
Turk J Elec Eng & Comp Sci
(2019) 27: 4797 – 4817
© TÜBİTAK
doi:10.3906/elk-1809-83

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Adaptive iir filter design using self-adaptive search equation based artificial bee
colony algorithm

Burhanettin DURMUŞ1, Gürcan YAVUZ2,∗, Doğan AYDIN2

1Department of Electrical and Electronics Engineering, Faculty of Engineering,
Dumlupınar University, Kütahya, Turkey

2Department of Computer Engineering, Faculty of Engineering, Dumlupınar University, Kütahya, Turkey

Received: 12.09.2018 • Accepted/Published Online: 27.05.2019 • Final Version: 26.11.2019

Abstract: Infinite impulse response (IIR) system identification problem is defined as an IIR filter modeling to represent
an unknown system. During a modeling task, unknown system parameters are estimated by metaheuristic algorithms
through the IIR filter. This work deals with the self-adaptive search-equation-based artificial bee colony (SSEABC)
algorithm that is adapted to optimal IIR filter design. SSEABC algorithm is a recent and improved variant of artificial bee
colony (ABC) algorithm in which appropriate search equation is determined with a self-adaptive strategy. Moreover, the
success of the SSEABC algorithm enhanced with a competitive local search selection strategy was proved on benchmark
functions in our previous studies. The SSEABC algorithm is utilized in filter modelings which have different cases. In
order to demonstrate the performance of the SSEABC algorithm on IIR filter design, we have also used canonical ABC,
modified ABC (MABC), best neighbor-guided ABC, and an ABC with an adaptive population size (APABC) algorithms
as well as other algorithms in the literature for comparison. The obtained results and the analysis on performance
evolution of compared algorithms on several filter design cases indicate that SSEABC outperforms all considered ABC
variants and other algorithms in the literature.

Key words: Artificial bee colony, digital infinite impulse response filters, system identification, self-adaptive strategy

1. Introduction
Finite impulse response (FIR) and infinitive impulse response (IIR) filters, which are the most important types
of linear digital filters, are widely used in fields such as signal processing, communication, and parameter
estimation [1]. These filters have also become effective tools in system identification applications [1–7]. FIR
filters are known as feed forward or nonrecursive because their inputs depend only on current and past inputs.
Therefore, the performance levels of these filters in the system identification models are not effective. IIR filter
outputs depend on the current inputs and the past inputs as well as the past outputs. Because of their recursive
and feedback structure, the system identification efficiency of IIR filters is much better than that of FIR filters.
The IIR-based system identification problem is defined as constructing an IIR filter to represent an unknown
system. The construction process is modeled by applying the same inputs to the unknown system and the
IIR filter to minimize the error in the outputs. This modeling eventually turns into an optimization problem
by calculating the appropriate values of the IIR filter coefficients that minimize the error. There are many
studies in the literature for designing an optimal IIR filter [1, 8–10]. In these studies, generally, filter network
∗Correspondence: gurcanyavuz@gmail.com
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applications were performed on a predetermined data set, and filter coefficients to produce the desired response
were determined using gradient-based methods. However, it has been stated that gradient-based methods can
easily be trapped at local minima in IIR filter design with multimodal error surface [11]. On the other hand, the
instability of the adaptation process of IIR filter becomes a disadvantage for gradient-based methods. Because
searching IIR filter coefficients in the inappropriate range of search space will distract the filter outputs from the
desired outputs and thus will lead to an unstable search process [12]. In recent years, learning-based adaptive
filter designs are preferred over traditional methods to tackle the aforementioned problems. More specifically,
metaheuristics, which converge the global optimum more quickly and increase adaptability, are mostly used in
IIR filter design applications [13–15]. Improved particle swarm optimization (IPSO) is proposed by Zou et al.
and it is applied to the IIR system identification problem [5]. In another study [16], the bat algorithm was
developed and compared with other IIR filter applications reported in the literature. Mean square error (MSE)
method is taken as performance measure. Furthermore, the IIR filter-based system identification problem is
defined as benchmark to test the performance of newly proposed heuristic methods [17]. The benchmarked
system identification problem is solved by the modified-interior search algorithm (M-ISA) using the IIR filter
model which is in the same order and the reduced order as the unknown system. Similar works have been
done with metaheuristics such as cuckoo search algorithm, differential evolution (DE), and craziness-based PSO
where adaptive IIR filter designs have been realized to determine the optimal parameters of an unknown system
[18–20].

The artificial bee colony (ABC) algorithm, originally proposed in [21], is also a metaheuristic approach.
In recent years, several new ABC variants and their application to real-world problems [22–26] are introduced.
Some of these studies are based on ABC algorithms for IIR filter design problem as well [13, 27]. In many
studies, the canonical ABC algorithm and its variants have shown that they are very competitive with many
other algorithms for continuous optimization problems. However, the performance of ABC algorithms vary
depending on the problem type and its size. The most crucial and sensitive component that influences algorithm
performance is the search equation used in the steps of employed bees and onlooker bees. On the other hand,
A selected search equation may yield good results in one problem, but it may yield bad results in another
problem. In order to overcome this problem, a self-adaptive search equation generation method which can
find the appropriate search equation related to the nature of the problem is needed. In our previous work, the
self-adaptive search-equation-based artificial bee colony (SSEABC) algorithm was designed for this purpose and
achieved successful results in several types of benchmark continuous optimization functions [28, 29]. In this
study, the SSEABC algorithm is applied to IIR filter design problem.

