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Abstract: The industrial Internet of Things (IIoT) is a new field of Internet of Things (IoT) that has gained more
popularity recently in industrial units and makes it possible to access information anywhere and anytime. In other
words, geographic coordinates cannot prevent obtaining equipment and its data. Today, it is possible to manage and
control equipment simply without spending time in an operational area and just by using the IIoT. This system collects
data from manufacturing and production units by using wireless sensor networks or other networks for classification of
fault detection. These data are then used after analysis to allow operational decisions to be made in shorter amounts
of time. In fact, the IIoT increases the efficiency and accuracy of the “connection, collection, analysis, and operation”
cycle. The information collected through different sensors in the IIoT is unreliable and uncertain due to the sensitivity of
the sensors to noise, failure, and loss of information during transmission. One of the most important techniques offered
to deal with this uncertainty in information is the decision fusion method. Among the decision fusion techniques, the
Dempster–Shafer and improved Dempster–Shafer theory, which is also known as Yager theory, are efficient and effective
ways to manage the uncertainty and have been used in many types of research. This paper offers an architecture for
decision fusion in a small IIoT using Dempster–Shafer and Yager theories. In this architecture, data collected from
the desired environment are fed to classifiers for classification. In this architecture, artificial neural networks and a
dendrogram-based support vector machine are used as classifiers. To increase the accuracy of classifier results, the
Dempster–Shafer and Yager theories are used to combine these results. To prove the performance, the proposed method
was applied for detection of faults in an induction motor and human activity detection in an environment. This proposed
method improved the accuracy of the system and decreased its uncertainty significantly according to obtained results
from these two example use cases.

Key words: Decision-making, decision fusion, Dempster–Shafer, dendrogram-based support vector machine, artificial
neural network

1. Introduction
In the late twentieth century, with the development of smart technologies, communication networks, the Internet,
and wireless sensor networks (WSNs) and sensors, extensive efforts began to use these technologies to provide
solutions to improve human lives. One of these solutions was the Internet of Things (IoT), first introduced by
Kevin Ashton in 1999 [1]. The IoT describes a world in which everything, including people, animals, plants,
and even objects (such as machines), has a digital identity and is connected to other things, allowing computers
to organize and manage it. The Internet connects all people to each other, but the IoT intends to link all things
in the world together and control and manage them with the help of applications on smart phones, tablets,
and computers. This modern technology provides the ability to send data through different communication
∗Correspondence: ulduz@ktu.edu.tr
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networks, including the IoT, between all objects (human, animal, or objects) [2].

The IoT is an approach that promotes interaction between objects, of objects with people, and of people
with objects, and with this system, new services will emerge [3]. One of the primary goals of the IoT is to
increase intelligence in life, business, industry, and economics [4]. Also, it offers the right solutions for a vast
range of applications such as smart cities, traffic, waste management, security, emergency services, logistics,
retailing, industrial control, and healthcare [5]. The industrial Internet of Things (IIOT) stands out as one
of the most important and most widely used areas of the IoT [6]. Use of this technology in industrial units
can connect all the objects and create an integrated system for conducting all kinds of information exchange,
control, and monitoring tasks. Also, it provides a way to gain better visibility and intuition into corporate
operations and assets by integrating sensors, middleware, software, and cloud processing and storage systems
[7].

One of the important issues of industrial units is having a proper system for management of the production
system and making decisions about its future. In this regard, the use of mathematical models and other models
in various sciences and industries will contribute to the decision-making and management of decision-making
processes. However, the system parameters cannot be accurately determined due to the uncertainty and the
uncertain details of the problem. Uncertainty arises in a variety of topics. For example, obtaining information for
one issue is performed in many distrustful situations, and the existence of uncertainty will lead to a potential
risk of failure for devices and industrial systems. One of the most important issues in industrial systems
is understanding the effect of stopping devices and how risk can be controlled and reduced by checking and
increasing the reliability of the control system. To calculate reliability, there is a need for the previous data from
the function of the devices, and if there are not enough data available, there are uncertainties. Therefore, it is
not possible to determine the probability of proper operation of the device in a particular period with traditional
methods [8]. To measure the reliability of a system, based on available statistical data, a model for the failure
rate is selected and its parameters are estimated based on existing data, but the statistical information is not
always available and, in the real situation, the decision-making faces uncertainty.

