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Abstract: Predictive emission monitoring systems (PEMS) are important tools for validation and backing up of costly
continuous emission monitoring systems used in gas-turbine-based power plants. Their implementation relies on the
availability of appropriate and ecologically valid data. In this paper, we introduce a novel PEMS dataset collected over
five years from a gas turbine for the predictive modeling of the CO and NOx emissions. We analyze the data using a
recent machine learning paradigm, and present useful insights about emission predictions. Furthermore, we present a
benchmark experimental procedure for comparability of future works on the data.
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1. Introduction
The increasing demand for energy had a double negative impact on the environment both through increasing
deforestation and increasing carbon and flue gas emissions. Thanks to the increased environmental awareness
in both public opinion and political circles, the Paris Convention on Climate Change1 was adopted by 196
participating nations. The convention aimed to reduce the global greenhouse emissions and the signing parties
have already passed rigorous environmental laws, including tax implementation for carbon emissions2.

Being the core issue of the convention, air pollution poses a vital threat. The term “air pollutant” covers
all substances which may harm living beings. The combustion processes of fossil fuels used in power plants and
vehicles comprise the major portion of air pollution. NOx (NOx = NO2 + NO) are considered the primary
pollutants of the atmosphere, since they are responsible for environmental problems such as photochemical
smog, acid rain, tropospheric ozone, ozone layer depletion, and eventually global warming [1]. In addition to
these environmental catastrophes, they cause various health problems in humans exposed to high concentrations
of these gases [1].

An important source of harmful pollutants (NOx and CO) released in the atmosphere is the combustion
process in the power industry [1, 2]. Therefore, there is a special concern on reducing the emissions from power
plants. These emissions are restricted within certain limits by rigid environmental rules in different parts of the
world [3]. European Union (EU) restricts the flue gas emissions (i.e. NOx, CO, and dust) by Large Combustion
∗Correspondence: kaya.heysem@gmail.com
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1Framework Convention on Climate Change (2015). Adoption of the Paris Agreement [online]. Website http://unfccc.int/
resource/docs/2015/cop21/eng/l09r01.pdf [accessed 26 July 2019].

2Carbon Tax Center [online]. Website http://www.carbontax.org/ [accessed 26 July 2019].
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Plant Directive and its replacement Industrial Emissions Directive (IED) that took effect in 2016 for power
plants having higher than 50 MW power. According to IED, the flue gas concentrations of NOx and CO must
be measured continuously from each combustion plant exceeding a total capacity of 100 MW [2]. Moreover,
NOx and CO emissions are limited to 25 ppmdv (parts per million by dry volume) by the EU when natural gas
is used as fuel [4].

It is important to monitor the NOx and CO pollutants emitted during combustion operations in a power
plant. To this end, three solutions are developed to monitor flue gas emissions from a combustion unit: i) periodic
measurements, ii) continuous emission monitoring system (CEMS), or iii) predictive emission monitoring system
(PEMS), respectively. Periodic measurements are typically performed with calibrated equipments by emission
testing laboratories, with moderate costs. In CEMS, the emission monitoring equipment (e.g., sensor set) is
installed on-site. CEMS provides real-time information on emissions gathered directly from sensors. The validity
of these measurements depend on proper maintenance and calibrations that should be conducted according to
the standard procedures. PEMS, on the other hand, is an expert system that takes as input some process
variables (e.g., ambient temperature, turbine inlet temperature, etc.) and uses predictive models trained on
past data to estimate emission components. Despite increasing research, there is no accepted the European
Committee for Standardization (CEN)3 standard for PEMS yet, but preparations are known to be underway
by CEN/TC 264/WG 37 [2].

In this paper, we present the following contributions on PEMS. We first introduce a novel flue gas
emission dataset collected from five years (from 01/01/2011 to 31/12/2015), in order to boost research on
PEMS. In terms of time span, this is the largest dataset collected for this task. Using this dataset, we develop
a benchmark PEMS using an extreme learning machine regressor. This machine learning paradigm is applied
to the PEMS problem for the first time in the literature. We further provide a clear experimental procedure to
ensure repeatability of our work, and to allow fair comparisons with alternative approaches. The predictions of
the PEMS are generally used to validate the outputs of CEMS during regular operation. Thus, PEMS can be
configured to raise maintenance triggers when the absolute difference between the predictions and the sensor
measurements are higher than a predefined threshold. In addition to this, PEMS can be used to estimate the
periods of CEMS maintenance and can serve as backup of CEMS during failure/maintenance.