The contribution of this study can be summarized as follows:
• With the SSEABC, three modifications are introduced to the canonical ABC algorithms. The first mod-

ification is ”self-adaptive search equation selection strategy” that adaptively determines the appropriate
search equation for the tackling problem instance. The second is to use competitive local search selec-
tion strategy that controls the invocation of local search procedure which greatly helps the algorithm to
escape local optima. The last modification is incremental population size strategy that leads algorithm
population converges quickly to good solutions.

• The SSEABC algorithm was previously used to solve theoretical problems. In this paper, SSEABC
algorithm is proposed for digital IIR filter design as the first case study on a real-world problem. As
system identification, the unknown system parameters are estimated with the same- and reduced-order
IIR filter models.
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• The SSEABC algorithm estimates the system parameter better than several ABC variants and other
metaheuristic methods in the literature.

• In addition to the simulation examples, experiments are also carried out on a practical application of IIR
system identification problems.

The paper is structured as follows. In Section 2, we define the IIR filter design problem. In Section
3, we present the canonical ABC algorithm. Then in Section 4, we briefly describe the SSEABC algorithm.
The simulation results on three different problem examples and the results of the practical applications of IIR
system identification problems are provided in Section 5. Finally, the article is concluded in Section 6.

2. Problem definition
The main purpose of the filter-based system identification problem is to estimate the parameters of an unknown
system over a filter. In other words, the transfer function of the unknown system is monitored by the transfer
function of the filter to determine the most appropriate filter coefficients. This process turns into an optimization
problem by minimizing output errors generated by applying the same input signal to both the unknown system
and the filter. A filter-based system identification is shown in Figure 1.

Unknown System
H system(z)

IIR Filter
H filter(z)

Heuristic 
Algorithm

-

+

e(n)

y(n)

x(n)

ŷ(n)

Figure 1. The schematic diagram of the IIR-filter-based system identification application

In general an IIR filter is represented by the following equation:

y(n) +

N∑
i=1

aiy(n− i) =

M∑
i=0

bix(n− i), (1)

where N is order of numerator, M is order of dominator, x(n) and y(n) are input and output value of
the filter, ai and bi are the filter output and input coefficients at order i , respectively. The transfer function
of the IIR filter is expressed as:

Hfilter(Z) =
Y (Z)

X(Z)
=

M∑
i=0

biz
−i

1 +
N∑
i=1

aiz−i

. (2)

In the IIR-filter-based identification model, the goal is to approximate the transfer function of the
unknown system, Hsystem(z) , with the filter transfer function, Hfilter(z) . Therefore, the error difference
between the output obtained from the transfer function of the unknown system and the IIR filter output is
calculated. To minimize the error, the optimal solution vector is tried to be found. To do so, the objective
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function is calculated from the following formula defined as the mean squared error (MSE) of the output values:

MSE =
1

L

L∑
n=1

e2(n) =
1

L

L∑
n=1

[y(n)− ŷ(n)]
2 (3)

where L is the total number of input samples, y(n) and ŷ(n) are outputs of IIR filter and unknown systems
for sample input n , respectively.

3. Artificial bee colony algorithm

The artificial bee colony (ABC) [21] is one of the swarm-intelligence-based algorithms inspired by the foraging
behavior of the bees in nature. This approach, which is used to solve continuous optimization problems at first,
has been used effectively to solve real-world engineering problems [22, 23].

In the ABC, three types of bees visit food sources and produce solutions by tracing new food sources.
Each food source stands for a candidate solution, and the quality of a food source demonstrates the quality of
the objective function of the related solution. The algorithm has a simple structure consisting of four steps:
initialization, employed bees, onlooker bees, and scout bees [30]. In the first step, food sources (candidate
solutions) are randomly generated in the environment and the population of artificial bee colony is assumed
to be twice as much as food sources. Half of this population is employed bees and the other half is onlooker
bees. Each of the employed bees is responsible for a food source and seeks out new food sources around it. If
an employed bee abandons a food source, it becomes a scout bee and starts randomly searching for a new food
source. The onlooker bees, on the other hand, visit food sources according to their quality, unlike the employed
bees, and search in the vicinity of the visited food source. These three different bee searching activities continue
in a loop until the algorithm ends. When the algorithm is terminated, the best food source found so far is
considered a solution to the problem.

The implementation details of the algorithm steps are given below:

• Initialization step: N numbers of food sources are placed in the D -dimensional search space randomly
as the following equation:

xi,j = xmin
j + ζji (x

max
j − xmin

j ), (4)

where xi,j is the value of food source xi (i ∈ {1, 2, 3, . . . , N}) at dimension j (j ∈ {1, 2, 3, . . . , D}), xmin
j

and xmax
j are the lower and the upper bound values of dimension j , ζji is a uniform random number in

[0, 1] , respectively. Furthermore, the limit parameter for food sources is initialized. This parameter refers
to the trial limit for each food source. Another parameter, triali which saves the current number of trials
is initialized to zero for each food source xi . If a food source is visited and a new good solution (a better
food source) is not found around it, the trial value (triali ) is increased. In the scout bees step, employed
bee abandons the food source when the number of trials of the food source reaches the trial limit ( limit).

