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Abstract: High dimensionality of data is a challenging scenario in the current era as the digital transformation of
the society is in process. This problem is particularly complex in social networks as in such systems, it is coupled
with other challenges such as interdependency of data points and heterogeneity of data sources. To overcome such
disadvantages and aid in creation of downstream applications for social network analysis, network embedding techniques
have been proposed. These techniques, in themselves, are not important but are the backbone of various network-based
applications. Due to the scientific interest in this domain there has been a mushrooming of embedding techniques. It
has therefore become crucial to learn the intuitions behind these techniques in order to compare and contrast them.
The current analytical study is drawn with the following broad objectives: providing practitioners with understanding
of network representative learning mathematical study of state-of-the-art techniques and highlighting the evolution of
the literature in this field.
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1. Introduction
Representing actual or synthetic structures in the form of a social network (graph) has advantages associated
with information processing [1, 2]. However, such a representation leads to interdependency among the various
components of the data [2]. Due to such interdependency, it is not possible to design parallel or distributed
architectures for processing the data [2]. Machine learning or deep learning frameworks assume that the data
points are independent and identically distributed in a vector area. Hence, these techniques cannot be applied
directly to social network data [3]. This is another disadvantage caused due to the ”vertex interdependency” in
social networks.

A social network X(t) has elements called as ‘covariates’ (side information or node attributes) that
describe a node (vertex) [4, 5]. If a large number of covariates are present for each vertex the dimensionality of
the data also becomes high (curse of dimensionality) [6–8].

The method used to address the issues of interdependency and high dimensionality in social networks
is known as network representative learning (NRL). A NRL framework provides low-dimensional vector rep-
resentations (embeddings) from high-dimensional data. These embeddings are representations of the vertices
in a low-dimensional vector space. After the representations are learned, the inherent coupling between the
nodes of the social network is no longer present and this makes the data amenable for further evaluation and
downstream network applications viz. link prediction, clustering, node classification, and network visualization
as shown in Figure 1.
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Before network representation learning methods were proposed, social network analysis (SNA) was
performed by means of extensive feature engineering. This required use of kernel functions or graph statistics
making the entire exercise task-dependent. NRL frameworks eliminated the need for feature engineering and
made SNA task-independent.

Figure 1. A comparison between feature-engineering-based network analysis and NRL-based network analysis. The
image was extracted from Cui et al. [2]

The key challenge for NRL frameworks is preserving similarities of the original dimensions in the lower
dimension space (latent dimensions). This is done by means of an encoder function that learns complex nonlinear
relationships within the input data. These learned relationships are then used to represent (embed) the high
dimension information into low dimension space. The advantage of NRL frameworks is that the produced
graph embeddings do not have the aforementioned disadvantages that are present in social network data. The
four classes of NRL techniques discussed in the literature are adjacency preserving methods [9–11, 13–18, 36],
multihop distance preserving methods, neighborhood overlap preserving methods, and random walk occurrence
preserving methods [19–28].

The intention of this paper is to provide a mathematical background and intuition behind the state-of-the-
art network embedding models. It also describes the evolution of NRL frameworks from proximity preserving
”shallow encoder” frameworks to deep learning frameworks [29–32]. Deep learning frameworks have achieved
performance matching the state-of-the-art NRL techniques. The rest of the paper is organized as follows:
Section 2 provides definitions and the problem statement of embedding techniques, a detailed taxonomy of the
algorithms is given in Section 4, and the survey is concluded in Section 7.

2. Preliminaries
Given a graph G = (V,E) , the aim is to represent each node u in a low-dimensional vector space yu by learning
a mapping f : V → Rd , namely yv = f(v)∀v ∈ V . It is required that d << n and the function f preserve
a proximity measure defined on the graph G . Intuitively, if two nodes u and v are “similar” in the original
graph G , their embeddings yu and yv should be ”close” to each other in the embedding space. Mathematically,
”closeness” in the embedding space is denoted by dot product of the vectors i.e. zTu zv = 1 . However, there is
no uniformity in defining the concept of “similarity” in the original graph.
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3. Background