The theory of information fusion uses multiple information sources to make optimal decisions. The
information fusion involves the simultaneous integration of data or information from different sources for a
better understanding of the conditions of problems and, consequently, to make more precise decisions. As
mentioned before, in most cases the data received from different sources about an industrial environment are
usually incomplete, ambiguous, and even contradictory. Accordingly, information fusion is used as a powerful
tool for data mining and knowledge discovery [9]. At present, methods for combining information are employed
in a wide range of applications, including web mining, biologic data processing, remote sensing, intelligent
transportation systems, human activity recognition [10], and disaster relief [11]. Also, the IIoT equipped with
a variety of sensors can monitor industrial environments. The information collected through different sensors
is unreliable and uncertain due to the sensitivity of the sensors to noise, failure, and loss of information during
transmission [12, 13]. When dealing with uncertainty, there is a need to use methods and tools of information
fusion to precisely predict system failures. Various approaches have been used to predict system failures in
risk conditions. The most important of these are probability theory [14–16], evidence theory [17, 18], the belief
transfer model [19], and Bayesian inference [20]. Even though there is no consensus on the best model to deal
with uncertainty, the method applied in this paper is the Dempster–Shafer [18, 21], which is usually used to
decide on the conditions of uncertainty and when there is scarce information about a particular decision.
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2. Background

2.1. Industrial Internet of Things (IIoT)

The IoT is an emerging technology that is expected to bring about dramatic changes in many existing industrial
systems, such as transportation systems and production systems. The term “Internet of Things” was initially
used for connected and identifiable objects that were equipped with RFID radio frequency identification systems
[21]. However, today, the IoT is a dynamic public infrastructure with self-configuring capabilities that is based on
sensor technologies, wireless communications, networking, and information processing techniques where physical
and virtual objects that have physical identities, virtual attributes, and intelligent interfaces are integrated into
an information network using standard and interactive protocols [22].

The presence of the IIoT everywhere, every time, and in everything provides intelligent solutions to
industrial problems in various areas [23]. The IIoT is created by placing IoT devices inside industrial infras-
tructure. Many other manufacturers have also used the IoT in various industrial applications, including supply
chain management [24], product life-cycle management [25], quality management [26], and much more [27].
Data generated by Internet technology devices from industrial objects require data processing and conversion
to information and knowledge. The process of converting data into information is done by various data mining
algorithms. Afterwards, the gathered data become more suitable for more efficient decision-making processes
[28]. Decision-making systems are used in different fields. According to Wu et al. [29], cognitive IoT can be used
in industrial systems efficiently, and data obtained from IoT devices are used in the cognitive decision-making
process. Authors use various models such as the consensus model [30], agent-based model [31], Bayesian model
[32], neural networks [33], game theory model [34], and many others for decision-making system. Kaur and
Sood [35] provided a method for assessing industrial environment workers using game theory, in which infor-
mation collected by sensors is embedded in intelligent industrial systems to identify various industrial activities
of workers, and then the detected activity is divided into positive, negative, and neutral activities. Moreover, a
decision made for employees’ rewards and penalties is based on their actions.

2.2. Information fusion and Dempster–Shafer theory

In simple terms, the methods of information fusion combine data from different sensors to predict more precisely
the properties and states of a system. Then it moves the combined data towards the best decision by linking the
information obtained to the analyzed system conditions. The purpose of this method is to create an advanced
and predictive model of the system based on the data obtained from some independent sensors. It can be
said that the use of a larger number of sensors greatly reduces the probability of all errors, including random
error, tool error, analysis error, and so on. Also, the use of a multisensor data fusion strategy can increase the
stability of the system’s performance since each sensor can provide at least its information to the user, even
if other sensors are corrupted or unavailable. Increasing the degree of confidence, reducing noise, reducing the
uncertainty of data rates, and many others are some significant advantages of using the data fusion system in all
applications. Therefore, the use of data fusion is one of the most important requirements in increasing reliability
in its various applications from managerial decisions to monitoring status and troubleshooting [9, 11, 36].

