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Abstract: Cluster analysis is widely used in data analysis. Statistical data analysis is generally performed on the
linear data. If the data has directional structure, classical statistical methods cannot be applied directly to it. This
study aims to improve a new directional clustering algorithm which is based on trigonometric approximation. The
trigonometric approximation is used for both descriptive statistics and clustering of directional data. In this paper, the
fuzzy clustering algorithms (FCD and FCM4DD) improved for directional data and the proposed method are carried out
on some numerical and real data examples, and the simulation results are presented. Consequently, these results indicate
that the fuzzy c-means directional clustering algorithm gives the better results from the points of the mean square error
and the standard deviation for cluster centers.
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1. Introduction
Clustering analysis is one of the popular topics of recent days. Clustering methods are commonly used in many
fields such as statistical analysis, pattern recognition, data mining, and machine learning [1–6]. Many clustering
algorithms have been developed in the literature to separate data into groups. Most of these algorithms work on
linear data systems, while others work on directional data. Clustering algorithms working on linear data systems
cannot be applied directly on directional data by their nature. Otherwise, this situation may lead to dilemmas
[7].The most important reason for this is having a modular structure of the directional data. Therefore, if
directional data are characterized in the range [0,2π ), they are continuous at the points (0); if directional data
are characterized in the range [−π ,π ), they are continuous at the points (−π ). Although the directional data
are continuous at these points, they show discontinuities in mathematical operations. Two commonly used
directional fuzzy clustering methods have been presented to overcome these discontinuities. The first of them
is the fuzzy c-directions (FCD) algorithm developed by [8]. This algorithm is a model-based clustering method
that uses von Misses distribution [9]. The biggest deficiency of this method is that the membership values exceed
the definition range of [0,1]. The other method is the fuzzy c-means clustering for directional data (FCM4DD)
algorithm developed by [10]. This algorithm was developed by adapting the operations in the linear data system
to the directional data system.

The motivation of this study comes from the fact that contrary to the FCM4DD, the proposed method
calculates the cluster centers using trigonometric approach instead of the linear approach. Moreover, the
clustering which uses the trigonometric approach will have less mean square errors due to the structure of the
∗Correspondence: bugrakaantiryaki@gmail.com
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directional data. Therefore, in this study, the clustering is performed with a trigonometric approach which is
appropriate to the structure of directional data instead of clustering which uses a linear approach such as the
FCM4DD.

Analyzing directional data is as old as the subject of mathematical statistics but there are still gaps in
this field. In order to fill these gaps, several studies have been presented and the directional data has been
increasingly popular [3, 11–21]. Statistical studies on directional data are becoming more and more important.
There are several books on the circular data analysis such as those by Batschelet [22], Fisher [23], and
Mardia and Jupp [24]. Directional data have applications in many areas such as medicine, biology, geology,
oceanography, and meteorology. In all studies on directional data, each data is accepted as a unit vector and
the statistical calculations are made by using their trigonometric components. The main basis for achieving
distinctive results with this approach is the usage of the trigonometric functions.

In this study, the trigonometric approach was used for the directional clustering. Some existing clustering
algorithms which are the FCD and the FCM4DD algorithm, and the proposed fuzzy c-means directional
clustering algorithm were performed on several artificial and real-life data. Then, the results were compared.

2. Directional clustering
In this study, the trigonometric approach used in the statistical calculations of the directional data was also
used for the proposed directional fuzzy clustering algorithm. The trigonometric distance and the trigonometric
mean were used in this clustering method [24].

Directional clustering algorithms are based on the angular distances between data as a similarity measure.
The clockwise and the counter-clockwise are angularly two distances between two angles θa and θb on the circle.
In general, the shortness of these two distances is preferred [24]. Ackermann [25] proposed Eq. (1) in order
to remedy this confusion in the similarity measurement. The measure δ yields the smaller of the two angles
between θa and θb .