3.1. Goal of NRL frameworks

Given a social network G(V,E) as shown in Figure 2 with dimensions IR|V |∗|V |∗d , NRL frameworks learns a
representation of it into a low dimension (latent) space IR|V |∗k where d <<< k . The nodes of the original
network are learned into real valued vector embeddings IRk .
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Figure 2. Zachary’s Karate Club social network with communities. The original network represented in a low dimension
space such that vector embeddings of the nodes in the same community in the original network are located close to each
other in the low dimension space. The image was extracted from Perozzi et al. [19]

3.2. Components of NRL Frameworks

NRL frameworks consist of three components as given in Figure 3: An encoder (it converts nodes of the original
social network into real valued vertex embeddings), a similarity measure in the original network (this similarity
is preserved in latent space such that nodes that are ”similar” in the original network are also ”similar” in
latent space) and an optimization process (this trains the parameters θ of the encoder to capture the similarity
measure in the latent space).

Figure 3. Components of NRL Frameworks : The several classes of NRL techniques are due to differing definitions of
the concept of similarity in the original space.
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3.3. Types of NRL Frameworks
Adjacency preserving methods define similarity between two nodes u, v in the original network as the presence
of an edge between them in the adjacency matrix A i.e. Au,v = 1 . Such nodes should have dot product of
the vertex embeddings same as zTv .zu = 1 when Au,v = 1 . The parameters θ of the encoder are trained by an
optimization process such as Matrix factorization or gradient descent to capture this similarity and minimize
the loss L as given in Eq. 1.

L =
∑

(u,v)∈(V ∗V )

||zTu zv −Au,v||2. (1)

Multihop distance preserving techniques define similarity in the original social network as the existence of
a k -hop path between two nodes u, v i.e Ak

u,v = 1 where Ak
u,v is the k -hop adjacency matrix. The optimization

process trains the encoder to minimize the loss function given in Eq. 14. In effect, the encoder learns vertex
embeddings to preserve the k -hop distance between the nodes.

L =
∑

(u,v)∈(V ∗V )

||zTu zv −Ak
u,v||2. (2)

Neighborhood overlap preserving techniques define similarity in the original social network as the degree
of overlap of neighborhoods N of two nodes Nu ∩ Nv . Using an optimization process, the encoder is trained
to minimize the loss function given in Eq. 3. Thus, the encoder learns vertex embeddings to preserve the
neighborhood overlap matrix or second-order proximity between nodes.

L =
∑

(u,v)∈(V ∗V )

||zTu zv −Nu,v||2. (3)

Random walk occurrence preserving techniques define similarity in the original social network as the
probability of reaching a node v by a random walk from node u i.e. P (v|u) . The encoder learns vertex
embeddings to preserve the random walk cooccurrence probability between the nodes as given by Eq. 4.

L =
∑

(u∈V )

∑
(v∈Nr(u))

−log(P (v|zu)). (4)

4. Network embedding methods
4.1. Adjacency preserving techniques
Isomap determines the neighbors of each point. It constructs a neighborhood graph and uses it to compute
the shortest path between two nodes. Nodes having shortest path are ”similar” in original high-dimension
space. Isomap utilizes this nearest neighborhood similarity matrix for obtaining Z . The key problem of
Isomap is its high complexity due to the computation of pair-wise shortest paths. Locally linear embedding
(LLE) eliminates the need to estimate the pairwise distances between vertices. LLE transforms data into an
affinity graph based on the feature vectors of nodes, before applying SGD to train embeddings [33]. Other
adjacenc- based methods are landmark classical scaling [34], stochastic neighbor embedding (SNE), singular
valued decomposition, and matrix factorization [13]. The key drawback of adjacency-based techniques is that
they generate node embeddings that overfit the adjacency matrix of the original graph. This causes failure
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in detecting inconspicuous connections; hence, this category of techniques cannot be used for downstream
network applications like link prediction. However, for applications such as graph reconstruction, adjacency-
based methods are preferred. Other drawbacks are O(|V |2) run-time ( |V |2 node pairs have to be considered),
O(|V |) parameters and consideration of only direct, local connections (tendency of preserving only first order
proximity).

