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Abstract: This paper presents a new method for the alignment of the rotor of permanent magnet synchronous motors
with the phase axis of the stator during start-up. Once the rotor alignment is achieved, the real rotor position angle
can be measured by using an incremental encoder and this value can be used in the field oriented control of the motor.
Typically, a current is forced into the q-axis. In the proposed method a current is formed in the d-axis instead. Rotor
alignment with the phase axis is achieved without any sudden motion by using a PI controller in the current loop.
Preventive measures for exceptional situations that may occur during the application of this method are also discussed.
Experimental results show that the performance of the proposed method is very satisfactory.
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1. Introduction
Electric motors are used in many applications today. Although direct current motors and induction motors are
the most widely used types of electric motors, the use of permanent magnet synchronous motors (PMSMs) is
increasing day by day due to their high energy density [1].

The torque of PMSMs is a result of the interaction force between the rotor flux and the stator flux. Rotor
flux is constant because it is created by permanent magnets placed on the rotor. For this reason, the torque
developed by the PMSM is controlled by stator flux, which depends on the magnitude and position of the stator
current. Depending on the initial rotor position, different situations may arise. If the angle (δ ) between the
stator flux and the rotor flux is near zero, the generated torque may be very small. In this case, the motor may
not rotate. When the angle is negative, the developed torque will be negative, causing rotation in the reverse
direction. Therefore, the position of the rotor must be known so that the PMSMs can be controlled.

The easiest way to know the rotor position is to use a position sensor. However, it increases the complexity
and cost. Therefore, several techniques have been proposed by researchers to calculate the initial rotor position
without using any sensor. Applying a high frequency signal to motor phases [2–6], saturating the stator magnetic
core [7–11], and utilizing the inductance variation according to the rotor position are some of the techniques
proposed in the literature [12–14]. Although sensorless control methods are advantageous in many respects
such as cost, weight, volume, and design complexity [2], the position sensor must still be used to provide
high-resolution positional accuracy if the application requires positional control.

Incremental encoders [15], absolute encoders, and resolvers can be used to sense the position of PMSMs.
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Although the initial position of the rotor can be known when absolute encoders or resolvers are used, both
the costs and the dimensions of these sensors are high. Therefore, incremental encoders are preferred in many
applications. However, when incremental encoders are used the initial position of the rotor cannot be known
since they measure only the change in position. They define the initial position as zero and therefore there is a
need to determine the initial position of the rotor or to bring it to a known position. There are various methods
used for this purpose in practice. The most common methods are the application of voltages to stator windings
sequentially for one full-turn rotation of the rotor [16] and application of the voltages only to stator phase-B
and phase-A sequentially [17]. These methods are detailed in Section 2.

A new control algorithm to bring the rotor to a known initial position is described in the paper. In this
proposed method, movement of the rotor is kept under control and there is no need to use a separate controller
structure just for the alignment. It utilizes the speed controller of the field oriented control (FOC) algorithm
during the alignment process.

The remainder of this paper is structured as follows: in Section 2, alignment methods already presented
in the literature are summarized and the proposed method is explained. In Section 3, experimental results are
given. In Section 4, the results are discussed.

2. Alignment methods

FOC can be applied with sensorless control methods if position control is not required. On the other hand, the
rotor position must be known to generate the required torque in the FOC method. Incremental encoders are
usually preferred in position control applications due to their low cost and simple structure. However, they do
not provide the initial rotor position information directly [16]. The position value of the incremental encoder
at start-up is explained in Figure 1. In this figure ea is the phase-A voltage, ia is the phase-A current, θr

is the real rotor position, θie is the incremental encoder position, and θdiff is the position error, which is
the difference between real rotor position and encoder position. The zero position of rotor is aligned with the
phase-A winding position of the stator. Incremental encoders assume the initial position as zero and define the
rotor position with respect to this starting position. If the starting position is different, the position error will
change. Therefore, when an incremental encoder is used, either the position error must be known and added to
the value given by the incremental encoder, or the rotor must be brought to zero position (phase-A position of
the stator) before starting the incremental encoder.