The paper is organized as follows. In the next section, we provide a literature review and some background
on the learning method we have used. The collected dataset is introduced in Section 3 with a brief statistical
analysis of its features. Experimental results are presented in Section 4. Section 5 discusses our findings, and
concludes with future directions.

2. Background and related work
In this section, we provide background on flue gas emission monitoring systems and on the machine learning
paradigm we have used for prediction.

2.1. Related Work
PEMS are used for continuous monitoring of emissions at stationary sources as an alternative and backup for
CEMS. Both in practice and in the literature, they are mainly used to predict NOx emissions from combustion
processes [1]. PEMS define a mapping between a set of characteristic process parameters of an emission source

3European Committee for Standardization [online]. Website https://www.cen.eu [accessed 26 July 2019].
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(e.g., air pressure, turbine after temperature) and the corresponding flue gas emission. If the variables of the
combustion process are continuously monitored and recorded, it is possible to predict the emission concentration
after combustion. PEMS are plant-specific emission monitoring systems and vary in terms of methodology and
design, ranging from relational models to neural network (NN) models.

Computational models based on process history (i.e. measurement data) are typically used as the central
component of PEMS. For example, methods such as NNs are widely used as the basis of predictive emission
monitoring systems [2, 3, 5–10]. Recently, Korpela et al. have presented models based on linear regression
and nonlinear NNs, to estimate NOx emission in two similar natural-gas-fired municipal hot water boilers [2].
Dynamic NNs are used in [3] to develop soft sensors for the NOx and O2 emission due to combustion operation
in industrial boilers. The early use of NN to predict real-time engine emissions (HC, NOx, CO, and CO2)
from process variables dates back to 1999 [5]. This work is followed by an NN-based NOx reduction system [6].
In [7], a NN structure is proposed for predicting NOx and O2 of an industrial boiler. Lv et al. propose a
least squares support-vector-machine-based ensemble learning paradigm to predict NOx emission of a coal-fired
boiler using real operation data [8]. For the NOx prediction of a coal-based boiler, Smrekar et al. [9] compare
linear (AutoRegressive/Moving Average–ARX/ARMAX) and nonlinear (e.g., Support Vector Regressor–SVR)
modeling approaches. However, they observe that nonlinear models do not improve over linear ARX models [9].
Ciric et al. [10] employ three NN alternatives (feed forward NN, recurrent NN, and a hybrid neuro–fuzzy
estimator, respectively) for the estimation of CO2 emissions in Serbia. Lazaretto and Toffolo [11] fit a model
to experimental data for predicting performance and emissions of a two-shaft gas turbine, based on emission
formulations proposed by Rizk and Mongia [12]. Dragomir and Oprea introduce a multiagent system for
monitoring urban air pollution due to power plant operation [13]. Idzwan et al. used support vector machines
for predicting NOx emission of a power generation plant in Malaysia [14]. Liukkonen and Hiltunen presented a
novel emission monitoring platform based on the self-organizing maps [15].

While numerous NN approaches were used for prediction of exhaust gas emissions, this work is the first
attempt to use extreme learning machine classifiers (ELMs) for this problem. We now give a brief background
in ELMs.

2.2. Extreme learning machines

ELMs [16–18] are recently used in many machine learning applications for classification and regression, including
wind-speed forecasting [19] and audio-visual emotion recognition [20, 21].