4.2. Multihop distance preserving techniques
Cao et al. proposed GraRep which accepts as input the adjacency matrix A of the graph, maximum transition
step (hops) K , log shifted factor β , and dimension of representation vector d . For each transition step, the
k -step log probabilistic matrix is computed Ak

i,j as shown in Eq. 14. This matrix is used as an approximation
for the k -hop similarity matrix.

Ak
i,j = max(log(

(Ai,j/di)∑
l∈V (Al,j/dl)k

)k − α, 0). (5)

The SVD of this matrix gives W k which has representation of current vertices as column vectors.
Concatenation of W k for all k ’s gives the final graph representations [23]. Tang et al. proposed “LINE” which
is suitable for multiple types of information networks: undirected, directed, and/or weighted. It preserves
first-order proximity (k = 1) i.e. closeness by distance using tie strength as well as second-order proximity
(k = 2) i.e. global level proximity using shared neighborhood. The authors argue that the objective function
preserves both the local and global network structures. An edge-sampling algorithm is proposed instead of
classical stochastic gradient descent to achieve optimization [9].

A second category of multihop based techniques use k -hop neighborhood overlap as a measure of
similarity. Measures such as Adamic-Adar score or Jaccard similarity are used to construct a neighborhood
similarity matrix S .

L =
∑

(u,v)∈(V ∗V )

||zTu zv − Su,v||2 (6)

Ou et al. proposed high-order proximity preserved embedding (HOPE) for preserving asymmetric
transitivity in directed graphs is one such technique. It uses a neighborhood similarity matrix S calculated by
Jaccard similarity and trains embeddings that capture this similarity in low dimension space. The objective
function of HOPE is given in Eq. 7. It is the L2 -norm of the loss function which needs to be minimized. HOPE
utilizes SVD to minimize the loss function [15].

min||S − Us.U tT ||2F , (7)

S =M−1
g .Mt, (8)

Mg = I − β.A, (9)

Mt = β.A, (10)

where
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1. S = high order proximity matrix in Eqs. 7 and 8

2. Us, U t = source and target embedding vectors

3. Mg,Mt = polynomial of adjacency matrix A in Eqs. 9 and 10

4. I = identity matrix, β = decay parameter of Katz index

Shi et al. demonstrated the applicability of neighborhood overlap matrix to calculate embeddings for
heterogeneous information networks in ‘ASPEM’. The authors argued that it mitigated the incompatibility
among aspects via considering each aspect separately. Each aspect was defined as a unit representing one
underlying semantic facet of the system. The applicability of this network was on graphs G = (V,E) with a
node type mapping ϕ : V → T and an edge type mapping ψ : E → R where nodes are of multiple types |T | > 1

and edges |R| > 1 to are of multiple types [35]. Heterogeneous preference embedding model was proposed by
Chen et al. for embedding a user-entity social network. The entities were song tracks, albums, singers which the
user listened to. The edge weights of the social network represented the frequency of user to entity interactions
i.e. rating or listening times as shown in Eq. 11. Neighborhood overlap between two users reflected their
preferences towards the entities and the learned representations would reflect this [12].

Pr(vj |ϕ(vi)) =
{
1 ifvj ∈ Context(vi)
0 otherwise

(11)

O = −
∑
i,j∈S

wi,j logp(vj |ϕ(vi)) + λ
∑
i

||ϕ(vi)||2, (12)

where

• ϕ(vi) = vector representation of vi

• w indicates the weight of the edge

• S is a set of sampling pairs

• λ weight to prevent overfitting

• vj ∈ Context(vi) (in)direct connection to vi or sequences of nodes in neighborhood

• Pr(vj |ϕ(vi)) posterior probability

• O objective function optimized using stochastic gradient descent as shown in Eq. 12

LANE [10] has a joint objective function based on learning embeddings by utilizing two similarity matrices
(S1, S2 ). S1 is the adjacency matrix and S2 is attribute similarity matrix calculated pairwise using Jaccard
similarity.

L =
∑

(u,v)∈(V ∗V )

||zTu zv − S1
u,v||2 + ||zTu zv − S2

u,v||2 (13)
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AANE [11] utilizes a similarity matrix based on attribute matching of the pair of nodes to learn embed-
dings.