δ = π −
∣∣π − |θa − θb|

∣∣. (1)

The other similarity measure is given in Eq. (2) which was proposed by Lund [26].

d = 1− cos(θa − θb). (2)

The distance d in Eq. (2) ranges from 0 to 2. Although the similarity measure given in Eq. (1) gives the real
angular distance, it is inadequate in several circular processes. For this reason, generally, the equality in Eq.
(2) is used in circular data processing. The following equation is used to displace the measure of the angular
distance in Eq. (2) to the real distance value.

d =
π

2

[
1− cos(θa − θb)

]
. (3)

In the FCM4DD algorithm, the angular difference between two angles is used instead of the absolute distance
when measuring the distance between two angles. The angular difference between the two angles is calculated
as in Eq. (4).

ψ =

((
(θa − θb) + π

)
mod 2π)

)
− π. (4)

The angular difference, unlike the absolute distance, can also take minus values. If the angle (θa ) is in front of
the counter-clockwise direction, the ψ value is positive otherwise it is negative.
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2.1. The fuzzy c-directions clustering algorithm

The fuzzy c-directions clustering algorithm (FCD) was presented by Yang and Pan [8]. It is a directional fuzzy
clustering algorithm that allows the data point belonging to multiple clusters with different membership values
in the interval [0,1]. The general assumption here is that the data set Θ = {θ1, θ2, ..., θN} is a random sample
which is generated from a mixture von Mises distribution. The following equation is objective function of the
FCD algorithm.

βm,w(µ, α, ν, κ) =

N∑
i=1

C∑
j=1

µm
ij

(
− loge2πI0 (κj) + κjcos (θi − νj)

)
+ w

N∑
i=1

C∑
j=1

µm
ij logeaj . (5)

µij is the membership value of the ith data point to the jth cluster. I0(κ) denotes the modified Bessel function
of the first kind and order zero [24]. ν and κ are called the mean direction and the concentration parameter
of von Mises distribution, respectively. m and w are fixed constants, m is chosen as 2 and w is chosen as 1,
generally. α is the proportion value of each data point [8]. Here, αj and µij in this objective function are
given in Eqs. (6) and (7). Here, αj and µij must satisfy the following two conditions:

C∑
j=1

αj = 1. (6)

C∑
j=1

µij = 1, (i = 1, 2, ..., N) . (7)

The FCD algorithm for circular data can be given in Algorithm 1.

Algorithm 1 The FCD clustering algorithm
Step 1. Fix c ∈ [2, N) , m > 1 , ε > 0 , w > 0 .

Step 2. Give initial membership values, randomly µ
(0)
ij ∼ U(0, 1) .

Step 3. Let t = 1 .
Step 4. Calculate α(t) with µ(t−1) by using Eq. (8).

αj =

∑N
i=1 µ

m
ij∑C

j=1

∑N
i=1 µ

m
ij

, (j = 1, 2, ..., C) . (8)

Step 5. Compute ϕ(t) with µ(t−1) by using Eq. (9),

ϕj = atan2

( N∑
i=1

µm
ij sin (θi) ,

N∑
i=1

µm
ij cos (θi)

)
, (j = 1, 2, ..., C) , (9)

The arc tangent function (atan2) is defined in the range [−π, π) .
Step 6. Compute κ(t) with µ(t−1) , ϕ(t) and θ by using Eq. (10),

κj = A−1

((∑N
i=1 µ

m
ij cos (θi − ϕj)

)∑N
i=1 µ

m
ij

)
, (j = 1, 2, ..., C) , (10)
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A−1(x) can be determined from the Batschelet’s table (see [23]).
Step 7. Update µ(t) with α(t) , ϕ(t) , κ(t) and θ by using Eq. (11).

µij =

(
C∑

k=1

(log (2πI0 (κj))− κj cos (θi − ϕj)− w log (αj))
1

m−1

(log (2πI0 (κk))− κk cos (θi − ϕk)− w log (αk))
1

m−1

)−1

(i = 1, 2, , N ; j = 1, 2, , C) (11)

Step 8. IF ||µt − µt−1|| < ε , STOP
ELSE t = t+ 1 and return to Step 4.