Figure 1. The position information obtained from the incremental encoder [16].

In applications using incremental encoders, there are various methods used to align the rotor with phase-A
of the stator. The most common methods are summarized in the following subsection.
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2.1. Commonly used alignment methods in applications with incremental angle encoder

There are methods that vary according to the voltage applied to the stator during the alignment with the rotor
phase. Stator flux must be in the same direction as that of the magnetic axis of phase-A to align the rotor with
the stator phase-A. This can be achieved if the V1 = {1, 0, 0} voltage vector shown in Figure 2 is applied to
the stator windings.

V1(100)
V0(000)V4(011)

V5(001) V6(101)

V3(010) V2(110)

V7(111) A

B

C

uα

uβ

Figure 2. Applied voltage vectors.

Although this method is satisfactory in most cases, it may not work in certain situations. If the initial
rotor position is very close to the stator phase-A when the V1 vector is applied to the stator, the resulting
torque may be too low to rotate the rotor. In this case, there is a difference between the actual rotor position
and the measured position by the incremental encoder. This difference will reduce the torque during the motor
control, but because the reduction is small, it may not be important. However, if the rotor initially is in the
opposite direction of the phase-A axis (negative A), the applied vector V1 will not be able to rotate the rotor,
but this time the difference between the measured and actual position values will be 180◦ , causing the motor
control to fail. There are various methods proposed in the literature to solve this problem. Applying the six
vectors shown in Figure 2 subsequently to rotate the rotor one full turn [16] and applying V3 = {0, 1, 0} and
V1 = {1, 0, 0} methods [17] can be listed as the most common methods for alignment. In the former method,
the rotor starts to rotate with the first vector applied in a different direction from the starting position and
stands in the last phase. In the latter method, first the V3 vector is applied to bring the rotor to phase-B,
and then vector V1 is applied to align with phase-A. If the rotor initially is in phase-B or negative B it may
not rotate with the first applied vector, but it rotates and aligns with phase-A when the second vector, V1 , is
applied. This method can be improved by applying the V2 vector between vectors V3 and V1 to better control
the process.

The amplitude and duration of the vector to be applied to bring the rotor to a desired position are
important. If the vector amplitude is not large enough, the rotor may not rotate, or if it is too large, the rotor
may rotate suddenly and uncontrollably. Depending on the inertia of the rotating system, sudden movements
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can damage the system or cause oscillations. For this reason, the magnitude of the voltage vector to be applied
must be calculated depending on the parameters of the motor and the load. However, it is not always possible
to determine an optimum voltage because the torque to rotate the rotor may also vary depending on external
factors such as temperature, friction, etc. In order for the alignment to be completed properly, the application
of the relevant vector must be continued for the time required for the rotor to reach the phase, or to stop the
oscillations of the rotor when it aligns with the phase. For these reasons, it is important to control the vector
to be applied during the alignment process.

There are other less common methods to determine the starting position of the rotor, too. For example,
a method based on the relative position information read from the incremental encoder was presented in [18].
In this method, a constant Iq reference value in the standard FOC algorithm is applied and the change in the
resulting angle θ is measured. A second value of θ is determined by repeating this method with another Iq

reference. The initial position of the rotor can then be calculated by proportioning the two angle values and
the two applied Iq references. When the motor has low friction and low inertia, the required Iq is low, causing
an increase in position calculation error.