Initially, ELM was proposed as a fast learning method for single hidden layer feedforward networks
(SLFN), as an alternative to back-propagation [22]. ELM proposes the random generation of the hidden
node output matrix H ∈ RN×K , where N and K denote the number of instances and the hidden neurons,
respectively. The hidden node activation via randomly generated mapping matrix W and bias vector b is
defined as in regular SLFN:

Hn,k = hk(xn) = g(xn,wk, bk), n = 1, ..., N, k = 1, ...,K, (1)

where n and k index the feature vectors and the hidden nodes, respectively; and nonlinear activation function
g() can be any infinitely differentiable bounded function [16]. A common choice for g() is the sigmoid function:

g(x,a, b) = 1

1 + exp (−(w · x + b))
, (2)
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where w and b correspond to weight vector and bias value, respectively. The actual learning takes place in the
second layer between H and the label matrix T ∈ RN×L , where L is the number of outputs. T is composed
of continuous annotations in the case of regression, and therefore, is an N × 1 dimensional vector of outputs.
In the case of L -class classification, T is represented with one vs. all coding:

Tn,l =

{
+1 if yn = l,
−1 if yn ̸= l,

(3)

where n and l index the rows (instances) and columns of the target matrix T , and yn denotes the categorical
class label for nth instance. The second level weights β ∈ RK×L are learned by least squares solution to a set
of linear equations Hβ = T . The output weights can be learned via:

β = H†T, (4)

where H† is the Moore-Penrose generalized inverse [23] that gives the minimum L2 norm solution to ||Hβ−T|| ,
simultaneously minimizing the norm of ||β|| . To improve robustness and generalization, a regularization term
C is introduced to the optimization problem, yielding the regularized ELM learning rule [18]:

β = HT (
I
C

+ HHT )−1T, (5)

where I is the N × N identity matrix. In our experiments, we use regularized ELM learning rule given in
Eq. (5). To improve stability of ELM, the input weight matrix W is orthonormalized using the orthogonal
projection method, such that WT W = I [18]. Similarly, L2 normalization is applied to the bias vector b .
Finally, for a test set instance xt , the prediction is given as ŷt = g(xt,W,b)β .

3. Exhaust emission dataset
The dataset4 is composed of hourly average sensor measurements of eleven variables (nine input and two
target variables). There are a total of 36,733 instances collected over 5 years. The nine input measurements
(independent variables) can be grouped into two as ambient variables (e.g., temperature, humidity, pressure)
and process parameters (e.g., turbine energy yield, air filter difference pressure). The names, abbreviations
and basic statistics of the variables used in the study are summarized in Table 1. The data are collected in
an operating range between partial load (75%) and full load (100%). Histograms for Carbon Monoxide (CO)
and Nitrogen Oxides ( NOx) are given in Figure 1. In Figure 2, the locations of sensors and sources of turbine
parameters are shown on the illustration of the gas turbine.

3.1. Analysis of features
In our former work, we carried out predictive modeling for net energy yield using ambient temperature, ambient
humidity, ambient pressure, and exhaust vacuum, using the data collected from the same power plant [24, 25].
Here we provide second-order statistical analysis of the features and target variables in order to have insight
about the data. In Figure 3 and Table 2, the linear dependency between two random variables x and y is

4Exhaust Emission Dataset [online]. Website http://www.e-adys.com/datasets/pp_gas_emission.zip [accessed 26 July 2019].
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Table 1. Basic statistical information of data used in the study.
Variable Abbr. Unit Min Max Mean
Ambient temperature AT ◦C –6.23 37.10 17.71
Ambient pressure AP mbar 985.85 1036.56 1013.07
Ambient humidity AH (%) 24.08 100.20 77.87
Air filter difference pressure AFDP mbar 2.09 7.61 3.93
Gas turbine exhaust pressure GTEP mbar 17.70 40.72 25.56
Turbine inlet temperature TIT ◦C 1000.85 1100.89 1081.43
Turbine after temperature TAT ◦C 511.04 550.61 546.16
Compressor discharge pressure CDP mbar 9.85 15.16 12.06
Turbine energy yield TEY MWH 100.02 179.50 133.51
Carbon monoxide CO mg/m3 0.00 44.10 2.37
Nitrogen oxides NOx mg/m3 25.90 119.91 65.29
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Figure 1. Histograms for CO and NOx.
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Figure 2. The sensor locations/parameter sources for all input and output variables used in the study. The parameters
used are shown in dashed red rectangles, whereas the dashed white arrows show the sensor locations.
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Figure 3. Correlation matrix of input variables.

measured using Pearson’s correlation (PC):

corr(x, y) =
1

N

N∑
i=1

(xi −mx)(yi −my)/(σxσy), (6)

where N denotes the number of observations, mx and σx are mean and standard deviation (SD) statistics for
x , respectively.