L =
∑

(u,v)∈(V ∗V )

||zTu zv −ATTu,v||2 (14)

Similar to adjacency-based measures, methods of this category of techniques also have to iterate over V 2

pair of nodes. In addition to that, deterministic node similarity measures have to be hand-designed which is
the key drawback of multihop-based techniques.

4.3. Random walk cooccurrence preserving techniques

These techniques perform random walks on the graph starting from different nodes in the network. A multiset
consisting of nodes visited on random walks is created. A three-layered neural network with a single hidden
layer (no activation function) is used for generating embeddings from the random walks. The ANN is trained
using one-hot-encoded (OHE) node vectors as shown in Figure 4. Each training pair is x, y where x is the OHE
for the starting node of the random walk and y ∈ R|V | is vector of nodes such that yi = 1 if ith node is present
in the random walk. The final layer of the neural network is a softmax layer that outputs the probabilities of
nodes cooccurring on random walks from the input node (Eq. 15). The weights of the ANN are optimized by
back-propagation to minimize the loss specified in Eq. 15. After the optimization, the weights of the hidden
layer are the node embeddings [37]. The techniques of this category differ in the strategies used to run random
walks on the original graph.

L =
∑

(u∈V )

∑
(v∈Nr(u))

exp(zTu zv)∑
n∈V exp(z

T
u zv)

. (15)

Perozzi et al. proposed WALKLETS for learning multiscale representations of vertices in a network. The
authors argue that multiscale relationships can be obtained by subsampling short random walks on the vertices
of a graph. By ‘skipping’ over steps in each random walk, WALKLETS generates a corpus of vertex pairs which
are reachable via paths of a fixed length. This corpus is then used to learn a series of latent representations
using the ANN, each of which captures successively higher-order relationships from the adjacency matrix [38].
DeepWalk first generates random walks on the social network. Each walk contains many vertices in a line. Then,
each walk is treated as a sentence and applied to the ANN in Figure 4. However, a drawback of DeepWalk
is that it lacks a clear objective function and also it is designed only for networks with binary edges [19]. As
DeepWalk uses plain random walks, it cannot capture second-order proximity of nodes, a modified strategy for
running random walks was proposed in Node2vec by Leskovec et al.. Random walks used in Node2Vec alternate
between depth-first (DFS) and breadth-first search (BFS) on the graph in a random manner. The authors
speculated that such a hybrid strategy captured both first-order (using DFS) and second-order (using BFS)
proximity. Node2vec’s sampling strategy accepts four arguments: Number of random walks to be generated
from each node in the graph n ; number of nodes in each walk l ; P return hyperparameter; q in-out hyper
parameter, context window size and number of iterations. The algorithm for the random walk generation will
go over each node in the graph and generate n random walks of length l . If a random walker transitions
from node t to node v the probability to transition from v to any one of his neighbors is edgeweight ∗ α
(normalized), where α is dependent on the hyperparameters. Using the sampling strategy, node2vec generates

4774



NERURKAR et al./Turk J Elec Eng & Comp Sci

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT  PROJECTION  OUTPUT

w(t)

 INPUT  PROJECTION      OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

   CBOW   Skip-gram

Figure 4. Use of ANN to generate node embeddings in random-walk-based models (word2vec or skipgram model). The
CBOW architecture predicts the current word based on the context, and the Skipgram predicts surrounding words given
the current word. The image was extracted from Mikolov et al. [37].

“sentences” (directed subgraphs) which are multisets of vertices. These are then used to train the word2vec
model for obtaining embeddings [20].

Gat2vec proposed by Sheikh et al. decomposes the social network into two data structures viz. social
network of connections Gs and bipartite graph of nodes and attributes Ga . It takes parameters νs, νa which
are the number of random walks per node in Gs, Ga respectively, length of random walks on Ga, Gs given
by λs, λa , context window c and embedding size d [22]. Random walks on both graphs are performed and
the results are provided to Skipgram neural network to obtain the vector embeddings. Yang et al. proposed
text-associated DeepWalk for derived network embedding preserving network structure and text information
associated with nodes [39]. The authors prove the equivalence of DeepWalk and the Matrix factorization given
in Eq. 16 (W , H are the learned embeddings):

min
W,H

||M −WTH||2F +
λ

2
(||W ||2F + ||H||2F ). (16)