• Employed bees step: At this stage, each employed bee i searches around for a food source xi that it is
responsible for. When performing the search, it utilizes the position of another randomly selected food
source, Xr . Every time only one dimension, j , is selected randomly and new food source, Vi , is generated
based on the following search equation:

vi,j = xi,j + ϕi,j(xi,j − xr,j), (5)
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where ϕi,j is a random number generated from a uniform distribution in [−1, 1] . If the quality of vi is
better than xi , then xi is replaced by vi and the triali value is reset. Otherwise, triali value is increased.

• Onlooker bees step: At this stage, onlooker bees do not visit the food sources they are responsible for,
unlike the employed bees. Instead, they decide on the food sources they will visit according to the
attractiveness of each food source. The quality of each food source increases the likelihood of being
attracted and therefore being selected. For the minimization problems, pi (the selection probability of
each food source xi ) is calculated as:

pi =

1
1+f(xi)∑N
i

1
1+f(xn)

, (6)

where f(xi) is the objective function of the food source xi . Then onlooker bees select their food sources
according to selection probabilities and they search around the selected food source the same as employed
bees do.

• Scout bees step: When a food source xi is abandoned (when traili is equal to limit), the responsible
employed bee becomes a scout bee and finds a new food source in search space according to the Equation
4. Then, the new food source is replaced with the abandoned food source.

4. Self-adaptive search-equation-based artificial bee colony algorithm

The SSEABC algorithm [28] introduces three strategies to the basic ABC algorithm to improve performance
quality. The first strategy is a self-adaptive search equation determination, the second is incrementing the
size of population during the execution, and the third one is the competitive local search selection strat-
egy. The pseudo-code of the proposed SSEABC algorithm is presented in [28] and the supplementary doc-
ument (http://194.27.229.73/sirlab/wp-content/uploads/2019/05/supplementary.pdf). Also, the flowchart of
the SSEABC is given in Figure 2. In the following subsections, we give a detailed description of these three
performance improvement strategies.

4.1. The self-adaptive search equation determination strategy

Employed and onlooker bees use a randomly selected food source as reference when discovering new better food
sources. This leads to an improvement in the diversification behavior of the algorithm, while weakening the
intensification behavior. Therefore, many ABC variants in the literature have proposed several search equations
in order to establish a good balance between intensification and diversification behaviors of the algorithm.
Because some types of problems require intensification, some others can only be solved by diversification.
However, it is not possible to predict which one should be preferred because the surface of the problem search
space is not known in advance. Therefore, there is no single search equation that can give good results for all
kinds of problems, and a suitable search equation should be proposed for each problem instance. However, in the
canonical ABC algorithm and several ABC variants, a single search equation that is not changed throughout
the execution is used. As a result, to overcome this issue, we proposed the ”self-adaptive search equation
determination strategy”. Instead of using one unchanged search equation, a pool of equations filled with
randomly generated search equations is used in this study. Search equations in the pool are filled according to
a search equation template which is called ”generalized search equation” and shown in Algorithm 1.
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Figure 2. a) The flowchart of the SSEABC algorithm, b) the local search competition phase.
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Algorithm 1 The proposed generalized search equation
1: for t = 1 to m do
2: randomly select dimension j
3: xi,j = term1 + term2 + term3 + term4

According to this template, each search equation may have four terms and m parameter. Each of these
terms is randomly selected from the components listed in Table 1, independently of each other. In Table 1, xi is
the selected reference solution, xG is the best solution found so far, xr1 and xr2 (r1 ̸= r2 ̸= i) are two randomly
selected solutions, xGD is the global-best distance solution [31],xWO is the worst solution in population, xMD

is the median solution in population, xSC is the second best solution in population, and finally xAV E,j is the
average value of all solutions in population at dimension j . In each iteration of the algorithm, a search equation
is taken sequentially from the pool in order to be applied in employed bees and onlooker bees steps. At the end
of each iteration, the number of food sources improved using the search equation is calculated and it is recorded
as the success ratio of the selected search equation. After all the search equations in the pool are used, the
search equations in this pool are sorted in descending order of success ratio. The pool size is then reduced by
using Equation 7 to eliminate inappropriate search equations for tackling problem instance.

ps =
ps2

itrMAX
. (7)

Here itrMAX is the approximate maximum iteration number calculated by the equation 8

itrMAX =
MAXFES

2× SN
(8)

4.2. The competitive local search selection strategy

When ABC algorithms are hybridized with the appropriate local search algorithm, performance of any ABC
algorithm can be increased. However, there is no efficient local search procedure for each type of problem. In
this article, a competition-based selection procedure is proposed which can find the appropriate local search
algorithm for an IIR filter problem.