Figure 3 reveals the existence of a very strong linear dependency among the input variables, particularly
between compressor discharge pressure (CDP) and turbine energy yield (TEY) (0.99), similarly CDP and gas
turbine exhaust pressure (GTEP) (0.98). GTEP has also very strong correlation with TEY (0.96). This shows
that some of the features may contain redundant information, and thus can be eliminated during model learning.
Moreover, we see that the five turbine parameters (namely GTEP, CDP, AFDP, TIT, and TAT) have stronger
correlations with TEY, compared to the three ambient variables (AT, AP, and AH) used as features in [24, 25].
Although the current findings show benefits in predictive modeling, this would not be of practical use for
predicting the next day’s hourly energy output, as process variables are obtained from real-time operation, and
thus cannot be estimated earlier. They can be used, however, in a machine learning model to cross-validate the
sensor measurements.

When we analyze Table 2, we see stronger correlations between CO and the turbine parameters that
characterize the process, compared to NOx. Therefore, in the regression experiments, we expect higher predictive
accuracy with CO. Note that all correlations are statistically significantly different from zero (P < 10−6 ).

When correlations are analyzed between individual features and target variables, we clearly see the effect
of turbine inlet temperature (TIT) on CO (Pearson’s correlation = –0.706). It is a known fact that CO is
produced more when incomplete combustion with lower inlet temperature occurs. Regarding NOx, we see the
strongest correlation with the ambient temperature (–0.558), which suggests working at higher temperatures is
more appropriate to reduce this exhaust emission.
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Table 2. Pairwise correlation between features and the two target variables.
Feature CO NOx
AT –0.174 –0.558
AP 0.067 0.192
AH 0.107 0.165
AFDP –0.448 –0.188
GTEP –0.519 –0.202
TIT –0.706 –0.214
TAT 0.058 –0.093
CDP –0.551 –0.171
TEY –0.570 –0.116

4. Experiments

4.1. The experimental procedure

To ensure a clear separation of the training/test data and to allow comparability in future studies, we split the
dataset into train (data from 2011-2012), validation (year 2013 data), and test sets (data from 2014 and 2015).
Moreover, to avoid overfitting, we sequestered the test set and the hyperparameters of the models trained on the
train set are optimized on the validation set. To overcome the variance of the models due to the random first
layer projection and also to benefit from diverse decisions, we train an ensemble of Regularized ELM models
and fuse them. We use three fusion strategies: simple (unweighted) averaging, stacking to a random forest
(RF), and basic ELM. For the latter two, the models are learned on the validation set predictions. The features
are z-normalized using mean and SD statistics estimated from the corresponding training set. Mean absolute
error (MAE) and R2 , which can be calculated as square of PC in Eq. 6, are used to report performance.

4.2. Experimental results

The overall pipeline of the PEMS modeling using the data and explained above is given in Figure 4. In the
pipeline, predictions on the test set provide an unbiased estimate of the real-life performance.

The error in regression analysis can be decomposed into bias and variance terms, where the latter term
can be minimized via combining multiple learners [26]. In order to reduce the variance of the ELM models
stemming from random generation of the first layer weight matrix, we employ an ensemble learning approach.
Given the hyperparameters (i.e. the number of hidden nodes K and the regularization parameter C ), we train
50 models and subsequently apply three fusion strategies: a) we take the average of predictions as the ensemble
output b) we stack the predictions to a basic ELM with 50 hidden neurons and also to c) an (RF) regressor
with 50 trees. RF is also an ensemble learner, where each tree is grown with a random subset of features and a
random subset (with replacement) of instances [27].