This equation is modified to include the text attribute information matrix T as given in Eq. 17. The
vertex embeddings are formed by appending w with HT after the factorization in Eq. 17 is solved.

min
W,H

||M −WTHT ||2F +
λ

2
(||W ||2F + ||H||2F ). (17)

Random walk cooccurrence preserving techniques have O(|E|) iterations and hence are considered to be
more efficient than adjacency preserving and multihop distance preserving techniques. The other techniques
belonging to these three categories of network representation learning techniques are listed in Table 1. The
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approaches shown in Table 1 require that all nodes in the graph should be present during training of the
encoder. Hence, these approaches are inherently transductive in nature and do not naturally generalize to
unseen nodes [40, 41]. The embedding matrix learned by these encoders is Z = IR|V |∗k . Each node of the social
network is present in Z as a k -dimension column vector.

The reason behind calling these frameworks as “shallow encoder”-based frameworks is that to obtain the
embedding of a node using the trained encoder, a simple look-up is needed. This is in contrast with “deep
encoder”-based techniques that map the nodes to their embedding vectors using a complex nonlinear mapping
function. As the parameters used by the “deep encoder”-based frameworks for mapping the nodes to their
embedding vectors, they are more efficient compared to “shallow encoder”-based frameworks.

In summary, the “shallow encoder”-based NRL techniques fail to generate embeddings for nodes that
were not present during training (absence of transductive nature). Moreover, none of such techniques con-
sider unstructured data associated with the nodes in generating embeddings. Finally, there is an absence of
parameter sharing that leads to additional parameters (O(|V |)) increasing computation time. To overcome
these drawbacks, deep learning techniques that utilize graph convolutional neural networks, recurrant neural
networks based on LSTM, and GRU were proposed.

Table 1. Shallow-encoder-based network representative learning frameworks.

Name Optimization objective Class of framework
Isomap [33] Eq. 1 Adjacency
Locally linear embedding (LLE) [34] Eq. 1 Adjacency
Landmark classical scaling [34] Eq. 1 Adjacency
FSCNMF [13] Eq. 1 Adjacency
LANE [10] Eq. 1 Adjacency
AANE [11] Eq. 1 Adjacency
HOPE [15] Eq. 14 Multihop distance
VERSE [14] Eq. 14 Multihop distance
HPE [42] Eq. 14 Multihop distance
GraRep [23] Eq. 3 Neighborhood overlap
LINE [9] Eq. 3 Neighborhood overlap
ASPEM [35] Eq. 4 Random walk cooccurrence
gat2vec [22] Eq. 4 Random walk cooccurrence
DeepWalk [19] Eq. 4 Random walk cooccurrence
Walklets [38] Eq. 4 Random walk cooccurrence
struc2vec [43] Eq. 4 Random walk cooccurrence
TADW [39] Eq. 4 Random walk cooccurrence
graph2vec [44] Eq. 4 Random walk cooccurrence
node2vec [20] Eq. 4 Random walk cooccurrence

4.3.1. Deep-learning-based NRL models

Graph convolutional neural networks (GCNNs) are used to generate node embeddings based on aggregating
information from local neighborhoods as given in Eq. 18. Every node in the social network has a unique
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computation graph. Neighborhood aggregation can be viewed as a center-surround filter [41, 45, 46] which is
mathematically related to spectral graph convolutions [29, 30].

hvk = σ(Wk

∑
u∈N(v)

hk−1
u

|N(v)|
+Bkh

k−1
v ),∀k > 0, (18)

where

• hkv - kth layer embedding of v

• σ - Nonlinear activation function

•
∑

u∈N(v)
hk−1
u

|N(v)| - Average of neighbors previous layer embedding

• hk−1
v - k − 1th layer embedding of v

• Wk, Bk - Trainable matrices of weights and biases of layer k

The same aggregation parameters Wk, Bk are shared for all nodes. The number of model parameters is
sublinear in |V | and can be generalized to unseen nodes. The key distinction between GCN-based techniques
is the method of aggregating neighbor information across the layers.