It consists of two successive steps in the name of competition and deployment. In the competition step
(given as ”Local Search Competition Phase” in Figure 1), the SSEABC algorithm executed with the fix budget
of function evaluations (called as CompBudget). Then, first local search of multiple trajectory search (Mtsls1)
[32] and evolution strategy with covariance matrix adaptation (IPOPCMAES) algorithms are run as local search
procedures for the same amount of budget, CompBudget . The solution value obtained by the algorithm and
the results of the local search procedures are compared. If one of the local searches is improved xG then the
better local search is selected as local search procedure for the deployment step. In the deployment step; if any
local search procedure is selected, then xG is used as the initial solution the selected search procedure is called
from. The final solution found through local search becomes the calling best so far solution if it is better than
the initial solution. In the SSEABC, the local search procedure is not called at every iteration for every food
source. This is done in an effort to save as many function evaluations as possible. The local search procedure
is called only when it is expected that its invocation will result in an improvement of the best so far solution.
However, since we are dealing with black-box optimization, it is not possible to be completely certain that a
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Table 1. Alternative options for each component in the generalized search equation of Algorithm 1; xi : the selected
reference solution, xG : the best solution found so far, xr1 ,xr2 (r1 ̸= r2 ̸= i): two randomly selected solutions, xGD :
the global-best distance solution, xWO : the worst solution in population, xMD : the median solution in population,
xSC : the second best solution in population, xAV E,j : the average value of all solutions in population at dimension j .

m term1 term2 term3 term4

1 xi,j ϕ1(xi,j − xG,j) ϕ2(xi,j − xG,j) ϕ3(xi,j − xG,j)

k (1 ≤ k ≤ D) xG,j ϕ1(xi,j − xr1,j) ϕ2(xi,j − xr1,j) ϕ3(xi,j − xr1,j)

[t, k] (1 ≤ t < k ≤ D) xr1,j ϕ1(xG,j − xr1,j) ϕ2(xG,j − xr1,j) ϕ3(xG,j − xr1,j)

ϕ1(xr1,j − xr2,j) ϕ2(xr1,j − xr2,j) ϕ3(xr1,j − xr2,j)

ϕ1(xi,j − xGD,j) ϕ2(xi,j − xGD,j) ϕ3(xi,j − xGD,j)

ϕ1(xi,j − xSC,j) ϕ2(xi,j − xSC,j) ϕ3(xi,j − xSC,j)

ϕ1(xi,j − xMD,j) ϕ2(xi,j − xMD,j) ϕ3(xi,j − xMD,j)

ϕ1(xi,j − xWO,j) ϕ2(xi,j − xWO,j) ϕ3(xi,j − xWO,j)

ϕ1(xSC,j − xMD,j) ϕ2(xSC,j − xMD,j) ϕ3(xSC,j − xMD,j)

ϕ1(xMD,j − xWO,j) ϕ2(xMD,j − xWO,j) ϕ3(xMD,j − xWO,j)

ϕ1(xG,j − xWO,j) ϕ2(xG,j − xWO,j) ϕ3(xG,j − xWO,j)

ϕ1(xr1,j − xMD,j) ϕ2(xr1,j − xMD,j) ϕ3(xr1,j − xMD,j)

ϕ1(xG,j − xMD,j) ϕ2(xG,j − xMD,j) ϕ3(xG,j − xMD,j)

ϕ1(xr1,j − xWO,j) ϕ2(xr1,j − xWO,j) ϕ3(xr1,j − xWO,j)

ϕ1(xSC,j − xr1,j) ϕ2(xSC,j − xr1,j) ϕ3(xSC,j − xr1,j)

ϕ1(xi,j − xAV E,j) ϕ2(xi,j − xAV E,j) ϕ3(xi,j − xAV E,j)

ϕ1(xr1,j − xAV E,j) ϕ2(xr1,j − xAV E,j) ϕ3(xr1,j − xAV E,j)

ϕ1(xG,j − xAV E,j) ϕ2(xG,j − xAV E,j) ϕ3(xG,j − xAV E,j)

do not use do not use do not use

solution is already in a local optimum so it is impossible to improve it with a local search. We use, therefore, a
heuristic approach to decide whether to call the local search procedure from the best so far solution or not. The
approach performs the local search procedure to obtain a value to identify its exit condition. If the procedure is
improved to initial solution, the local search procedure is called again at the following iteration of the algorithm.
Otherwise, the SSEABC turns back to the competition step to identify whether another local search procedure
is needed or not.

4.3. The incremental population size strategy

The performance of population-based algorithms is influenced by the population size. Therefore, determining
the most appropriate size of the population is important for the performance of the algorithm. De Oca et al. [33]
expresses that individuals learn faster when the algorithm has a small population size in the limited function
evaluations. It is also seen that when the population size becomes larger, the algorithm obtains better-quality
results. It is desirable to keep these two situations in balance. For this, the strategy of ”Incremental social
framework (ISL)” [33] has been proposed. According to the ISL, the population starts working with a small
number of individuals. After the algorithm has been running for a certain period gp , a new solution is added
to the population. While this new individual is being produced, it is aimed to benefit from the experienced
individuals who are included in the population. Thus, better learning is achieved.
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In this study, incremental population strategy is used as follows. Firstly, the algorithm starts with few
solutions. Then, for every gp iteration of a given growth period, the new solution is added to the population.
This insertion process progresses until the population reaches its maximum size, which is defined at the beginning
of the algorithm. The new solution position (xj,new ) inserted into the population is initialized using Equation
9 which uses the best solution found so far(Xgbest ):

x́new,j = xnew,j + φi,j(xgbest,j − xnew,j). (9)

Here xnew is the new solution created by the ABC algorithm’s random solution-generating equation.
However, xj,new , produced using xgbest with xnew , represents the new solution desired to be included in the
population. Taking advantage of the position of expert solutions when producing a new solution helps the
algorithm to move towards better solutions.