To optimize the two hyperparameters, we apply a grid search with exponential steps for both. In the
preliminary experiments, we use K = 2{5,6,...,15} and C = 10{−6,−5,...,3} . Analyzing the results of these
preliminary experiments, we narrow the search sets into K = 2{9,10,...,13} and C = 10{−3,−2,−1,0} for the
remaining experiments. Prior to our experiments with stacking, we carry out a preliminary experiment using a
3-fold leave-one-year-out (LOYO) cross validation with combination of training and validation sets.
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'

Figure 4. Pipeline of the PEMS proposed in the study.

Table 3. LOYO cross-validation R2 /MAE performances for flue gas emission concentration prediction with varying
number of hidden neurons (K ) and the complexity parameter (C ). Best results are shown in bold.

CO NOx
K/C 0.001 0.01 0.1 1 0.001 0.01 0.1 1

512 0.42/1.33 0.44/1.19 0.48/1.15 0.47/1.23 0.54/6.11 0.64/4.90 0.67/4.57 0.66/4.59
1024 0.44/1.23 0.50/1.05 0.52/1.07 0.48/1.18 0.57/5.65 0.65/4.76 0.66/4.64 0.65/4.71
2048 0.45/1.15 0.52/1.02 0.53/1.02 0.50/1.09 0.61/5.21 0.66/4.66 0.66/4.64 0.64/4.81
4096 0.48/1.07 0.55/0.96 0.54/1.00 0.48/1.08 0.63/4.93 0.66/4.62 0.65/4.70 0.61/4.97
8192 0.52/1.02 0.56/0.97 0.54/1.01 0.46/1.11 0.64/4.80 0.65/4.64 0.63/4.81 0.56/5.27

4.2.1. Preliminary experiments using LOYO cross-validation and feature selection

The overall LOYO results of CO and NOx emission concentration predictions are shown in Table 3. We see that
CO has a lower MAE, since CO emissions are concentrated close to zero. The best results for CO (MAE 0.96)
are obtained with C = 0.01 and K = 4096 . On the other hand, the results and optimal parameter pairs differ
greatly for NOx. The best MAE performance on the 3-fold LOYO cross-validation is 4.57, using 512 hidden
nodes and C = 0.1 . Considering the two tables, we observe that while the MAE performance on CO prediction
is better than NOx, the R2 measure between the ground truth and the predictions is higher in NOx although
the MAE is also high. This is particularly due to higher mean and range statistics of the NOx emissions (see
Table 1). After optimizing the hyperparameters, we apply the corresponding models to the test set in order to
estimate the real-life performance. This rendered test set R2/MAE performances of 0.494/1.32 and 0.608/10.37
for CO and NOx, respectively.

To obtain a ranking of features and to improve the regression performance after feature selection,
we employed a fast and effective method based on canonical correlation analysis (CCA) [28]. CCA is a
statistical method that aims to find linear projection bases that maximize mutual correlation among two sets
of variables [29, 30]. It can be seen as a matrix extension of univariate correlation analysis. CCA is a powerful,
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fast and stable method commonly used for feature extraction and selection [28, 30]. In short, the idea used
in [28] is to apply CCA between features and the target (response) variables, and subsequently rank the features
with respect to the absolute value of the linear projection vector.

We apply the CCA-based ranking proposed in [28] separately for CO and NOx. We then take the top
ranking p∗ features, which cumulatively account for 95% of the sum of weights. This approach selects 5 and 7
features for CO and NOx, respectively. The normalized weights and ranking of features are shown in Figure 5.
Analyzing the table, we observe that CDP has a dramatically high normalized weight (0.753) for prediction of
CO. This makes the number of features needed to account for 95% of the total weight less in CO compared to
NOx, where the highest weight is 0.202. Note that, although the feature rankings differ for the two tasks, TEY
and CDP are both found to be highly important (ranking in top three) for predicting CO and NOx.
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Figure 5. Feature importance weights and corresponding ranking for CO and NOx.

Using the selected features and the hyperparameters optimized on the whole set of features, we re-train
the ELM models and cast predictions on the test set and finally average the predictions. The comparative test
set results are summarized in Table 4, where we can see that feature selection clearly improves the prediction
performance.