The GCN architecture proposed by Kipf et al. uses a variation of the neighborhood aggregation approach
given by Eq. 19 [30]. Empirically, the authors found that the best results were obtained by using the same
transformation matrix for self and neighbor embeddings. Compared to basic neighborhood aggregation, Kipf
et al. used a normalization that varied across different neighbors.

hvk = σ(Wk

∑
u∈N(v)∪u

hk−1
u√

|N(v)||N(u)|
). (19)

Hamilton et al. proposed GraphSAGE [40] that generates embedding for each node using a modified
GCNN that relies on an aggregation function that maps two sets of vectors to a single vector as given in Eq.
20.

hvk = σ([Wk.AGG(h
k−1
u ,∀u ∈ N(v)), Bkh

k−1
v ]). (20)

Variants of GraphSAGE are mean, pool (transform neighbor vectors and apply symmetric vector func-
tion), and LSTM (apply LSTM to random permutation of neighbors). The key difference between these ap-
proaches is the type of aggregation function used in them as given in Eqs. 21–23.

AGG =
∑

u∈N(v)

hk−1
u

|N(v)|
, (21)

AGG = γ(Qhk−1
u ,∀u ∈ N(v)), (22)

AGG = LSTM([hk−1
u ,∀u ∈ π(N(v))]). (23)

4777



NERURKAR et al./Turk J Elec Eng & Comp Sci

4.3.2. ohmNet :
Zitnik et al. used graph convolutional neural network for constructing a link prediction system for medicine to
side-effect prediction. The heterogeneous graph of drug-protein interaction was constructed with side-effects as
the edges. The architecture has an encoder to generate graph embedding and a decoder to translate embedding
information for predicting side-effects [31]. OhmNet [32] is an unsupervised feature learning technique for
multilayer network.

P (vi|vj) =
exp(uTi ∗ uj)∑

i′∈A exp(u
T
i′ ∗ uj)

. (24)

The second-order proximity between a pair of vertices vi, v
′
i is given by p(.|vi), P (.|v′i) . The conditional

distribution p(.|vi) is to be matched to its empirical distribution p̂(.|vi) which can be achieved by minimizing
Eq. 25 using KL divergence d(., .) . λj is the degree of the vertex and p̂(vi|vj) = wi,j

degj
.

O =
∑
j∈B

λjd(p̂(.|vi), p(.|vi)), (25)

O = −
∑
i,j∈E

wi,j logp(vj |vi). (26)

Eq. 26 is optimized using stochastic gradient descent with negative sampling or edge sampling [47].

4.3.3. Semisupervised embedding in attributed networks with outliers (SEANO)

Liang et al. proposed a method to learn a low-dimensional vector representation that systematically captures
the topological proximity, attribute affinity, and label similarity of vertices in a partially labeled attributed
network. The architecture of the model consists of an artificial neural network with two input layers and two
output layers. Nonlinear activation functions are used to transform the features into a nonlinear low-dimensional
space. Back-propagation and mini-batch stochastic gradient are used to minimize the objective function.

4.3.4. VERtex similarity embeddings (VERSE)

Tsitsulin et al. proposed VERtex similarity embeddings (VERSE), a neural-network-based network embedding
model. Given a graph, a similarity function simG and the embedding space dimensionality d , the output
embedding matrix W is set to N(0, 1/d) . The objective function is optimized using gradient descent. This is
done by repeatedly sampling a node from the positive distribution P , sample the simG (e.g., pick a neighboring
node), and draw s negative examples. P and Q are ∼ U(1, n) . However, the authors have not given the
justification for the time O(dsn) and space complexity O(n2) ; d is the latent space dimensionality, n the
number of nodes, m the number of edges, and s the number of samples used. [14].

GCNN usually are 2-3 layers deep; hence, it is a challenge to build models with many layers of neighbor-
hood aggregation [48]. The issues that are seen in GCNNs with multiple layers are overfitting and vanishing or
exploding gradients during back-propagation. Li et al. used recurrent neural networks to resolve these issues.
The authors proposed Gated GCNN approach that allowed for parameter sharing across various layers of the
neural network. Gated GCNN used neighborhood aggregation with RNN state update as follows:
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• Get “message” from neighbors at step k - mk
v =W

∑
u∈N(v) h

k−1
u

• Update node “state” using gated recurrent unit (GRU) such that new node state depends on the old state
and the message from neighbors - hkv = GRU(hk−1

v ,mk
v)

This allows complex information about global graph structure to be propagated to all nodes.