2.2. Fuzzy c-means clustering algorithm for directional data

The fuzzy c-means clustering algorithm for directional data (FCM4DD) algorithm was developed by adapting
the fuzzy c-mean clustering algorithm for directional data. The most important point of this method is that
using angular difference between two angles in Eq. (4) instead of the distance measure in Eq. (2). This method
is similar to the FCM algorithm in terms of the distance measure.

Circular data is usually represented by Θ = {θ1, θ2, ..., θN} but sometimes can be given periodically by
X = x1, x2, ..., xi, ..., xN . If directional data is given periodically, it can be converted to the directional form
with the help of Eq. (12),

θi =
2πxi
T

− π (12)

T is the period of the variable xi .
In this study, the ranges of directional data are [−π, π) or [0, 2π) . The improved clustering algorithm endeavors
to minimize generalized form of the least-squared errors function in Eq. (13) [27].

Jm =

N∑
i=1

C∑
j=1

µm
ij

∥∥∥∥(((θi − ϕj) + π
)
mod 2π

)
− π

∥∥∥∥2 (13)

m is weighting exponent parameter and generally is chosen as 2. ϕj is the cluster center and µij is the
membership value of the ith data to the jth cluster. µij must satisfy the following conditions given in Eqs.
(14)–(16).

µij ∈ [0, 1], ∀ i, j (14)

C∑
j=1

µij = 1, ∀ i (15)

0 <

N∑
i=1

µij < N, ∀N (16)

The fuzzy c-means clustering algorithm for directional data can be given in Algorithm 2.

Algorithm 2 The FCM4DD clustering algorithm
Step 1. Fix c ∈ [2, N) , m > 1 , ε > 0 .

Step 2. Give initial cluster centers ϕ(0)j ∼ U(0, 1) .
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Step 3. Let t = 1 .
Step 4. Calculate the angular difference (ψij) between two angles according to the temporary cluster center
of each data and reduce to the range of [−π, π) by using Eq. (17).

ψij =
((

(θi − ϕj) + π
)
mod 2π

)
− π. (17)

Step 5. Compute the membership values (µij) with ψij by using Eq. (18),

µij =

(
C∑

k=1

(
∥ψij∥
∥ψik∥

) 2
m−1

)−1

, i = 1, 2, ..., N, j = 1, 2, ..., C. (18)

Step 6. Update the cluster centers (ϕj) with ψij and µij by using Eq. (19),

ϕ
(t+1)
j =

((
ϕ
(t)
j +

∑N
i=1 µ

m
ijψij∑N

i=1 µ
m
ij

+ π

)
mod 2π

)
− π, (j = 1, 2, ..., C) . (19)

Step 7. IF ||µt − µt−1|| < ε , STOP
ELSE t = t+ 1 and return to Step 4.

2.3. Fuzzy c-means directional clustering algorithm
The desired optimal criterion of clustering is to minimize the objective function. The fuzzy c-means directional
clustering algorithm (FCMDC) minimizes the following generalized form of the least-squared errors function.

Jm =

N∑
i=1

C∑
j=1

µm
ij

( p∑
d=1

1− cos(θid − ϕjd)

)2

, 1 < m <∞. (20)

Here m is weighting exponent parameter, which is selected as 2, generally. µij is the membership value of the
ith data to the jth cluster. µij must satisfy the conditions given in Eqs. (14)–(16) [28]. In the circumstances,
the FCMDC with the help of the trigonometric distance and trigonometric mean can be given in Algorithm 3.

Algorithm 3 The FCMDC clustering algorithm
Step 1. Fix directional data (θi) , c ∈ [2, N) , m > 1 , ε > 0 .

Step 2. Give initial membership values randomly µ
(0)
ij ∼ U(0, 1) .