3. The proposed method

In the context of the IIoT, which was explained in the previous section, Figure 1 demonstrates the general
architecture for the proposed method for a small IIoT according to the model suggested by the ITU [37]. It
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consists of the device, network, services and application support, and application layers. Figure 2 demonstrates
a flowchart of the proposed method according to this architecture. The device layer includes sensors and actors,
where data are collected from the industrial environment using the WSN or other sensors and are delivered
to the network layer directly or through the WSN gateway. Actors receive decisions made by layers above
them through the network layer and act according to them. The network layer includes different protocols
to forward data through the Internet, such as the IPv6 protocol, which is a key protocol in the IIoT because
of its long addressing range and autoconfigured property, and the 6LoWPAN protocol that enables the WSN
to be a part of IIoT and exchanges information with industrial equipment and actors [38]. The services and
application support layer is responsible for data conversion, classification, and the combination of decisions for
increasing accuracy of the system for early warning and timely actions, and the application layer includes a
specific application for the system. Details of service and application support layer are explained below.

Specific Application

Database

Data Conversion or Feature

Extraction
Classifier Information Fusion

Other Networks’ Protocols

IPv6

6 LoWPAN

Data Collecting System using Industrial WSN

Industrial Infrastructure

A
p
p

li
c
a
ti

o
n

 

L
a
y

e
r

 
n

o it
a

ci l
p

p
A  

d
na s

e
ci

v r
e

S

S
u

p
p
o

rt
 L

a
y
e
r

N
e
tw

o
rk

 L
a
y

e
r

D
e
v
ic

e
 L

a
y

e
r

Figure 1. The proposed architecture for decision fusion in a small IIoT.

The services and application support layer consists of four sections of data conversion and feature
extraction, database, classification, and information fusion.
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3.1. Data conversion and feature extraction
Feature extraction is a process that identifies the significant and decisive features of the data by using some
operations and also reduces the redundancy of data. The purpose of feature extraction is to make raw data
more accessible for subsequent processing. Thus, in this block, if necessary, the process of data conversion and
feature extraction is done. In this paper, for extracting and diminishing feature vectors of collected signals from
the system, some statistical functions such as kurtosis, skewness, standard deviation, mean value, fourth central
moment, third central moment, figure of merit 4 (FM4), and root means square are used [39].

3.2. Database
Intelligent industry usually includes a database system that stores raw data, processed information, and
knowledge. The database coordinates all industrial system operations by providing the information needed
for now and the future.

3.3. Classification
Classification in machine learning and statistics is one of the areas of supervised learning and is a process
in which samples are divided into categories whose members are similar to each other, referred to as classes.
Therefore, a class is a set of objects or features in which objects or features are similar to each other and are
not similar to objects or features in other classes. Many algorithms, including artificial neural networks [40],
the adaptive neuro-fuzzy inference system (ANFIS) [41], dendrogram-based support vector machine (DSVM)
[42], and fuzzy theory [43] are used for this purpose. In this block extracted features from signals are classified
into some classes using the history of data and real-time data to decide on actions that must be taken in the
environment. Since in this block different algorithms or human evidence can be used for classification, there may
be uncertain and even opposing decisions between the various decisions obtained from evidence and algorithms.
To reduce such discrepancies and uncertainties between decisions, another block in the name of information
fusion is required, which will be explained in next section.

In this paper, DSVM and ANN are used for classification of input data.