2.2. Proposed method
The problem with the most commonly used method to align the rotor with phase-A is that when the voltage
is applied the rotor may move in an uncontrolled manner. For this reason, applying a controlled voltage is
proposed in this paper. Adding a new controller complicates the processor software. Therefore, one of the
controllers used in the classical FOC algorithm is used to control the voltage for alignment. Figure 3 shows
the abc, α β , and dq axis frames and the relative positions of the stator current and the rotor. If the rotor
angle θ is 0◦ , the d-axis is aligned with the motor phase-A, as shown in Figure 3. In the proposed method
the θ angle is always assumed to be 0◦ . In this case, applying a voltage to the d-axis is the same as applying
voltage to phase-A of the motor. In the proposed method, the magnitude of the voltage applied to the d-axis
is determined by the speed controller used in the FOC algorithm. The speed controller ensures that the rotor
stays under control throughout the alignment process.

Figure 3. The axis locations.
The FOC algorithm needs to be modified for the proposed control. The proposed modification is depicted
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in Figure 4. The modifications have been marked in Figure 4. First of all, the rotor angle θ is assumed to be
0◦ for the d-axis to align with phase-A. Unlike the constant torque angle algorithm, the output of the speed
controller generates the Id reference instead of the Iq reference. The Iq reference is set to 0. The speed
reference given here is determined by the characteristics of the motor. The magnitude of this speed reference
affects the length of the alignment process. A high speed reference may shorten the alignment process, but
it may cause the rotor to move suddenly. Therefore, an appropriate speed reference value must be selected
according to the system specifications.
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Figure 4. The algorithm of the proposed method.

The Id current reference generated by the speed controller produces a torque that will bring the rotor
into phase-A. Since the value of Id is varied by the speed controller, the rotor always stays under control. It
will stay aligned with phase-A after the alignment is completed even if the Id current increases, since stator
currents will not be able to generate torque. The speed controller keeps increasing the Id reference, but since
the rotor does not move the controller understands that the rotor is aligned with the phase-A when it detects
that the Id reference passed a certain value while the rotor is not rotating. When the alignment operation is
completed, the incremental angle encoder value can be reset. The normal operation starts and the classical
FOC algorithm is initiated.

The flowchart of the proposed alignment algorithm is shown in Figure 5. For the initial setting the rotor
angle θ is assumed to be 0◦ , the output of the speed controller is used as Id reference, and Iq reference is set
to zero. After the initial setting the alignment can start by applying a constant speed reference. Afterwards,
there are three possible situations. If the rotor does not move because the initial rotor position is either at 0◦

or 180◦ , Iq reference is applied to change the rotor position. If the rotor starts rotating in a negative direction
because of an initial rotor position between 0◦ and 180◦ , the speed control reference is multiplied by –1. If
the rotor starts rotating in the positive direction because of an initial rotor position between 180◦ and 0◦ , no
intervention is necessary until the end of the alignment. The end of the alignment process is recognized when
the speed becomes zero, at which time the output of the speed controller has its maximum value.
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Figure 5. The flowchart of the proposed method.

2.3. Problematic cases of using proposed alignment method and their solutions
Although the proposed algorithm is simple and can be applied successfully, it is possible that various problems
may be encountered depending on the initial position of the rotor. Solutions exist for these problems and they
will be explained here. Possible problems and their solutions are as follows:

• If the rotor is initially at a position between 0◦ and 180◦ , application of Id current starts the rotor to move
to phase-A (0◦ ) in the negative direction. In this case, the controller increases the output value because
of the negative speed feedback from the speed controller. As the output value of the speed controller
increases, the rotor accelerates in the negative direction. The rotor can swiftly pass phase-A, but since
the applied flux is on phase-A, the rotor goes back to phase-A. The motion is oscillatory and eventually
the rotor is aligned with phase-A as shown in Figure 6. This uncontrolled movement of the rotor is not
desirable. To avoid this problem, the sign of the speed reference is changed if the rotor speed is initially
sensed in the negative direction. The rotor is aligned with phase-A in the negative direction without any
oscillation in the rotor speed or position. For experimental results, the reader is referred to Section 3.

