9 end

10 return M ;

of attribute ai . Then, the average entropy of ai is given as in Eq. (7)

AvgEntropy(ai)(D) = −
v∑

i=1

|Di|
|D|
× Inf(Di). (7)

Our goal is to find which attribute in D is most useful for finding the class y of an example xk ∈ D .
We use information gain [43] to find significance of each attribute ai ∈ A as given in Eq. (8).

Information_Gain(ai) = Entropy(D)−AvgEntropy(ai)(D). (8)

Thus, significance of each feature ai is found. The feature with the highest information gain is the
most relevant one. Thus, instead of finding all combinations of l features, we chose l relevant features in the
decreasing order of their information gain, thereby reducing the complexity of the search for important features
to form a subspace cluster. Algorithm 4 presents the search algorithm for finding l relevant attributes for each
subspace Si ∈ S .

Once the subspace clusters are formed, the entire clustering is shifted to a depth space where each instance
is described in terms of depth with respect to individual clusters. This helps in alleviating the influence of
different subspaces in each cluster. We use here L1 depth since this is robust for high-dimensional data [44]. In
the depth space, nearest neighbor algorithm is applied to find the label of a given test instance. Algorithm 5
shows the classification in L1 depth space.

5. Experimentation and analysis

5.1. Experimental design and setup

The experimentation was conducted in two phases with information-gain-based subspace clustering in phase
one and L1 depth-based kNN classification in the second phase. We used a commodity machine with 2.8
GHz/1.9 GHz AMD Quad-Core processor and 6 GB main memory. Weka 3.8 together with OpenSubspace
(Weka Subspace-Clustering Integration) was used for comparing various algorithms with our approach. The
performance was measured in terms of scalability and classification accuracy.
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Algorithm 4: Extracting relevant dimensions: ExtractDim(V,A, l)

Input : V = {V1, ..., VK}, A = {a1, ..., ad}, l
Output: Relevant dimensions of each partition Vj ∈ V

1 Let Info_Arr[1...K][1...d] be a matrix to store information gain of attributes for each partition Vj ;
2 for Vj ∈ V do
3 t← 1 ;
4 EVj ← Entropy of Vj as per Eq. (6);
5 for ai ∈ A do
6 Avg_ai ← Average Entropy of attribute ai as per Eq. (8) IGai ← EVj −Avg_ai ;

// Information gain of each attribute
7 Info_Arr[j][t++]← IGai

8 end
9 Sort Info_Arr[j] // Sort information gain of attributes in Vj in descending order

10 end
11 return InfoArr ;

Algorithm 5: Classification in L1 -depth space:L1depthNN(Dp, S, Ã, T )

Input : Dp, S, Ã, T
Output: Class labels of individual instances in T

1 for t ∈ T do
2 deptht ← Depth(t, S, Ã) // as per Eq. (5)
3 end
4 for t ∈ T do
5 Sj ← Subspace cluster nearest to deptht ;
6 Dj ← Depth space of Sj points from Dp ;
7 labelt ← kNN(deptht, Dj , |Sj |) // Find k nearest neighbors of test instance deptht

in depth space Dj where k can take a maximum value of |Sj |
8 end

5.2. Phase 1: experimental analysis of proposed subspace clustering approach

In this section, we present our experimental results and comparison of our subspace clustering algorithm with
a subspace clustering algorithm called PROCLUS as well as with a traditional clustering approach K-means,
to show the effectiveness of our proposed work. To evaluate the effectiveness and performance of our proposed
method, 13 publicly available datasets from UCI repository (http://archive.ics.uci.edu/ml/index.php) were used.
These 13 real world datasets are high-dimensional with dimensionality varying from 9 to 27,680 and number
of instances from 34 to 8000 as shown in Table 2. For scalability experiments, we replicated the instances of
Pendigits and Synthetic datasets up to 400, 000 records. The size of each dataset is increased by an iterative
process. If the size of dataset is X and the required size is Y , then ⌈(Y/X)⌉ iterations are required. During each
iteration, each instance is inserted into the dataset only once to avoid skewed data. However, each duplicate
instance will be treated as a separate instance in the dataset by giving a unique ID. Hence, we ensure that
our algorithm considers Y records separately and does the clustering irrespective of duplicate values in the
instances.

We used the following performance parameters in our empirical study: size of the dataset |D| , number of
subspace clusters K , and average dimensionality of each subspace cluster l to demonstrate the effectiveness of
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Table 2. Datasets obtained from UCI repository used for experimentation.