3.3.1. Dendrogram-based support vector machine (DSVM)

The support vector machine (SVM) is a particular kind of neural network that minimizes operational risk
instead of minimizing the error for classifying or modeling [44]. This tool is very powerful and can be used
in various fields such as classification, clustering, and modeling (regression). DSVM is one of the supervised
learning methods that use binary SVM for multiclass classification. In DSVM for multiclass classification,
assume a set of input samples x1, x2, . . . , xn and label each one by yiϵ {c1, c2, . . . , ck} . k is the number of
classes (k ≤ n) . The first step of the DSVM method includes computing the k center of gravity for k classes.
Then agglomerative hierarchical clustering (AHC) [45] is used for these k centers. In the next step, each SVM
is linked to the node and is trained with elements of two subtrees of this node [42].

3.3.2. Artificial neural networks (ANN)

Artificial neural networks (ANN) are important tools in the field of computational intelligence. Various types of
artificial neural networks are introduced, which are mainly used in applications such as classification, clustering,
pattern recognition, modeling, and approximation of functions, control, estimation, and optimization. One of
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the easiest and most efficient methods for realistic nerves modeling was the multilayer perceptron model (MLP)
[46], which consists of an input layer, one or more hidden layers, and an output layer. In this structure, all
neurons of one layer are connected to all of the next layer’s neurons [47].

3.4. Information fusion
In this block the results of different classifiers are combined together for reaching high accuracy and decreasing
uncertainty. For this, various inferential methods such as Bayesian, Dempster–Shafer, fuzzy logic, neural
networks, abductive reasoning, and semantic information fusion are used [9, 48]. In this paper Dempster–
Shafer theory is used for decision fusion in the final step of the proposed method.

3.4.1. Dempster–Shafer theory

The Dempster–Shafer theory is one of the popular theories used in intelligent systems decision-making when
there are uncertainty and inaccuracy. The Dempster combining principle is a powerful tool that is important
for combining evidence from distinct information sources [49], and it is a potential tool used to evaluate risk and
reliability in engineering applications when measuring the accuracy of experiments and obtaining knowledge
from expert inferences is impossible. One of the important aspects of this theory is the combination of evidence
from different sources and modeling the conflict between them [21].

Evidence theory was presented by Dempster in 1967 with the theory of upper and lower bounds and later
formulated and presented by Shafer in 1976 [17, 18]. The main concepts in this theory are the reference set, the
basic probability assignment functions (BPAs), and combination rules (m). The reference set Ω represents all
possible values of the random variable. Each basic probability assignment function is a mapping of the space
of subsets of Ω to the interval [0, 1] and has the following main properties:

{
m : 2Ω → [1, 2]

m (ϕ) = 0 ,
∑

A⊆Ω m (A) = 1,
(1)

where 2Ω is the set of subsets of Ω , and ϕ is a set of nulls.
The belief function (Bel) and the plausibility function (Pls) are among the most important functions

in the uncertainty argument and represent the upper and lower limits of the belief in the variable of reality
desired. They are defined as:

Bel (A) =
∑
B⊆A

m(B),∀A ⊆ Ω, (2)

Pls (A) = 1−
∑

B∩A=ϕ

m(B). (3)

When there are several sources of information for decision-making, resource information should be
combined with the appropriate method and a final decision should be made. Data collected from the sources
should thus be combined using Dempster’s rule of combination:

m1 ⊕m2 (A) =

{
(1− k)

−1 ∑
B

∩
C=A m1 (B) ∗m2 (C) , if A ̸= ∅
0 , if A = ∅,

(4)
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where:

k =
∑

B
∩

C=∅
m1(B)×m2(C). (5)

k represents the degree of conflict between the views of various information resources about the desired
event. If the k value for two sources is close to 1, these two sources are completely in contradiction, and
as the k value approaches zero, the two sources become more compatible. Dempster’s rule of combination
completely ignores the conflict between information resources so this theory is not appropriate for highly
conflicting information resources. In this regard, Yager improved this theory by classifying the conflicting
information resources into set Θ , which means the classifier does not know the class of the input data [21], and
it is obtained by the following equation:

Θi = 1− αi, (6)

where αi is the importance factor of the ith evidence or information resource as shown in the flowchart of
Figure 2. The average of each classifier is considered as the αi of it.