5. Results
In order to assess the performance of the SSEABC on adaptive IIR filter design, three benchmark systems
extensively used in many studies are selected [13, 17–20, 34]. In the first two examples, the unknown system
and filter model are of the same order. In the following examples, two cases have been considered; identification
is utilized with the same-order and reduced-order IIR filter models. Both simulation and application were
carried out for experimental studies.
5.1. Simulation results
Simulation studies are done on a computer with C++ and i7 8 GB RAM hardware. For SSEABC, ABC
[21], MABC [35], NABC [36], and APABC [37], the results are obtained with 100 independent runs with 7500
function evaluations (FEs) for each sample. A Gaussian white noise signal with 100 samples is applied as input
signal to both the unknown system and the IIR filter for each algorithm run.

Although the problem-specific search equations are determined in a self-adaptive search equation de-
termination strategy in the SSEABC algorithm, there are other parameters of the SSEABC algorithm, which
affect the performance significantly as well. In this study, the parameter values of the SSEABC algorithm are
determined by irace [38], the offline parameter configuration tool. irace tool is the iterated version of F-race
procedure [39] which is based on racing and Friedman’s nonparametric two-way analysis of variance by ranks.
irace has also some parameters; however, we have run irace with default parameter values defined in the liter-
ature. Moreover, it is important to note that problem instances used in the parameter tuning task with irace
should differ from those used in the experiments. For this, we have used some other examples of IIR system
identification problem, and synthetic problem instances created by us. We have used irace for the parameter
configuration of SSEABC and other ABC-based algorithms used in comparison. The best values of parameters
for algorithms are determined over five independent runs of the irace tool. The obtained parameter values of
the basic ABC, MABC, NABC, APABC, and SSEABC are given in Table 2.

In the following subsections, the comparison results of the SSEABC, ABC, MABC, NABC, and APABC
algorithms are shown and criticized for each case. In addition, the comparisons with other algorithms in the
literature are summarized. The results of the compared algorithms except ABC variants were taken directly
from the reference articles. In order to make a fair comparison, the algorithms were tested in the same or better
experimental conditions (such as research which uses the same number of or more function evaluations in the
experimental study) are included in the comparisons. All the comparisons are performed over the MSE and
MSE in dB defined in Equation 3.
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Table 2. Tuned parameters and their values for considered ABC algorithms.

Parameters ABC MABC NABC APABC SSEABC
Initial population size (SN) 14 8 73 72 38
The limit factor (limitF) 2.0456 2637 0.7791 0.5764 1.9074
Modification Rate (MR) - 0.8512 - - -
adaptiveSF - 1 - - -
Scaling Factor (SF) - 0.7277 - - -
Number of neighbors - - 13 - -
Maximum population size (SN_max) - - - 50 55
Growth period of pop. size (g) - - - 22 5
a parameter of IPOP-CMA-ES (a) - - - - 1.1127
a parameter of IPOP-CMA-ES (b) - - - - 2.4823
a parameter of IPOP-CMA-ES (c) - - - - 0.5671
a parameter of IPOP-CMA-ES (d) - - - - 3.3964
a parameter of IPOP-CMA-ES (e) - - - - -17.8882
a parameter of IPOP-CMA-ES (f) - - - - -17.9765
a parameter of IPOP-CMA-ES (g) - - - - -19.2638
Mtsls1 iterations (MTSLS_itr) - - - - 22
FES for IPOP-CMA-ES (IPOP-CMA-ES_FES) - - - - 0.3
Maximum FES budget for the competition phase
(CompBudget)

- - - - 0.15

The search equations pool size (ps) - - - - 2000

5.1.1. Example I

Transfer functions of the unknown system and the filter model taken from [20], which is also used in different
studies [13, 17, 19, 34], are given in Equations 10 and 11, respectively:

Hsystem(Z) =
1

1− 1.2z−1 + 0.6z−2
(10)

Hfilter(Z) =
1

1− a1z−1 − a2z−2
. (11)

The global optimum of this problem is at a1 = 1.2 and a2 = −0.6 . The convergence curves of the
best solutions obtained by SSEABC and other ABC variants are shown in Figure 3a. The variation of the
coefficient values along the evolutionary process of SSEABC algorithm is shown in Figure 3b. In Table 3, best,
average results, and standard deviation (Std) of the results obtained by ABC algorithms over 100 runs and
other techniques in literature are presented. The other algorithms used in comparison are Harmony Search
(HS) [40], Genetic Algorithm (GA) [40], Real coded GA (RGA) [40], DE [40], PSO [40], and craziness-based
PSO (CRPSO) [40].

As seen in Figure 3, the SSEABC algorithm converges to the global optimum more quickly than other
ABC variants. While the SSEABC algorithm reaches 4.277E−27 MSE approximately after 6300 FEs, canonical
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Figure 3. (a) Convergence characteristic of SSEABC, MABC, ABC, NABC, and APABC and (b) Coefficient changes
over time while using SSEABC on for Example I.

Table 3. Statistical results of MSE for Example I.