Dataset Instances Attributes Classes
B-Cell1 45 4027 2
B-Cell2 96 4027 11
B-Cell3 96 4027 9
Colon 62 2001 2
Embryonal tumer 60 7130 2
Lukemia1 34 7130 2
Lukemia2 38 7130 2
Pendigits 8000 17 10
Synthetic 1596 76 13
ECML 90 27,680 43
GCM 144 16,064 14
Diabetes 768 9 2
Glass 214 10 6
German 1000 24 2
Bank 41,188 62 2

our proposed algorithm. For scalability, we replicated few datasets like Pendigits and Synthetic datasets both
in terms of dimensions and number of instances. The proposed approach was then applied on the datasets to
determine how the running time and the cluster quality varied with |D| , K , and l .

The experiments were repeated 15 times each and average values were considered for final evaluation.
The proposed algorithm is compared with other algorithms on different datasets. Metrics used for validation
purpose are purity, accuracy based on F1 measure, entropy, and Davies–Bouldin index (DBI) measures.

5.2.1. Results and analysis

Here we discuss cluster quality. DBI [45] is an internal validation metric used for evaluating clustering algorithms
irrespective of the target of the instances in a dataset. It just uses the available inherent features of the dataset
and the clusters found. For a given clustering, we customized DBI as given in Eq. (9):

DBI(K,M) =
1

K

|K|∑
i=1

max
j ̸=i

SC(Si) + SC(Sj)

SP (S)i,j
, (9)

where SC(Si) =
1

|Si|
∑|Si|

j=1

∣∣∣tAi
j −mAi

i

∣∣∣ and SP (S)i,j =
∥∥∥mAi∪Aj

i −m
Ai∪Aj

j

∥∥∥ =
∑

u∈(Ai∪Aj)
|au,i − au,j |

Here K is the total number of clusters, tAi
j is Ai dimensional instance assigned to Si and mi is the

medoid of cluster Si . au,i denotes value of uth attribute of mi . DBI always has a value > 0 . The lower the
DBI value is, the higher the clustering quality is as is evident from Eq. (9):

As for purity, it (nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html) is an ex-
ternal validation metric that is based on the targets of the instances. This metric checks how well the clustering
matches the available targets/classes. For a clustering with S={S1 , · · · ,SK } clusters and P={p1 , · · · ,pc }

4093



HARIKUMAR et al./Turk J Elec Eng & Comp Sci

labels, purity can be calculated as in Eq. (10).

purity(S, P ) =
1

N

∑
i

max
j
|Si ∩ pj | . (10)

The range of purity values is in the interval [0, 1] . The higher the purity value is, the higher the clusters match
with the available targets/classes. Thus, we can infer that the clustering quality is high for higher values of
purity. Table 3 shows the purity and DBI measures of subspace clusters formed.

Table 3. Comparison of purity and DBI measures of generated clusters using proposed approach with K-means clustering
in full dimensions and a subspace clustering PROCLUS.

Purity DBI
Dataset PROCLUS Proposed

approach
K-means PROCLUS Proposed

approach
K-means

B-Cell1 0.6 0.84 0.6 1.60 1.67 2.80
B-Cell2 0.43 0.95 0.56 1.45 1.33 1.95
B-Cell3 0.76 0.96 0.73 1.33 1.45 1.84
Colon 0.64 0.77 0.64 0.59 1.76 1.27
Embryonal Tumer 0.63 0.63 0.65 1.25 1.52 2.10
Lukemia1 0.60 0.92 0.58 1.57 1.73 2.58
Lukemia2 0.72 0.91 0.71 1.77 1.55 3.12
Pendigits 0.49 0.61 0.92 1.90 2.20 1.69
Synthetic 0.75 0.85 0.87 2.29 2.09 3.46
ECML 0.54 0.93 0.65 1.17 0.63 1.05
GCM 0.66 0.71 0.45 1.22 1.07 1.81
Diabetes 0.60 0.77 0.65 1.58 1.17 4.24
Glass 0.47 0.50 0.87 2.33 2.86 4.21

IGSC outperforms subspace clustering algorithm PROCLUS when both the number of clusters and
number of features are high, such as for ECML and B_cell2 dataset. We find that purity measure of our
proposed model IGSC is quite good for datasets with very high dimensions such as ECML and GCM. However,
for low-dimensional dataset Pendigits and Glass, the information gain approach does not give very significant
results as the contribution of attributes are equally likely in knowing the labels of instances.