Also, Yager employed ground probability assignments (q) instead of basic probability assignment functions
(m), obtained by the following equation:

q (A) =
∑

∩Ai=A

[m1(A1)×m2(A2)×m3(A3)× · · · ×mi(Ai)]. (7)

In the Yager method q(∅) must be greater than zero, which means the conflict has occurred between two
classifiers. Otherwise, Dempster rules must be employed. Also, the new BPAs are defined as:{

mi = αi ×Oi

where Θ = 1− αi,
(8)

where Oi is the output value of the ith information resource in above equation. Now the new combination
rule is as follows:

m (A) =
q(A)

1− q(∅)
. (9)

If the number of information resources is greater than 2, then the rules of the combination are as follows:

m1 ⊕m2 ⊕ · · · ⊕ · · · = (((m1 ⊕m2)⊕ . . . )⊕ . . . ) . (10)

In this section, we proposed an architecture according to the ITU model for IoT as was explained, we
used information fusion in the services and application support layer to increase the accuracy of the system,
and mainly we used the combination rules of Dempster and Yager. In the next section, the proposed method is
simulated and evaluated in an industrial case.

4. Results and discussion
4.1. Case study 1
In this section, an induction motor with characteristics of 1800 rpm, four Polaris, three phases, 24 stator slots,
and 0.7 mm air gap length 0.7 mm is used to illustrate the performance of the proposed method. Sound and
vibration signals were collected under healthy and four fault conditions, namely bearing fault, mass unbalanced,
stator faults, and broken rotor bar. In the remainder of this paper, class0, class1, class2, class3, and class4 are
used for the healthy status and four fault conditions, respectively [50].
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4.1.1. Result of proposed decision fusion method
The proposed method is simulated on the MATLAB platform according to the flowchart in Figure 2 to obtain
results. As explained in the previous section, sound and vibration signals were collected under five conditions
of the system (class0, class1…, class4). For each type of signals, wavelet transformation is used for transforming
data to the time-frequency domain. As these signals contain a large set of data for each class, some statistical
functions are utilized for feature extraction and reducing data. After that, 75% of this data are fed to thr ANN
and DSVM, which are considered as evidence (classifier) here, to train and 25% of data are used for the test.
Results of applying the ANN and DSVM classifier on vibration and sound are demonstrated in Tables 1, 2, 3,
and 4 and they are compared to each other in Figure 3.

Start

Collecting Data from Case Study

Act According to Final Decision 

Classifying Data Using ANN 

Feature Extraction from Data 

Classifying Data Using DSVM 

Decisions Combination Using Improved Dempster- 

Shafer Theory

Decisions Combination Using Dempster-Shafer 

Theory

If Result>0.5

Compare the Result of Decisions Obtained from Classifiers 

(Evidence ) 

Average Accuracy of each Classifier 

used as Weight of Same Evidence 

Data

Decisions from 

Evidence

Decisions

Actions

Database

Save to Database

Save to Database

Save to Database

Actions Save to Database

Data Data

Recover History of Data

Results from Classifiers

Final Result

NoYes

Comparison Result

Figure 2. Flowchart of the proposed method.

Table 1. Results of applying ANN classifier to the vibration features.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 96.6667 00.0000 03.3333 00.0000 00.0000
Class1 00.0000 78.3333 00.0000 01.6667 20.0000
Class2 01.6667 08.3333 61.6667 21.6667 06.6667
Class3 00.0000 05.0000 18.3333 70.0000 06.6667
Class4 00.0000 25.0000 05.0000 16.6667 53.3333

As seen in Tables 1, 2, 3, and 4 and Figure 3, it is quite clear that by using this level of precision we
cannot make a proper decision about the status of the system, and using one information resource and one
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Table 2. Results of applying ANN classifier to the sound features.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 95.0000 00.0000 05.0000 00.0000 00.0000
Class1 00.0000 88.3333 01.6667 00.0000 10.0000
Class2 03.3333 06.6667 68.3333 10.0000 11.6667
Class3 00.0000 01.6667 46.6667 45.0000 06.6667
Class4 00.0000 36.6667 15.0000 00.0000 48.3333