• If the rotor is in the opposite direction of phase-A (minus A) (180◦ ) at the beginning, there is no torque
due to the 180◦ angle between the stator current flux (in phase-A) and the rotor flux. Because the rotor
does not move, the output of the controller increases. When the value of Id reference reaches a certain
value, the alignment algorithm detects that the alignment is complete. In this case, the rotor position is
measured incorrectly to be 180◦ . Due to the 180◦ error, in the case of normal operation the required
flux is generated on the negative rather than positive q-axis. It causes rotation in the reverse direction.
Because of the motion in the opposite direction, the controller increases the Iq reference value and the
rotor rotates at maximum speed in the reverse direction. To solve this problem, a new statement is added
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Figure 6. The results obtained when motor initial position is about 90◦ relative to phase-A when the speed reference is
not changed; upper row speed (left), position (right). Lower row: d-axis and q-axis currents (left), alignment flag (right).

to the alignment method. If the rotor speed does not exceed a certain value after the alignment procedure
starts, it is understood that the rotor is initially at 0◦ or 180◦ . If the rotor is at 0◦ , there is no problem.
If the rotor is at 180◦ , the problem described occurs. For this reason, if the rotor does not rotate during
the alignment, the output of the speed controller is applied to Iq reference instead of Id reference for a
certain period of time and the rotor position is changed from 0◦ or 180◦ . Then the method described
above is applied and the rotor is aligned with phase-A. For experimental results, the reader is referred to
Section 3.

3. Experimental results

The proposed method has been tested in the laboratory. Two different motors, a DC power supply Agilent
E3634A and AVAR servo driver unit, which include a Texas Instruments TMS320F28335 digital signal processor
and MOSFET inverter block, have been used in the experiments. A motor with incremental encoder is used
for the first application of the proposed alignment method. The experimental setup is shown in Figure 7.
Parameters of the motor are given in Table 1.

The rotor speed, rotor position, d and q axis currents, and the alignment complete flag graphics have
been recorded for each experiment. These graphs are given separately for the following cases in which different
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Figure 7. The experimental setup of the motor with incremental encoder.

Table 1. Parameters of the motor with incremental encoder.

Producer and model MAXON – EC22
Rated voltage 24 V
Rated speed 32200 rpm
Line-line resistance 612 mohm
Line-line inductance 0.0542 mH
Number of encoder pulses per revolution 512
Number of pole-pairs 3

starting positions of the rotor have been tried. The results obtained when the motor initial position is about
90◦ relative to phase-A are shown in Figure 8. The results obtained when motor initial position is about 180◦

relative to phase-A are shown in Figure 9. The results obtained when motor initial position is about –90◦

relative to phase-A are shown in Figure 10. In these figures, the upper left graphs give the rotor speed, the
upper right graphs give the rotor position, the lower left graphs give the stator current in dq axis frame, and the
lower right graphs are the alignment flags that mark the end of the alignment process. As seen in Figure 8, the
sign of the speed reference is changed if the rotor speed is initially sensed in the negative direction. The rotor
is aligned with phase-A in the negative direction without any oscillation in the rotor speed or position. As seen
in Figure 9, the algorithm recognizes that there is no motion for nearly 250 ms and applies the Iq reference for
a few milliseconds. Afterwards, the alignment procedure starts again and the alignment is completed at nearly
550 ms.

3.1. Comparison of alignment methods
In this section, the proposed alignment method is compared with the alignment method in which V3 and V1

vectors are applied. This method is also called the B-A method because it requires the application of a voltage
first to phase-B and then to phase-A. In order to compare the methods, a motor with a resolver has been used
to measure the rotor position correctly. The experimental setup is shown in Figure 11. Parameters of the motor
given in Table 2. In order for the comparison to be clear, the motor was loaded with a high inertia load. Several
experimental measurements have been taken but only graphs for about 90◦ and 180◦ initial position relative
to phase-A are given in this paper. All the other results are similar to those shared here. The rotor position
and rotor speed results of the B-A and novel methods are given Figure 12 and Figure 13.