5.3. Phase 2: experimental analysis of classification using Nearest neighbor approach

In this section, we present experimental results and comparison of our proposed modification to the traditional
kNN algorithm. L1 data depth for individual clusters were plotted separately and the test instances that are
similar to a cluster were compared with the data depth representation of that cluster. To understand how the
proposed approach handles increase in dimension and number of instances, we organize the datasets as given in
Table 4.
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Table 4. Dataset used for phase 2 experimentation.

Dataset High dimension Low dimension
High records •Bank

•Synthetic
•German
•Pendigits

Low records •BCELL1
•Waveform

•Glass
•Diabetes

5.3.1. Experimental procedure

The experiments were repeated 5 times and the average values were considered for final evaluation. We also
performed 4-fold cross-validation for each dataset. The proposed approach was compared with traditional kNN
and K-means+kNN classifier. The metrics used for validation purpose are accuracy of classification and F1
measure. To understand the change in accuracy for different k values (nearest neighbors), experiments were
done by varying k from 5 to 25 and finally to entire depth points (full search) in the depth space.

5.3.2. Accuracy and F-measure

As explained in Algorithm 5, each test sample is classified only based on the best subspace cluster, Sb , to which
it belongs to. kNN is applied on Sb by varying k from a low value to a maximum of |Sb| value. We term
k = |Sb| as full search in Figures 5–8. For high-dimensional data, accuracy is comparable for various values of
k as shown in Figure 5. From the results it can be noted that the intuition of depth does not bring a great
change in the accuracy but classification time is low for high-dimensional data as shown in Figure 5. Since few
datasets have uneven class distribution, we used F1 score (https://en.wikipedia.org/wiki/F1_score) also called
F-measure as a performance measure of proposed approach. Here we calculated F-measure for each dataset by
varying the values for k as shown in Figures 5–8. For each value of k , the higher the value of F-measure is,
the better the classification. During full search, i.e. when k = |Sb| , the proposed approach has almost equal or
higher F-measure value compared to kNN, for the given datasets. This indicates that our method is consistent
as the F-measure does not vary much for different k values.

5.3.3. Classification time

The total time taken for classification was computed for both kNN and our approach. From the comparison we
observed that classification time is consistently lesser than kNN except for datasets having low record size and
low dimensions. During full search, our approach takes two orders of magnitude less time for classification than
traditional kNN for high-dimensional and high record size of data as shown in Figure 5. For high record size
and low-dimensional data the execution time is at least three orders of magnitude lesser than kNN as shown in
Figure 6. For low records size and high-dimensional data, during full search, the execution time is at least four
orders of magnitude lesser than kNN as shown in Figure 5.3.4. However, for low record size and low-dimensional
data, the execution time is higher than kNN as shown in Figure 8 but lesser if k is a smaller value. Thus,
the performance of proposed classification approach is at least two to three orders of magnitude better than
conventional kNN approach, as the dimensions and record size increases.
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5.3.4. Accuracy with change in Average number of dimensions per subspace cluster, l

To understand how the change in l affects accuracy, experiments were conducted by keeping k constant (selecting
the best value from results of Section 5.3.2, as shown in Figures 5–8) and varying l for each dataset as shown
in Table 5. The proposed method generates better or approximately the same results compared to traditional
kNN for most of the datasets except for few cases like Pendigits and Waveform datasets. This is due to the
fact that all the attributes in Pendigits and Waveform are important for a sample to be classified. Reducing
the attributes lead to information loss and hence lead to lesser classification accuracy.

Figure 5. Comparison of the proposed approach with kNN. Dataset has high records and high dimension.

Figure 6. Comparison of proposed approach with kNN. Dataset has high records and low dimension.

5.4. Accuracy comparison
Table 6 shows the accuracy measure of our proposed approach for classification with kNN, K-means with kNN,
and PCA with kNN. PCA with kNN first reduces the dimensionality of the entire dataset. Then kNN is
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Figure 7. Comparison of the proposed approach with kNN. Dataset has low records and high dimension.

Figure 8. Comparison of the proposed approach with kNN. Dataset has low records and low dimensions.