Table 3. Results of applying DSVM classifier to the vibration features.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 58.3333 00.0000 41.6667 00.0000 00.0000
Class1 08.3333 79.1667 04.1667 00.0000 8.3333
Class2 04.1667 08.3333 79.1667 04.1667 04.1667
Class3 00.0000 08.3333 33.3333 54.1667 04.1667
Class4 00.0000 08.3333 20.8333 08.3333 62.5000

Table 4. Results of applying DSVM classifier to the sound features.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 54.1666 00.0000 45.8333 00.0000 00.0000
Class1 00.0000 66.6666 25.0000 00.0000 08.3333
Class2 00.0000 08.3333 79.1667 12.5000 00.0000
Class3 00.0000 00.0000 37.5000 54.1667 08.3333
Class4 00.0000 20.8333 12.5000 08.3333 58.3333

classifier cannot provide the desired accuracy. Therefore, more information resources and more classifiers are
needed to increase the level of decision accuracy. As mentioned in the previous sections, the composition rules
of Dempster–Shafer or Yager are used to combine the classifiers results. In this section, combination rules of
Dempster–Shafer and Yager are applied to each pair of results obtained from the classifiers, and the results are
reported in Tables 5, 6, 7, and 8 and their comparisons are shown in Figure 4.

Table 5. Results of applying decision fusion for DSVM classifier to the sound and vibration features.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 62.3287 00.0000 37.6712 00.0000 00.0000
Class1 00.0000 96.8152 01.9108 00.0000 01.2738
Class2 00.0000 01.0869 98.0978 00.8152 00.0000
Class3 00.0000 00.0000 29.6296 69.5473 00.8230
Class4 00.0000 04.1841 06.2761 01.6736 87.8661

As shown in Tables 5, 6, 7, and 8 and Figure 4, the accuracy is better than in the previous results,
but it is still not enough to make a decision close to certainty. In the next step, decision fusion is applied to
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Figure 3. Comparison of accuracy percent for five classes using DSVM and ANN classifiers.

Table 6. Results of applying decision fusion for ANN classifier to the sound and vibration features.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 99.8188 00.0000 00.1811 00.0000 00.0000
Class1 00.0000 97.1907 00.0000 00.0000 02.8092
Class2 00.1215 01.2158 92.2188 04.7416 01.7021
Class3 00.0000 00.2053 21.0814 77.6180 01.0951
Class4 00.0000 25.6809 2.1011 00.0000 72.2178

Table 7. Results of applying decision fusion for sound from DSVM and ANN classifiers.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 95.7364 00.0000 04.2635 00.0000 00.0000
Class1 00.0000 97.9214 00.6928 00.0000 01.3856
Class2 00.0000 00.9937 96.7701 02.2360 00.0000
Class3 00.0000 00.0000 47.2795 51.2195 01.5009
Class4 00.0000 20.2578 04.9723 00.0000 74.7697

the entire results of all classifiers. As shown in Table 9, when the results obtained from different classifiers that
combine the data of several information resources are combined at the decision level, a result with acceptable
accuracy is obtained. In this simulation the average accuracy is 98.3705 (Table 9). Table 10 shows the results
of all classifiers’ decision fusion. As seen, we obtained an acceptable accuracy to make a decision. To highlight
this, we compare the results of decision fusion, DSVM, and ANN in Table 10 and Figure 5. As illustrated in
Figure 5, decision fusion has high accuracy for all five classes.
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Figure 4. Comparison of accuracy percent for five classes after Decision Fusion to the results of DSVM and ANN
Classifiers.