Table 4. Test set MAE performance of best models optimized on the training set with and without feature selection.
Target K C Features MAE

CO 4096 0.01 All 1.32
CDP, TEY, AFDP, GTEP, TAT 0.89

NOx 512 0.1 All 10.37
All except AH and GTEP 7.27

4.2.2. Comparative experiments with stacking
To compare the performance of simple averaging and to further improve our benchmark PEMS using a stacking
framework, we switch to the train, validation and test procedure with features selected in the preliminary
experiments. In meta-ELM, we stack predictions of the 50 regularized ELM models to a single basic ELM
with 50 hidden neurons. In the RF-based stacking framework, we use 50 trees to combine predictions from the
ensemble regularized ELM models.
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Comparative validation set results for CO and NOx are presented in Table 5. From the table, we observe
that compared to simple averaging of the predictions meta-ELM performs similar for CO prediction, but way
poorer for NOx prediction. On the other hand, RF-based fusion outperforms the other two fusion schemes on
the validation set for both correlation and MAE performance measures. For CO emission prediction, both fusion
schemes yield the best results with 512 hidden neurons with the base ELM models, while they slightly differ with
the complexity hyperparameter. For NOx emission prediction, however, we see that optimal hyperparameter
pairs are different for averaging and RF-based fusion schemes. Note that, in both tables there may be ties in
terms of correlation or MAE performance. In such cases, we favor simpler models (smaller K and C ) due to
parsimony principle (Ockham’s razor), and MAE has priority over R2 .

Table 5. Comparative validation set R2 /MAE performances for flue gas emission prediction with varying number of
hidden neurons (K ) and the complexity parameter (C ). Best results of each method/target are shown in bold.

CO NOx
Fusion scheme: averaging Fusion scheme: averaging

K/C 0.001 0.01 0.1 1 0.001 0.01 0.1 1
512 0.50/1.18 0.65/1.02 0.66/0.96 0.64/0.99 0.61/5.75 0.63/5.52 0.63/5.48 0.64/5.43

1024 0.55/1.14 0.67/1.01 0.66/0.97 0.62/1.02 0.62/5.64 0.63/5.50 0.63/5.46 0.64/5.42
2048 0.60/1.10 0.67/1.00 0.64/1.00 0.60/1.03 0.62/5.57 0.63/5.49 0.64/5.44 0.64/5.41
4096 0.65/1.06 0.67/0.98 0.64/1.01 0.59/1.03 0.63/5.53 0.63/5.48 0.64/5.43 0.64/5.41
8192 0.67/1.04 0.66/0.99 0.62/1.03 0.56/1.03 0.63/5.51 0.63/5.47 0.64/5.42 0.64/5.42

Fusion scheme: meta-ELM Fusion scheme: meta-ELM
K/C 0.001 0.01 0.1 1 0.001 0.01 0.1 1

512 0.63/0.95 0.65/0.92 0.64/0.93 0.63/0.96 0.01/8.96 0.03/8.86 0.02/8.87 0.01/8.95
1024 0.51/1.05 0.61/0.98 0.61/0.99 0.57/1.07 0.08/8.61 0.09/8.59 0.08/8.65 0.08/8.68
2048 0.60/0.95 0.63/0.94 0.60/1.03 0.58/1.05 0.18/8.21 0.14/8.38 0.21/7.84 0.10/8.45
4096 0.61/0.97 0.57/1.03 0.57/0.99 0.58/1.00 0.26/7.90 0.25/7.86 0.21/7.93 0.19/8.01
8192 0.69/0.81 0.67/0.85 0.64/0.92 0.64/0.95 0.40/6.86 0.36/7.11 0.36/7.10 0.29/7.61

Fusion scheme: random forest Fusion scheme: random forest
K/C 0.001 0.01 0.1 1 0.001 0.01 0.1 1

512 0.78/0.64 0.79/0.62 0.79/0.61 0.80/0.61 0.70/4.79 0.71/4.74 0.70/4.79 0.70/4.81
1024 0.76/0.65 0.78/0.63 0.79/0.62 0.80/0.62 0.70/4.87 0.70/4.82 0.69/4.86 0.69/4.90
2048 0.76/0.65 0.78/0.63 0.79/0.62 0.79/0.64 0.69/4.93 0.68/4.96 0.68/4.98 0.68/5.00
4096 0.77/0.65 0.77/0.64 0.79/0.64 0.78/0.66 0.68/5.00 0.68/5.00 0.67/5.08 0.67/5.08
8192 0.77/0.66 0.77/0.66 0.78/0.67 0.77/0.67 0.67/5.11 0.67/5.13 0.66/5.16 0.66/5.16