The following conclusions can be made from the test results.
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Figure 8. The results obtained when motor initial position is about 90◦ relative to phase-A; upper row speed (left),
position (right). Lower row: d-axis and q-axis currents (left), alignment flag (right).

Table 2. Parameters of the motor with resolver.

Producer and model KOLLMORGEN - D061A
Rated voltage 230 Vac
Rated speed 500 rpm
Line-line resistance 2.9 ohm
Line-line inductance 6.8 mH
Number of pole-pairs 1

• Since the duration of the alignment process is not known beforehand, the time to apply the voltages
is determined by giving a certain margin of error when applying the B-A method. In the experiments
performed, this time was chosen as 1 s for each voltage. For this reason, the alignment process for all
cases, regardless of the starting position of the rotor, takes 2 s in total with the B-A method. On the
other hand, the alignment process varies depending on the starting position of the rotor in the proposed
method. However, in the case where the rotor is farthest from phase-A, it takes less than 1 s (≈0.9 s).
This is shown in Figure 13. When the initial position is about 90◦ relative to phase-A the alignment takes
about ≈ 0.45 s, which is less than half. This is shown in Figure 12. By increasing the speed reference
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Figure 9. The results obtained when motor initial position is about 180◦ relative to phase-A; upper row speed (left),
position (right). Lower row: d-axis and q-axis currents (left), alignment flag (right).

value given in the proposed method, the alignment process can be completed in a shorter time.

• In the B-A method, the applied voltage can be increased in order to reduce the alignment time. However,
the increase in voltage may cause the rotor position overshoot or oscillation around 0◦ . The position
overshoot is seen in Figure 12 and Figure 13. Since the motion is controlled in the proposed method, no
such oscillations will occur.

• The speed of the rotor instantly increases to 1500 ◦/s in the B-A method, as seen in the graphs of
Figure 12 and Figure 13. In the proposed method the speed is controlled and does not exceed 400 ◦/s .
Although the maximum speed of the rotor in the proposed method is slower than the maximum speed of
that in the B-A method, the alignment is completed in a shorter time.

• In the B-A method, the voltage value varies due to the torque required to align the rotor depending on the
environmental conditions and the load change. Changing conditions can cause a misalignment because
the voltages applied in the B-A method are constant. In the new method, due to the use of the speed
controller, the applied voltage varies according to the changing conditions and the alignment process is
performed successfully.
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Rotor Speed Rotor Position
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Figure 10. The results obtained when motor initial position is about minus 90◦ relative to phase-A; upper row speed
(left), position (right). Lower row: d-axis and q-axis currents (left), alignment flag (right).

Figure 11. The experimental setup for the motor with resolver.
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Figure 12. The results of B-A and novel methods applied to the motor with resolver. Initial position is about 90◦

relative to phase-A. Upper: rotor position. Lower: rotor speed.
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Figure 13. The results of B-A and novel methods applied to the motor with resolver. Initial position is about 180◦

relative to phase-A. Upper: rotor position. Lower: rotor speed.

4. Conclusion
Knowing the rotor position is very critical when controlling PMSMs. There are several methods to determine
the rotor initial position or to align the rotor to a known position if an incremental encoder is used. In this
paper, a new method utilizing a modified version of the FOC to determine the initial rotor position is proposed.
The proposed method is more reliable than the existing ones since the motion is under complete control and
it is not affected by environmental conditions. Experimental work shows that the proposed method eliminates
the sudden movement and oscillation problems that are frequently observed in other methods. The useful life
and the reliability of the system may be extended by the prevention of sudden movements. In addition, since
the alignment process is shorter, the motor control can be started earlier with the proposed method.

It has been observed that there are some special cases needing attention depending on the initial position
of the rotor with the proposed method. In these special cases undesired results may be faced. Solutions have been
developed for these possible problems and the proposed algorithm has been revised accordingly. Experimental
results show that these problems were eliminated.

The work presented in this paper shows that incremental encoders with small size and low cost could be
used more reliably by using the proposed alignment method in position control systems.
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