Step 3. Let t = 1 .
Step 4. Compute the cluster centers (ϕjd) with µij by using Eq. (21),

ϕjd = atan2
( N∑

i=1

µm
ij sin(θid),

N∑
i=1

µm
ij cos(θid)

)
, (j = 1, 2, ..., C). (21)

Step 5. Update (µij) by using Eq. (22),

µij =

(
C∑

k=1

(∑p
d=1 1− cos(θid − ϕjd)∑p
d=1 1− cos(θid − ϕkd)

) 2
m−1

)−1

. (22)
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Step 6. IF ||µt − µt−1|| < ε , STOP
ELSE t = t+ 1 and return to Step 4.

3. Comparing membership functions

The performances of fuzzy clustering algorithms depend on the weighting exponent parameter (m) . This
parameter forms a bridge between soft clustering and hard clustering. A large weighting exponent parameter,
the larger m , an object belongs to the more than one cluster and vice versa. Clustering is an optimization
problem and the solution of this depends on the m parameter. In other words, the selection of the different
parameter results in differences in clustering. Although there are many studies on the selection of this parameter
in the literature, there is no generally accepted criterion for this. A range of m based on experience, 1 ≤ m ≤ 5 ,
was proposed by Bezdek [28]. Pal and Bezdek [29] developed a heuristic rule for optimal selection of the
parameter m . The value of m was limited to [1.5, 2.5] . Generally, m parameter is chosen as 2 .

In this section, the behavior of these clustering methods is investigated for m = {1.5, 2, 2.5} and cluster
centers v =

{
− 2π

3 ,−
π
6 ,

π
2

}
. The values of µ1(θ) , µ2(θ) , and µ3(θ) in the graphs represent the membership

values for the first, second, and third clusters, respectively.

The change of FCD algorithm membership values according to the weighting exponent parameter (m)

is shown in Figure 1. The parameter values for this algorithm are determined as α = {0.4, 0.3, 0.3} and
κ = {7, 15, 3} .
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Figure 1. Calculated membership functions by FCD clustering algorithm; (a) Membership functions by FCD using
m = 1.5 , (b) Membership functions by FCD using m = 2 , (c) Membership functions by FCD using m = 2.5 .

145



KESEMEN et al./Turk J Elec Eng & Comp Sci

The membership values calculated by the FCD algorithm with parameter m = 1.5 are shown Figure 1a.
When the membership values are examined, it is seen that each membership function has reached 1 value
within its own cluster center and has reached 0 value within the other clusters. When the membership functions
are investigated graphically, it is seen that the membership values are outside of the interval [0, 1] when the
weighting exponent parameters are m = {2, 2.5} in the Figures 1b and 1c. Therefore, membership values
obtained by using FCD algorithm do not provide Eq. (15).

Figure 2 shows the change of the FCM4DD algorithm membership values according to the weighting
exponent parameter (m) .
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Figure 2. Calculated membership functions by FCM4DD clustering algorithm; (a) Membership functions by FCM4DD
using m = 1.5 , (b) Membership functions by FCM4DD using m = 2 , (c) Membership functions by FCM4DD using
m = 2.5 .

According to membership value in Figure 2, it is seen that each membership function’s value is 1 within
its own cluster center and 0 in the other cluster centers. Furthermore, the membership values range from 0 to
1 for each m . Depending on the increase in the value m , membership functions have changed from trapezoid
membership function to triangle membership function.

Figure 3 shows the change of the proposed FCMDC algorithm according to the weighting exponent
parameter (m) .

According to membership value in Figure 3, it is seen that each membership function’s value is 1 within
its own cluster center and 0 in the other cluster centers. In addition, the membership values range between 0
and 1 for each m .
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Figure 3. Calculated membership functions by FCMDC clustering algorithm; (a) Membership functions by FCMDC
using m = 1.5 , (b) Membership functions by FCMDC using m = 2 , (c) Membership functions by FCMDC using
m = 2.5 .

4. Experiments

In order to compare the performance of the FCMDC algorithm, it has been tested on some numerical examples
with the FCD and FCM4DD algorithms.

Example 1 The turtle data set is about the directions of 76 turtles which is given by Stephens [30]. The
directions of the turtles were recorded after laying their eggs, which is shown in Table 1.