Table 5. Classification accuracy of the proposed approach by varying average dimensions per cluster ( l ). For each
dataset, in our proposed approach, k value is chosen as the one that gives best accuracy from experiment results in
Section 5.3.2. k value in kNN is the one that gives highest accuracy amongst various values.

l dataset A/3 A/4 A/5 A/6 kNN
Bank(k = 5) 90.0679 93.43 96.587 96.60 90.8(k = 10)
Diabetes(k = 30) 74.5 73.7 76 76 71.3(k = 5)
German(k = 5) 75.42 75.42 75.42 75.42 71(k = 10)
Pendigits(k = 5) 53.815 62.1 59.464 50.496 99.9(k = 5)
Waveform(k = 20) 48.16 67.5 74.96 54.64 82(k = 10)
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applied on the reduced dataset. The dimensions of the reduced dataset is given by r for PCA+kNN in Table 6.
Our proposed approach, IGSC-kNN outperforms other approaches in case of very high-dimensional data such
as B-cell1, Leukemia1, Leukemia2, and Bank. For low records or low-dimensional dataset, there is no much
variation in the accuracy. However, the execution time is quite less consistently for all datasets as can be seen
from Figures 5 and 6. The proposed method generates better results compared to traditional kNN for most
of the datasets except for few cases like Pendigits and Waveform datasets. This is due to the fact that all the
attributes in Pendigits and Waveform are important for a sample to be classified. Reducing the attributes lead to
information loss and hence lead to lesser classification accuracy. For Synthetic datasets, however, the results are
comparable to kNN. PCA with kNN gives very good results for Synthetic, Tumer, and Diabetes datasets. This
indicates that reducing the attributes in these datasets led to negligible loss in information and hence classifies
a sample with better accuracy than kNN. PCA-kNN outperforms IGSC-kNN in these datasets as these datasets
are better visualized in arbitrary oriented subspace and not in axis aligned subspace. As explained in Section
3, IGSC-kNN forms axis aligned subspaces but PCA-kNN reduces dimensionality in arbitrarily oriented space.
Thus, for few datasets, arbitrarily oriented subspace gives the best results and not axis aligned subspaces.

Table 6. Comparison of accuracy measure with different datasets and different approaches.

Dataset kNN (k) Kmeans+kNN(K) IGSC+kNN(K,k,l) PCA+kNN(r,k)
German 71(10) 73(2) 74(5,5,6) 71.30(5,10)
Glass 59(10) 57(7) 61(5,10,2) 59.09(2,20)
Waveform 82(10) 83(15) 74.3(7,5,10) 46.31(6,10)
Bank 90.8(10) 90.4(9) 93.7(9,10,15) 90.24(15,10)
B-cell1 86(5) 72(2) 93.9(3,5,1006) 50.2(1000,10)
Colon 85.7(15) 88.8(5) 87.5(2,5,500) 86.23(500,10)
Diabetes 71.3(5) 73.56(5) 73.1(3,5,2) 77.27(2,20)
Tumer 70.83(15) 80.1(2) 78.05(2,5,1782) 88.88(2000,20)
Leukemia1 85.4(5) 88.8(2) 96.23(2,5,1782) 85.71(6,10)
Leukemia2 90.1(5) 92.3(5) 98.8(2,5,1782) 98.23(6,10)
PenDigits 99.9(5) 72.3(5) 60.55(9,5,4) 65.45(4,10)
Synthetic 88.64(10) 87.47(9) 87.47(9,5,18) 99.61(15,10)

6. Conclusion
We presented an approach to improve the nearest neighbor algorithm for high-dimensional data. A top-down
approach of subspace clustering using information gain ranking for attribute extraction and representing the
subspace clusters using L1 -depth for nearest neighbor classification is introduced as a new concept. This
alternative attribute selection technique together with subspace extraction has been conducted in such a way
that the data is neither transformed nor does it lose its structure. The feasibility of incorporating the concept
of information theory for subspace selection and enhancing the nearest neighbor algorithm using L1 -depth for
high-dimensional dataspace is established by the experimental results. The empirical results indicate that our
approach generated comparable accuracy results with respect to traditional methods. We also observed that
the classification time is consistently lesser than kNN except for few datasets such as Pendigits and Waveform.
This is due to the fact that all the attributes play a significant role in classifying a sample in Pendigits and
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Waveform datasets. During full search, our approach takes two orders of magnitude less time for classification
than traditional kNN for high-dimensional and high record size of data as shown in Figure 5. The future scope
lies in extending the approach to nonnumerical datasets in distributed environment. Existing results can be
compared with a different approach of extracting relevant dimensions for each subspace cluster. This work
can be extended theoretically to find the various subspace properties satisfied by the formed clusters and to
find the approximate error from the Bayes classifier. Leveraging distributed computing to find such subspace
clusters based on Entropy and Information gain still needs to be explored. The work can be extended to various
application domains where the data is high-dimensional such as health-care for diagnostic analysis and finance
for investment predictions.
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