Table 8. Results of applying decision fusion for vibration from DSVM and ANN classifiers.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 97.5961 00.0000 02.4038 00.0000 00.0000
Class1 00.0000 97.3827 00.0000 00.0000 02.6172
Class2 00.1367 01.3679 96.1696 01.7783 00.5471
Class3 00.0000 00.9316 13.6645 84.7826 00.6211
Class4 00.0000 05.5045 02.7522 03.6697 88.0733

Figure 5. Graphical comparison of accuracies of DSVM and ANN classifiers on sound and vibration and applying
decision fusion on results of all classifiers.
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Table 9. Results of applying decision fusion on all results of DSVM and ANN classifiers.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 99.9947 00.0000 00.0052 00.0000 00.0000
Class1 00.0000 99.9078 00.0000 00.0000 00.0921
Class2 00.0000 00.0186 99.6969 00.2843 00.0000
Class3 00.0000 00.0000 05.9532 94.0217 00.0249
Class4 00.0000 05.6155 00.0551 00.0000 94.3292

Table 10. Numerical comparison of accuracies of DSVM and ANN classifiers on sound and vibration and applying
decision fusion on results of all classifiers.

Class0 ac-
curacy

Class1 ac-
curacy

Class2 ac-
curacy

Class3 ac-
curacy

Class4 ac-
curacy

Average
accuracy

Decision fusion on all results of
two ANN and DSVM classifiers

99.9951 99.9994 99.9988 92.3292 99.5296 98.3705

DSVM classifier on sound fea-
tures

54.1666 66.6666 79.1666 54.1666 58.3333 62.5000

DSVM classifier on vibration fea-
tures

58.3333 79.1666 79.1666 54.1666 62.5000 66.6667

ANN classifier on sound features 95.0000 88.3333 68.3333 45.0000 48.3333 69.0000
ANN classifier on vibration fea-
tures

96.6666 78.3333 61.6666 70.0000 53.3333 72.0000

4.2. Case study 2
In this section, the proposed algorithm is examined for further performance evaluation on the activity recognition
system based on a multisensor data fusion (AReM) dataset [10]. This dataset contains received signal strength
(RSS) data from cycling, lying down, sitting, standing, and walking activities, which were collected by wearable
wireless sensors from system actors. These activities respectively are shown as class1, class2, class3, class4, and
class 5 in the rest of the paper. There are 15 temporal sequences available for each activity in this dataset. Each
of them contains 480 samples and is collected by three pairs of sensor nodes (i.e. chest–right ankle, chest–left
ankle, right ankle–left ankle) worn by system actors. In [10], in order to achieve an effective classifier, a decision
tree has been used to fuse the data flow from sensors, and in the end, it has classified the data using RNNs.
In this section, the proposed algorithm is applied to the above dataset according to the flowchart shown in
Figure 2 and the results are shown. All of the data obtained from the sensors are given to the ANN and DSVM
algorithms and the results obtained from these classifiers are combined using the Dempster–Shafer or Yager
rule, and the final decision is obtained.

Tables 11 and 12 show the accuracy of the proposed algorithm for human activity detection using DSVM
and ANN classifiers. In order to obtain these results, first, the RSS data obtained from sensors worn by five
system actors are given to the above classifiers, and then the results obtained from each of them are combined.
As can be seen, by combining the results of each of the DSVM and ANN categories, the average accuracy
is 90.54179 and 91.5000, respectively, which is not an acceptable percentage of accuracy for decision-making.
Table 13 shows the accuracy of the proposed algorithm for the fusion of the results of the previous step with
each other. As can be seen, when the results of the two classifiers are combined with each other, the average
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Table 11. Result of applying decision fusion for DSVM classifier on data of sensors received from five system actors.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 81.3541 00.0000 00.0000 00.0000 18.6458
Class1 00.0000 98.4375 00.0000 00.0000 01.5625
Class2 00.5208 00.0000 83.8541 00.0000 15.6250
Class3 00.0000 00.0000 00.0000 91.1458 08.8541
Class4 02.0833 00.0000 00.0000 00.0000 97.9166

Table 12. Result of applying decision fusion for ANN classifier on data of sensors received from five system actors.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 88.1250 00.0000 00.4166 00.2083 11.2500
Class1 00.0000 99.7916 00.0000 00.0000 00.2083
Class2 00.6250 00.0000 85.6250 13.7500 00.0000
Class3 00.0000 00.0000 04.7916 95.2083 00.0000
Class4 11.2500 00.0000 00.0000 00.0000 88.7500

Table 13. Result of applying decision fusion for ANN classifier on data of sensors received from five system actors.