Table 1. Directions of 76 turtles after laying eggs.

8 9 13 13 14 18 22 27 30 34
38 38 40 44 45 47 48 48 48 48
50 53 56 57 58 58 61 63 64 64
64 65 65 68 70 73 78 78 78 83
83 88 88 88 90 92 92 93 95 96
98 100 103 106 113 118 138 153 153 155
204 215 223 226 237 238 243 244 250 251
257 268 285 319 343 350

The data has two cluster centers that are about 60◦ and 240◦ , which is supported by the previous studies
[21].
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In order to cluster the turtle data set, FCD, FCM4DD, and FCMDC algorithms are used. The cluster
centers are estimated by repeating these algorithms 10 times; subsequently the estimated cluster centers are
compared with the real cluster centers to evaluate the performances of these algorithms. The comparison results
are given in Table 2.

Table 2. Comparison of algorithms for Example 1.

Algorithms FCD FCM4DD FCMDC
ϕ1(deg) 63.0749 62.5633 62.3815
ϕ2(deg) 238.3317 239.0884 239.6002
MSE(rad) 0.00372298 0.00225552 0.00253515
STD(rad) (0.0567, 0.0305) (0.0474, 0.0163) (0.0524, 0.0085)

In Table 2, MSE is the mean square error and STD is the standard deviation for cluster centers. When
the FCMDC algorithm is compared with the FCD and FCM4DD, we find that the FCM4DD and the FCMDC
clustering algorithms give almost the same results according to the MSE values. Thus, the FCMDC is a consistent
clustering algorithm like the FCM4DD. According to the standard deviation for ϕ (STD), it is seen that the
STD value of the FCMDC algorithm for ϕ1 is only less than the FCD algorithm. However, we find that the
FCMDC has the smallest standard deviation for ϕ2 among the three algorithms.

Considering the maximum crisp membership values, it is seen that 61 turtles move in the direction of 60◦

and that 15 turtles move in the direction of 240◦ when the FCD algorithm is used. Fifty-nine turtles move in
the direction of the 60◦ and 17 turtles move in the direction of the 240◦ when the FCM4DD and the FCMDC
algorithms are used in all trials. The FCMDC and the FCM4DD algorithms separate the same number of turtles
into two clusters.

Example 2 We generate 100 simulation data from the mixture von Mises distributions whose probability density

function is f(θ) = 0.3VM
(
θ; π

2 , 25
)
+0.3VM

(
θ;π, 25

)
+0.4VM

(
θ; π

3 , 25
)

using Best and Fisher’s simulation

method [31] for the performance comparisons of the FCD, FCM4DD, and FCMDC algorithms. The cluster
centers are estimated by repeating these algorithms 100 times and the means of estimated cluster centers
(ϕ1;ϕ2;ϕ3) for each algorithm were given in Table 3.

Table 3. Comparison of algorithms for Example 2.

Algorithms FCD FCM4DD FCMDC
ϕ1(deg) 98.1729 89.3028 89.3489
ϕ2(deg) 204.8087 180.7776 180.7660
ϕ3(deg) 299.9412 299.9722 299.9743
MSE(rad) 0.20783142 0.00033246 0.00030804
STD(rad) (0.3739, 0.9879, 0.0421) (0.0307, 0.0369, 0.0413) (0.0311, 0.0369, 0.0418)

In this example, when these algorithms were compared according to the MSE values, the FCMDC algorithm
showed better results than the other algorithms. It is seen that the FCM4DD and the FCMDC clustering
algorithms give almost the same results according to the STD values. On the other hand, the FCD algorithm is
an unstable method because this algorithm gives very bad results according to the standard deviation for cluster
centers.
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Example 3 In this example, sudden infant death syndrome (SIDS) data set which is given by Mooney et al.
[1] is used to compare the clustering algorithms. The data set indicates the numbers of sudden infant deaths,
according to the month of birth, month of death, age at death, and gender in the UK in the years 1983–1998.
The SIDS data for the year 1998 can be fitted by a mixture of two von Mises distribution which is periodic data,
so that we may apply the directional clustering algorithms to these data. The data were month-corrected to 31
days by multiplying February by 1.097 and the 30-day months by 1.033. The numbers and the corrected numbers
of the SIDS cases for the year 1998 are given in Table 4.