Type Algorithm MSE MSE(dB)
Name Year Best Mean Std Best Mean
SSEABC 4.2770E-27 3.3485E-24 4.5905E-24 –263.689 –234.752

ABC variants

ABC 2007 3.3757E–17 8.0739E-08 2.9699E-07 –164.716 –70.929
MABC 2012 1.8986E-22 2.0717E-12 9.5637E-12 –217.216 –116.837
NABC 2018 6.2913E-09 9.9649E-07 1.2536E-06 –82.013 –60.015
APABC 2017 5.5153E-24 4.1098E-21 2.9462E-21 –232.584 –203.862

Other techniques

HS [40] 2014 1.5626E-07 NR NR –168.062 –160.782
GA [41] 2011 NR 8.8600E-01 NR NR –0.526
RGA [19] 2014 3.1700E-02 5.1986E-02 1.5231E+00 –14.989 –12.841
PSO [19] 2014 2.3000E-03 2.9846E-03 1.2528E+00 –26.383 –25.251
DE [19] 2014 3.3328E-05 6.1105E-05 1.4234E+00 –44.772 –42.139
CRPSO [19] 2014 1.4876E-20 2.9275E-20 1.4086E+00 –198.275 –195.335

ABC and MABC algorithms are trapped at 3.3757E − 17 MSE and 1.8986E − 22 MSE after 7000 and 6300

FEs, respectively. However, the NABC is the worst ABC algorithm among the ABCs with 6.2913e− 09 MSE,
while the APABC is the second best algorithm following the SSEABC with a value of 5.5153E − 24 MSE. In
Figure 5, it has been clearly seen that estimated parameter values obtained by the SSEABC are actual values
reached in early iterations. When we compare the results in Table 3, it is seen that the algorithm having the
smallest MSE value among the compared algorithms is SSEABC.
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5.1.2. Example II

In this example, an unknown system in second-order filter is identified by a second-order IIR filter [13, 15]. The
transfer functions of the unknown system and IIR filter are given in Equations 12 and 13, respectively.

Hsystem(z) =
1.25z−1 − 0.25z−2

1− 0.3z−1 + 0.4z−2
, (12)

Hfilter(z) =
b1z

−1 + b2z
−2

1− a1z−1 − a2z−2
. (13)

The convergence curves of the best individual obtained by ABC algorithms and the variation of the
coefficient values along the evolutionary process of the SSEABC are shown in Figure 4a and 4b, respectively.
Comparison of the SSEABC with ABC variants and other algorithms in the literature is presented in Table
4. The algorithms that we use for comparison are again GA, DE, and PSO algorithms. However, contrary
to the reference in the first example, the reference results are taken from the most recent implementations of
these algorithms [42]. In addition to these algorithms, we used HS [40], RGA [40], DE with hybrid mutation
operator with self-adapting control parameters (HSDE) [42], opposition-based hybrid coral reefs optimization
algorithm (OHCRO) [42], multistrategy immune cooperative evolutionary PSO (ICPSO-MS) [42], PSO with
quantum infusion (PSO-QI) [14], and differential evolution PSO (DEPSO) [14] algorithms in the comparisons.
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Figure 4. (a) Convergence characteristic of SSEABC, MABC, ABC, NABC, and APABC and (b) Coefficient changes
over time while using SSEABC on for Example II.

As seen in Figure 6, while the SSEABC algorithm reaches 5.2536E − 24 MSE approximately after 5700

FEs, canonical ABC, MABC, and APABC algorithms are trapped at 2.0501E − 10 MSE, 8.3578E − 18 MSE,
and 2.1696E − 17 after 7000 and 7400 FEs, respectively. In addition, NABC obtains 4.4979E − 06 MSE after
4500 FEs. In Figure 6, estimated parameter values obtained by the SSEABC are the actual values reached
at early iterations. It obviously indicates that convergence rate of the proposed SSEABC algorithm is higher

4808



DURMUŞ et al./Turk J Elec Eng & Comp Sci

Table 4. Statistical results of MSE for Example II.

Type Algorithm MSE MSE(dB)
Name Year Best Mean Std Best Mean
SSEABC 5.2536E-24 4.7700E-22 4.6105E-22 –232.795 –213.215

ABC variants

ABC 2007 2.0501E-10 1.4552E-06 2.3507E-06 –96.882 –58.371
MABC 2012 8.3578E-18 9.4358E-11 8.8071E-10 –170.779 –100.252
NABC 2018 4.4979E-06 3.0485E-05 1.7774E-05 –53.470 –45.159
APABC 2017 2.1696E-17 3.1451E-15 6.1357E-15 –166.636 –145.024

Other techniques

HS [40] 2014 7.3562E-10 2.3180E-09 2.0855E+00 –91.333 –86.349
RGA [40] 2014 4.5000E-02 6.4653E-02 1.2821E+00 –13.468 –11.894
GA [42] 2017 3.7500E-08 2.3800E-05 2.5800E-05 –74.260 –46.234
PSO [42] 2017 1.4600E-10 5.6400E-05 1.6600E-04 –98.356 –42.487
ICPSO-MS [42] 2017 9.2000E-17 1.9000E-14 2.7500E-14 –160.362 –137.212
DE [42] 2017 5.2300E-11 1.1200E-10 2.8700E-11 –102.815 –99.508
HSDE [42] 2017 1.2000E-17 2.5300E-16 3.2300E-16 –169.208 –155.969
OHCRO [42] 2017 6.5900E-19 1.5400E-15 6.1600E-15 –181.811 –148.125
PSO–QI [14] 2010 7.1020E-04 7.1020E-04 1.1480E-07 –31.486 –31.486
DEPSO [14] 2010 7.1020E-04 7.2780E-04 4.3910E-05 –31.486 –31.380

than those of the competitor algorithms. When we compare the results in Table 4, it is seen that the SSEABC
outperforms all the algorithms compared over best and average results.