Actual class
Class0 Class1 Class2 Class3 Class4

Predicted class

Class0 97.1573 00.0000 00.0000 00.0000 02.8426
Class0 00.0000 99.9966 00.0000 00.0000 00.0033
Class0 00.0045 00.0000 99.9954 00.0000 00.0000
Class0 00.0000 00.0000 00.0000 100.0000 00.0000
Class0 00.2689 00.0000 00.0000 00.0000 99.7310

accuracy of 99.3761 is obtained, which is an acceptable precision for decision-making. In order to highlight the
results in the three tables above, they are compared in Figure 6, and the difference between the accuracy of the
proposed method and the two classifiers used is significant.

Table 14. Numerical comparison of accuracies of the proposed, LI-ESN, and IDNNs methods.

Class0 ac-
curacy

Class1 ac-
curacy

Class2 ac-
curacy

Class3 ac-
curacy

Class4 ac-
curacy

Average
accuracy

Proposed method 97.1573 99.9966 99.9954 100 99.7310 99.30
LI-ESN 100.0000 97.1000 97.2000 100 100 98.80
IDNNs 99.8000 93.0000 99.1000 99.7000 100 96.90

Table 14 and Figure 7 show the compared accuracy of the proposed algorithm and the Leaky Integrator
Echo State Networks (LI-ESN) and Input Delay Neural Networks (IDNNs) methods results obtained in the [10]
for this dataset. As can be seen, the proposed method has better performance than the above two methods,
and the results are close to each other for the different classes, but in the other two methods, the results for the
different classes are obtained differently. Also, the average accuracy of 99.3 obtained in this paper for the given
dataset is greater than the accuracy of the two mentioned methods, which have average accuracies of 98.8 and
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Figure 6. Comparing accuracy percent for decision fusion of ANN result, for decision fusion of DSVM result, and
decision fusion of DSVM and ANN classifiers’ results.

Figure 7. Comparing accuracy percent for the proposed, LI-ESN, and IDNNs methods.

96.90 for the same dataset.

5. Conclusion
In this paper, an architecture based on the ITU model is introduced for a small IIoT. In its services and
applications support layer, one of the decision fusion methods named Dempster–Shafer is used for data analysis
and making a sound decision. Before using decision fusion, different data classifiers are used to classify the data.
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In this paper, DSVM and ANN are used for this aim. The data collected from an induction motor are used to
prove the efficiency of the method. As shown in the previous section, with one information resource and even
with one classifier, the intended accuracy for a precise decision cannot be obtained. Therefore, in this paper,
two information resources and two classifiers are used. According to the comparisons performed in the previous
section, it was observed that when the information obtained from several sources is evaluated using several
classifiers and the results of these classifiers are combined using decision fusion methods like Dempster–Shafer,
high accuracy in decision-making is obtained. The efficiency of this algorithm was studied using two use cases.
As seen in the results section, using the proposed method average accuracies of 98.3705 percent and 99.3761
percent were obtained for the first and second case studies, respectively. To use this method in operational and
real-world applications, this algorithm must be implemented by using a programming language that is suitable
for real-time programming instead of MATLAB. This can help for decision-making in services and application
support layer of small IIOT to make exact decisions and to apply correct action to prevent possible errors and
high losses of industrial units, because in such units failure of a part can impose many losses to the entire
system.

6. Future work
Our future work is going to focus on testing deep convolutional neural networks (DCNNs), model-based feature
learning, and data fusion approaches on further mechanical objects, fault modes, and sensor types, which
can confirm the effectiveness of approaches and allow us to find other useful application guidance. Finally,
combinations of different deep learning architectures should improve the effectiveness of fault decision-making.
Adding recurrent architectures like RNNs may make the model convenient for predicting future faults, and
combining with autoencoder architecture may improve the feature learning ability to capture more complex
features. The training of complex models is possible by the fast graphics processing units of Nvidia and
deploying pretrained neural network models to the new STM32CubeMx.AI by the STM32 MCU family.
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