Table 4. The numbers and the corrected numbers of SIDS cases for the year 1998.

1998 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Numbers 40 28 25 25 29 32 25 20 26 40 42 63
Corrected numbers 40 31 25 26 29 33 25 20 27 40 43 63

The numbers of cases given per month are converted into circular data by dividing 360◦ into 12. The
months of the 1 year can be divided into the angular range of a circle into 12 intervals (0◦, 360◦) . For example,
the circular range of the January is (0◦, 30◦) , the circular range of the February is (30◦, 60◦) and so on. Random
numbers are generated from uniform distribution as the number of cases for each month in the defined circular
range. Thus, all data has been converted into the circular data in the range of (0◦, 360◦) . The FCD, FCM4DD,
and FCMDC circular clustering algorithms are applied to these circular data. The cluster centers are estimated
by repeating these algorithms 10 times; subsequently the estimated cluster centers are compared with the real
cluster centers to evaluate the performances of these algorithms. The comparison results are given in Table 5.

Table 5. Comparison of algorithms for Example 3.

Algorithms FCD FCM4DD FCMDC
ϕ1(deg) 168.8667 150.7914 150.8867
ϕ2(deg) 336.9319 334.2690 335.2671
MSE(rad) 0.0926 0.0033 0.0016
STD(rad) (1.0572, 0.0734) (0.0503, 0.0672) (0.0645, 0.0549)

The data has two cluster centers that are about 154.41◦ and 340.34◦ , which is supported by the previous
studies [1].

In this example, when these algorithms were compared according to the MSE values, the FCMDC algorithm
showed better results than the other algorithms. The estimate of the two cluster centers ϕ1 and ϕ2 are 150.8867◦

and 335.2671◦ by using the FCMDC algorithm. Thus, we say that there are two peaks of SIDS cases for the
year 1998. One of them is between May and June, the other is between November and December. In other
words, this study has given similar results as the previous studies [21]. According to standard deviation for ϕ

(STD), it is seen that the STD value of the FCMDC algorithm for ϕ1 is only less than the FCD algorithm.
However, we find that the FCMDC has the smallest standard deviation for ϕ2 among the three algorithms.

Example 4 We generate 100 simulation data from the mixture triangular distributions whose probability density

function is f(θ) = 0.33Λ
(

π
3 ,

π
2 ,

2π
3

)
+0.33Λ

(
2π
3 , π,

7π
6

)
+0.34Λ

(
7π
6 ,

5π
3 ,

11π
6

)
using Best and Fisher’s simulation

method [31] for the performance comparisons of the FCD, FCM4DD, and FCMDC algorithms. The cluster
centers are estimated by repeating these algorithms 100 times and the means of estimated cluster centers
(ϕ1;ϕ2;ϕ3) for each algorithm were given in Table 6.

149



KESEMEN et al./Turk J Elec Eng & Comp Sci

Table 6. Comparison of algorithms for Example 4.

Algorithms FCD FCM4DD FCMDC
ϕ1(deg) 101.1628 92.0186 91.9506
ϕ2(deg) 166.3027 175.3544 175.0455
ϕ3(deg) 270.2519 285.7891 286.0619
MSE(rad) 0.36468053 0.06933259 0.06781499
STD(rad) (0.5420, 0.4912, 0.812) (0.0541, 0.0973, 0.2787) (0.0535, 0.1026, 0.2764)

In this example, when these algorithms were compared according to the MSE values, the FCMDC algorithm
showed better results than the other algorithms. According to the standard deviation for ϕ (STD), it is seen
that the STD values of the FCMDC and FCM4DD algorithms for ϕ2 are similar. However, we find that the
FCMDC has the smallest standard deviation for ϕ1 and ϕ3 among the three algorithms.