With the hyperparameters optimized on the validation set (corresponding to bold items in Table 5), we
apply the base models trained on the train set and the fusion scheme (for RF) trained on the validation set
predictions on the held-out test set. The final results are summarized in Table 6. As expected, the performance
on the test set is lower compared to the validation set. On the other hand, a use of 512 neurons for the base
Regularized ELM models seems optimal for both tasks, while a use of 2048 neurons results in over-fitting,
considering the degraded correlation performance. In CO emission prediction task, the RF based fusion gives
the best test set results (MAE 0.927, R2 0.584). On the other hand, in NOx emission prediction task, simple
averaging of 512-neuron ELM models’ predictions outperforms RF based system (MAE 7.91, R2 0.638).
Hence, we conclude that the optimal fusion scheme depends on the target task. On the other hand, meta-ELM
(stacking regularized ELM predictions to a second-level ELM) yields very poor test set performance.

In order to have an insight about the test set performances of the fusion systems provided in Table 6,
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Table 6. Test set performances of three fusion schemes of ELM predictions. Best results are shown in bold.
Averaging Random forest Meta-ELM

Task K C MAE R2 MAE R2 MAE R2

CO 512 0.1 1.05 0.43 1.05 0.55 1.34 0.31
512 1 1.14 0.37 0.93 0.58 1.26 0.32

NOx
512 0.01 7.91 0.64 11.29 0.53 24.05 0.00

2048 1 10.77 0.16 11.91 0.12 6.64 ×104 0.00

the predictions of each system is plotted against the ground truth sensor measurements (see Figure 6). If the
regressors could be perfect, the points of a scatter plot would lie on y=x line. For CO prediction, we observe
that regressors’ suffer from noisy examples. For NOx, the outputs except meta-ELM are more centered around
y=x line; thus, the correlation is higher. However the larger range of this target variable leads to a higher MAE.

5. Conclusions and outlook
In this paper, we presented a novel, publicly available exhaust gas emission dataset for future use and compar-
ative analyses. We first gave a statistical summary and correlation analysis of the features, and then defined a
procedure to avoid overfitting and to allow comparability of future works on the data. In addition to that, we
applied ELMs to provide benchmark regression performance under the defined procedure, for the first time on
these prediction tasks.

Our results show that feature selection based on linear projection weights markedly improves prediction
performance on the test set. An analysis of feature importance weights, which was obtained from the ranking,
reveals that TEY and CDP are highly important for predicting both CO and NOx.

The experimental results corroborate what the linear correlation analyses suggests, namely, that the
best predictive performance obtained with CO is higher compared to NOx. This is partly because of the data
distribution (CO emission concentration is accumulated near zero, as can be seen in Figure 1), and partly
because the features used to characterize the process have stronger correlations with CO.

We applied and compared three decision fusion schemes, namely averaging, meta-ELM and stacking to
RF. The experimental results have shown that while RF yields good results on both prediction tasks with the
validation set, the best test set results are obtained with different fusion schemes, while meta-ELM exhibits a
clear case of over-fitting. The over-fitting of meta-ELM, while observing relatively good performance of stacking
to RF indicates that when the base and second-layer learners are of the same type, the bias may increase while
variance does not decrease. This goes in line with the machine learning practices summarized as “one size does
not fit all”.

This work took a machine learning (regression) approach to the problem, providing a data-driven model
for predicting exhaust CO and NOx emission concentrations. It is also possible to look at the issue from a
thermo-chemical reactions perspective, which was beyond the scope of this paper.
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Figure 6. Scatter plots of test set predictions for three fusion schemes and two target variables. All base regularized
ELM models are trained with K=512 hidden nodes. Complexity hyperparameter C is set to 1 and 0.01 for CO and NOx,
respectively.
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