5. Obstacles in deep learning architectures

Theoretically, deep neural networks are accurate and this accuracy increases with additional hidden layers [29].
However, practically in deep neural networks the problem of vanishing or exploding gradients is observed. This
hampers convergence [49]. As the depth of the networks increases, the number of parameters also increase
(∼ 106 − 107 ) and the accuracy during optimization gets saturated. Adding additional layers in such scenario
hampers the training accuracy while increasing the training time.

5.1. Summary
Representative learning techniques have to reliably overcome challenges such as link sparsity, scalability, sparsity,
and unreliability of side information, and have versatility to learn from complex graph structures.

The classical structure preserving techniques viz. SVD, PCA, NNMF tend to overfit the adjacency matrix
and could not be used for applications that require capability to make inferences from network structure viz.
link prediction. After Skipgram model was proposed in 2000, random-walk-based methods were developed.
These were first-order as well as second-order proximity preserving. The chief drawback of these techniques was
the presence of large number of parameters that made them parameter-dependent. GCNN-based techniques
were proposed in 2016 and were found to match the results of state-of-the-art network embedding techniques.
The key advantage of these methods was the general architecture of CNNs that was applicable across social
networks of diverse domains. GCNN could be used with both social networks with and without attributes.
Graph neural networks (GCNs), however, were found to be computationally expensive or requiring the use of
heuristics to apply them to large graphs. It was also observed that GCN techniques like GraphSAGE that were
proposed for massive graphs (n > 106) were not applicable on smaller or denser graphs. Another drawback of
GCN (or ANN)-based techniques is that when the data is in the form of a graph structure, stochastic gradient
descent for parameter tuning and back-propagation cannot be applied in a straightforward manner.

Network embedding methods have mushroomed in the literature; however, there is no universal accept-
ability to any particular technique as each has its own advantages and drawbacks. As longitudinal data becomes
available on platforms such as Facebook, Twitter, and LinkedIn, dynamic network embedding frameworks too
shall become a reality. Currently, however, most of the frameworks that analyze social networks are static
(cross-sectional).

6. Datasets
6.1. Konect
Institute of Web Science and Technologies at the University of Koblenz–Landau provides a repository for network
data from diverse sources such as social networking sites, gene expression, botany, e-commerce, affiliation,
authorship, citation, folksonomy, human contact, communication, infrastructure, interaction and semantics
[50, 51].
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6.2. SNAP
SNAP is the network analysis platform in Python and C++ of Stanford University. It also has close to 50 large
network datasets from diverse fields such as social networks, web graphs, transportation networks, hyperlink
networks, citation networks, collaboration networks, and transmission networks [20].

7. Conclusion
Social networks have become ubiquitous as representation models for various real and synthetic systems.
However, when data is represented in the form of a graph there are inherent challenges associated with
processing it. These challenges are interdependency between data points and high dimensionality. To overcome
these challenges, network science literature uses representation learning frameworks. With the use of such
frameworks, the high-dimensional network structure is converted to 2D vector representations. In this form,
the interdependency between data points no longer exists and downstream-network-based applications can be
developed using machine learning.

With the abundance of network embedding frameworks available in the literature, it is necessary to
understand the advantages and disadvantages or intuitions behind these methods before they can be applied
for a particular case study. Proximity preserving methods require designing similarity measures and random
walk-based methods require designing a strategy for running the random walker. Hence, these are parameter-
dependent. Deep learning (DL)-based methods of NRL using convolutional neural networks, recurrent neural
networks (LSTM and GRU) do not face such drawbacks. It is found that these frameworks achieve state-of-
the-art representation learning accuracy on social networks and at the same time require less parameters due
to parameter sharing. If challenges related to high computational complexity and optimization process are
overcome, then DL-based methods can become the backbone of social network applications.
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