Example 5 In this example, two different up-to-date wind direction data are used. Firstly, 285 diary wind
direction data were taken for the 01/Jan/2016-12/Oct/2016 at a meteorology station in Somió, Spain. It is
situated at a latitude of 43◦ 32′ 17′′N , a longitude of 5◦ 37′ 26′′W and 30 m above sea level. The data are
available from InfoMet 1. Wind directions are measured from 0◦ to 360◦ . The optimal number of clusters is
determined as 2 by using validity indices for directional data [32]. The FCD, FCM4DD, and FCMDC circular
clustering algorithms are applied to the Somió wind direction data. The cluster centers are estimated by repeating
these algorithms 10 times.The estimated cluster centers (ϕ1;ϕ2) for each algorithm were given in Table 7.

Table 7. Comparison of Algorithms for Somió Data.

Algorithms FCD FCM4DD FCMDC
ϕ1(deg) 57.1942 56.1258 56.1648
ϕ2(deg) 260.6955 255.6693 257.2199

The proposed method gives almost the same results as the FCM4DD. These algorithms calculated the wind
direction centers as nearly northeast and southwest. Moreover, the FCD algorithm calculates the wind centers
same as the others but it is an unstable clustering method in terms of membership values.

Secondly, Bodrum-Milas airport is considered for exemplifying the analysis of wind data. For 01/Jan/2019–
20/May/2019, 5978 wind directions were examined. The airport is situated at a latitude of 37◦ 15′ 1.2′′N , a
longitude of 27◦ 39′ 30.59′′E and 6 m above sea level. The data are available from Iowa State University 2.
Wind directions are measured from 0◦ to 360◦ and recorded per approximately 20 min. The optimal number of
clusters is determined as 2 by using validity indices for directional data [32]. The FCD, FCM4DD, and FCMDC
circular clustering algorithms are applied to the Bodrum-Milas airport data. The cluster centers are estimated
by repeating these algorithms 10 times. The estimated cluster centers (ϕ1;ϕ2) for each algorithm were given in
Table 8.

These algorithms calculated the wind direction centers as nearly northwest and south. On the other hand,
in this example, MSE and STD values cannot be calculated because the real wind direction centers are not known
in the literature.

1InfoMet (2019). Data meteorológicos [online]. Website http://infomet.am.ub.es/clima/gijon [accessed 22 May 2019].
2Iowa State University (2019). Iowa Environmental Mesonet [online]. Website https://mesonet.agron.iastate.edu [accessed 22

May 2019].
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Table 8. Comparison of algorithms for Bodrum-Milas data.

Algorithms FCD FCM4DD FCMDC
ϕ1(deg) 118.9138 114.8924 115.8384
ϕ2(deg) 268.8101 283.3208 277.9160

5. Conclusion
In this study, the FCMDC clustering algorithm is developed by using trigonometric approach for directional
data. It is a distribution-free algorithm like the FCM4DD algorithm. In this paper, numerical examples are
performed on one-dimensional directional data sets. The proposed algorithm can be performed on both circular
data and N-dimensional directional data. When the results are compared, the FCM4DD and FCMDC algorithms
gave almost the same results in terms of the MSE values. Experimental results demonstrated that the FCD
method shows failure results in contrast to other methods. The FCM4DD and FCMDC algorithms maintain
their superiority according to the standard deviation for cluster centers but the FCD algorithm does not. This
is because the FCD algorithm is an unstable clustering method. When the methods are compared in terms of
membership values, the FCM4DD and FCMDC algorithms provide the condition of being in the range of [0, 1] .
However, the obtained membership values by the FCD algorithm are outside the range [0, 1] . The weighted
exponent parameter (m) of the FCM4DD is smaller than FCMDC’s for the same membership values. When
the FCM4DD’s weighting exponent parameter increases, the membership values of these algorithms become
similar. The results show the accuracy and consistency of the FCMDC so that it is recommended as a new
method for the clustering of the directional data.
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