5.1.3. Example III
In this example, the transfer function of a fifth-order system given in Equation 14 is identified by a same-order
IIR filter (Case 1) and a reduced-order IIR filter (Case 2) [17–19].

Hsystem(z) =
0.1084 + 0.5419z−1 + 1.0837z−2 + 1.0837z−3 + 0.5419z−4 + 0.1084z−5

1 + 0.9853z−1 + 0.9738z−2 + 0.3864z−3 + 0.1112z−4 + 0.0133z−5
. (14)

Case I In this case, the fifth-order unknown system is modeled by using a fifth-order IIR filter. The transfer
function of the filter is defined as follows:

Hfilter(z) =
b0 + b1z

−1 + b2z
−2 + b3z

−3 + b4z
−4 + b5z

−5

1− a1z−1 − a2z−2 − a3z−3 − a4z−4 − a5z−5
(15)

The convergence behaviors of different ABC algorithms are presented in Figure 5. Evolution of coefficient
values of the IIR filter during the execution of SSEABC are presented in Figure 6. Moreover, the comparison
results with ABC variants and other algorithms are relisted in Table 5.

As seen in Figure 7, while ABC and MABC algorithms cannot obtain better MSE than 1E − 5 for 7500

FEs, SSEABC reaches 9.9531E − 09 MSE. In addition, APABC and NABC are the worst algorithms in terms
of MSE. This shows the better convergence behavior of the algorithm as it is expected. In this example, unlike
the Examples 1 and 2, the number of coefficients to be estimated is large, which causes the MSE value to
increase. Therefore, the MSE value between the system and the filter model are expected to be larger. Table 5
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Figure 5. Convergence characteristic of SSEABC, MABC, ABC, NABC, and APABC on Case I of Example III.
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Figure 6. Coefficient ”a” (left) and ”b” (right) values changes over time while using SSEABC on Case I of Example III.

also clearly shows this. Despite the difficulty of the problem, it is seen that the SSEABC algorithm is able to
model the IIR filter much better than the other algorithms. As a result, SSEABC produces much smaller MSE
values which can be clearly seen in Table 5.

Case II The transfer function of the reduced-order IIR filter is as follows:

Hfilter(z) =
b0 + b1z

−1 + b2z
−2 + b3z

−3 + b4z
−4

1− a1z−1 − a2z−2 − a3z−3 − a4z−4
. (16)

As in the second case of the previous example, the optimal identification is also a more difficult task than
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Table 5. Statistical results of MSE for Case I of Example III

Type Algorithm MSE MSE(dB)
Name Year Best Mean Std Best Mean
SSEABC 9.9531E-09 2.5157E-08 7.6117E-08 –80.020 –75.993

ABC variants

ABC 2007 4.6349E-05 2.2581E-04 1.5281E-04 –43.340 –36.463
MABC 2012 1.5567E-05 1.2420E-04 2.1923E-04 –48.078 –39.059
NABC 2018 1.7013E-04 9.6887E-04 5.9861E-04 –37.692 –30.137
APABC 2017 2.4907E-05 8.6520E-05 3.9231E-05 –46.037 –40.629

Other techniques

RGA [40] 2014 3.0700E-02 4.9768E-02 1.5039E+00 –15.129 –13.031
PSO [40] 2014 3.5000E-03 1.0375E-02 2.0593E+00 –24.559 –19.840
DE [40] 2014 6.8819E-04 1.2694E-03 1.4962E+00 –31.623 –28.964
HS [40] 2014 7.1407E-06 1.9247E-05 1.9145E+00 –51.463 –47.156

the one with same-order. The convergence curves of the ABC-based algorithms and coefficient changes at the
run-time of the best solution of SSEABC are given in Figures 7 and 8, respectively. In addition, the best, the
average MSE and the dB values of the algorithms in the literature are listed in Table 6.
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Figure 7. Convergence characteristic of SSEABC, MABC, ABC, NABC, and APABC on Case II of Example III.

When the results listed in Table 6 are examined, it is seen that SSEABC ranks first with 1.6902E − 08

MSE. MABC is the second best, and ABC is the third best performer. In addition, as in Case I, APABC
and NABC are again the algorithm with the worst MSE value. As shown in Figure 9 and Table 6, SSEABC is
observed to converge better than other ABC algorithms and to outperform compared algorithms in the literature
in terms of MSE.

5.2. Experimental results

This section presents the results of the practical applications of IIR system identification problems. An
experimental platform was constructed on ARM Cortex-M4 microcontroller (µC ) named as STM32F407VGT6

4811



DURMUŞ et al./Turk J Elec Eng & Comp Sci

Function Evaluations

C
o
e
ff

ic
ie

n
t 

V
a
lu

e

0 1500 3000 4500 6000 7500

-2
-1

.5
-1

-0
.5

0
0
.5

1
1
.5

2

a1

a2

a3

a4

Function Evaluations

C
o
e
ff

ic
ie

n
t 

V
a
lu

e

0 1500 3000 4500 6000 7500

-2
-1

.5
-1

-0
.5

0
0
.5

1
1
.5

2

b0

b1

b2

b3

b4

Figure 8. Coefficient ”a” (left) and ”b” (right) values changes over time while using SSEABC on Case II of Example
III.

Figure 9. a) The general block diagram of implementation system b) The photograph of the implementation system.

on the STM32F4Discovery board [43]. The general block diagram and the photograph of the system are shown
in Figures 9a and 9b, respectively.

To easily set µC configurations, a graphical software configuration tool, STM32CubeMX was used. The
embedded program which runs on the µC was written in Keil IDE by using C programming language. The
computer software whose GUI is shown in Figure 10 was developed to select the filter type. Using this software,
the user could select the filter type and receive the input and output parameters of the specific filter design.

After receiving the filter type information and corresponding coefficient values, the µC created noise
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Table 6. Statistical results of MSE for Case II of Example III

Type Algorithm MSE MSE(dB)
Name Year Best Mean Std Best Mean
SSEABC 1.6902E-08 1.2626E-07 6.0743E-07 –77.721 –68.988

ABC variants

ABC 2007 1.4686E-06 3.0501E-05 3.2520E-05 –58.331 –45.157
MABC 2012 1.2746E-07 3.3653E-05 1.7205E-04 –68.946 –44.730
NABC 2018 3.4885E-05 2.7122E-04 1.7542E-04 –44.574 –35.667
APABC 2017 1.6229E-06 6.0430E-06 3.4857E-06 –57.897 –52.187

Other techniques

RGA [40] 2014 1.0870E-01 1.5875E-01 1.3638E+00 –9.638 –7.993
PSO [40] 2014 1.2700E-02 2.7924E-02 1.9161E+00 –18.962 –15.540
DE [40] 2014 2.7000E-03 3.1404E-03 1.1698E+00 –25.686 –25.030
HS [40] 2014 6.1214E-06 6.9624E-06 1.1408E+00 –52.132 –51.572

Figure 10. The graphical user interface (GUI) for filter design.

signal for the inputs of the IIR filter system. To obtain the noise signal whose level is between –1.0 and +1.0,
the random number generator, which is based on a continuous analog noise and provides random 32-bit values
to the CPU core, was used. These 32-bit integer numbers were converted to the IEEE standard 754 floating
point number, and they were saved on µC memory. Then, the necessary filter calculations were performed by
using the floating point unit (FPU) of the µC . All the inputs and outputs of the filter system were transferred
to the PC. Thus, coefficients of IIR filter model based on SSEABC are optimized according to the inputs and
outputs of the IIR filter system.

Table 11 shows the results obtained from the µC -based IIR filter implementation. As the experimental
results of the example problems were not found in the literature, only ABC variants were compared.

As seen from Table 11, SSEABC has reached the least MSE value in all cases. Figure ?? shows the
outputs of the IIR filter system based on the µC and IIR filter model using SSEABC. According to Figure ??,
the IIR filter model is closely tracking the outputs of the actual IIR filter.

6. Conclusion
In IIR-based system identification problems, metaheuristic-based design models may be trapped at the local
minima due to the multimodal error surface of the IIR filters. For this reason, the search behavior of the selected
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Table 7. Experimental results of IIR filter implementation.

Best Mean Std

Example I

SSEABC 1.6142E-22 4.4109E-21 3.0273E-21
ABC 1.7521E-12 8.2948E-07 2.7182E-06
MABC 1.7306E-21 2.3817E-12 8.5526E-12
NABC 3.5401E-07 1.6270E-05 2.0882E-05
APABC 3.6180E-22 4.9650E-21 3.0433E-21

Example II

SSEABC 3.1534E-21 7.0601E-21 1.6441E-21
ABC 1.1487E-06 1.4849E-04 2.0462E-04
MABC 1.2150E-18 3.8058E-10 1.6394E-09
NABC 6.8693E-05 1.0199E-03 8.1328E-04
APABC 3.3350E-16 7.4285E-13 3.0355E-12

Example III Case I

SSEABC 8.4123E-07 8.4564E-07 1.2272E-08
ABC 5.1406E-04 4.0407E-03 4.3779E-03
MABC 3.4560E-04 1.3839E-02 3.9467E-02
NABC 4.5676E-03 2.9423E-02 2.1697E-02
APABC 2.6030E-04 2.0541E-03 1.2770E-03

Example III Case II

SSEABC 1.3278E-06 1.2750E-05 5.5958E-05
ABC 4.0510E-04 2.7155E-03 2.4347E-03
MABC 2.3454E-05 2.4707E-03 8.6036E-03
NABC 4.3692E-03 8.9457E-03 3.6553E-03
APABC 1.3631E-04 5.5561E-04 2.9774E-04
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Figure 11. The outputs of the IIR filter system based on the �C and IIR filter model using SSEABC.
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metaheuristic algorithm must be very strong. In this study, the SSEABC algorithm, which has proven to have
a powerful search capability, has been used to deal with the system identification problem. The performance of
the proposed algorithm was evaluated over a filter design benchmark set which is widely used in the literature.
The high convergence rate of SSEABC algorithm and MSE-based comparisons show that the proposed method
is an effective tool for both same- and reduced-order system identification problems. It is also observed that
ABC variants can provide more suitable solutions to solve system identification problems with reduced order
models.

For the future work, we are planning to extend the work presented in this article in two ways. Firstly,
we will try to improve the performance of the SSEABC algorithm with adding new self-adaptive strategies
and components to generalized search equation, and adding new local search methods to competitive local
search selection strategy. A second direction is to apply the SSEABC algorithm to solve more complex system
identification problems.
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