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Abstract: Diabetic patients are quite hesitant in engaging in normal physiological activities due to difficulties associated
with diabetes management. Over the last few decades, there have been advancements in the computational power of
embedded systems and glucose sensing technologies. These advancements have attracted the attention of researchers
around the globe developing automatic insulin delivery systems. In this paper, a method of closed-loop control of diabetes
based on neural networks is proposed. These neural networks are used for making predictions based on the clinical data of
a patient. A neural network feedback controller is also designed to provide a glycemic response by regulating the insulin
infusion rate. An activity recognition model based on convolutional neural networks is also proposed for predicting the
patient’s current physical activity. Predictions from this model are transformed into a six-level code and are fed as input
to the neural network glucose prediction model. Experimental results of the proposed system show good performance in
keeping blood glucose levels in the nondiabetic range.
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1. Introduction
Type 1 diabetes, also called diabetes mellitus, is a condition in which the body fails to keep the blood glucose
levels within the euglycemic range. Blood glucose (BG) increases (hyperglycemia) for a longer duration of time
can increase the risk of kidney failure, heart attack, blindness, etc. In normal or healthy individuals these levels
are maintained within normal limits (<154 mg/dL) [1] by insulin secretions from the pancreas. Type 1 diabetes
(T1D) usually develops in children and adults due to the destruction of beta cells resulting in insulin deficiency
[2, 3]. People with type 1 diabetes require lifelong insulin injections to prevent hyperglycemia for survival. Type
2 diabetes is characterized by hyperglycemia due to insulin resistance, which is believed to occur due to increased
weight, stress, and lack of exercise [4, 5]. The most frequently used methods for T1D management are multiple
daily injections and insulin delivery via an insulin pump [6–8]. In the last few decades, both glucose sensing
capabilities and insulin delivery methods have greatly improved. These technological advancements, along with
advancement in computer control systems, have led to the development of a closed-loop insulin delivery system
also called an artificial pancreas [9–12]. An artificial pancreas is a system consisting of a continuous glucose
monitor (CGM), insulin pump, and control algorithm as shown in Figure 1.

In the literature, many control algorithms have been proposed for the closed-loop control of diabetes
[9, 13]. The authors in [14] developed a closed-loop control system that uses continuous glucose measurements
and a pump that can deliver both insulin and glucagon. A computer algorithm decides the amount of insulin or
glucagon to be delivered based on the blood glucose measurements of a patient. The 27-h experiment conducted
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Figure 1. Closed-loop feedback controller.

with 11 subjects with announced carbohydrate meals revealed that the closed-loop system achieved a mean BG
concentration of 140 mg/dL in six subjects and none of the subjects experienced hypoglycemic events requiring
treatment during the experiment. Another study involving closed-loop glucose regulation via an adaptable
control algorithm was presented in [15]. The algorithm uses two modules, a range correction module and safety
supervisor module. Both of these modules interact with each other to avoid glucose increases in a predefined
range.

Meals of varied types and sizes have direct impacts on the glucose levels of an individual. For any
treatment considering diabetes management, meal detection is a must. In [16] the authors developed a meal-
detection algorithm where meals are detected based on rate of appearance of glucose estimations provided by the
CGM. Estimations from the algorithm are given to the multivariable adaptive control system, which prevents
after-meal hyperglycemia. The authors used a modified version of Bergman’s minimal model and an unscented
Kalman filter (UKF) to calculate the glucose dynamics and estimation of states and parameters, respectively.
Like meal disturbances, physical activities of different intensities are also known to affect the glucose levels of
an individual. Any physical work of high intensity can lead to hyperglycemia in the case of a diabetic patient.
The work presented in [17] discussed how patients with diabetes (type 1) are exposed to hypoglycemia when
they are engaged in some physical activities (running, exercise, etc.), especially in the afternoon or evening.
The authors also highlighted the importance of integrating different sensing technologies, similar to smart
calculators (glucose, insulin, exercise calculators, etc.) and control algorithms, so that real-time data like heart
rate, movement, and blood lactate levels during a workout can be used to manage blood glucose levels with
minimal or no user input. The authors in [18] used heart rate signals as markers of physical activity. This
information is used by the control algorithm to minimize hypoglycemia. The study included subjects without
any cardiovascular complications. Moreover, subjects taking medication known to affect the heart rate were not
considered in this study. There was no method considered in this study to differentiate between increased heart
rate due to physical activity and some other significant factors like stress, medicine, etc. The work presented in
[19] used a predictive low glucose suspend (PLGS) algorithm to avoid physical activity associated hypoglycemia.
Data from eighteen subjects were manually fed to an algorithm, which indicates hypoglycemic events, and based
on these data, basal insulin infusion is suspended by the supervising staff. The authors in [20] developed a
multivariate adaptive artificial pancreas (MAAP) system integrated with an early hypoglycemia alarm system.
In the closed-loop setup, blood glucose measurements and physical activity information is manually fed to the
control system every 10 min. An insulin bolus calculated by the control algorithm is then supplied through
the pump manually. In [19, 20], the authors suggested to increase the clinical sample data for better statistical
analysis and least manual intervention to make the system more robust and less prone to human bias and errors.
Furthermore, in [20], average physical activity was estimated by the supervising staff over the period of 5 min
and this estimate was less reliable than automated activity recognition systems.
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Due to the nonlinear nature of biological systems, researchers have used artificial neural networks (ANNs)
in diabetes control. ANNs are widely applied in problems of nonlinear nature. The work presented in [21–
23] used ANNs for making nonlinear glucose predictions and in some studies these networks were used in
feedback control algorithms [23–25]. Other authors [26] presented a system comprising a neural network and
compartmental model (CM). The CM provides an estimation of insulin bolus and also takes absorption delay
into consideration. The neural network predicts the glucose levels based on the estimations provided by the
CM and the values provided by the CGM.

These studies suggest that by using ANNs it is possible to obtain a glucose prediction model for a diabetic
person based on his clinical data. However, few of these studies incorporate physical activity as a part of closed-
loop control in T1D; most of the studies use Bergman’s model to represent the glucose-insulin dynamics of an
individual, which sometimes fails to mimic nonlinear behavior, resulting in less efficient treatment.

In this article, a neural network (NN)-based glucose prediction model is proposed, which provides
glucose-insulin dynamics for each patient with T1D. Furthermore, an activity recognition algorithm based
on convolutional neural networks (CNNs) is also proposed. The developed CNN model recognizes the patient’s
current physical activity; this information along with values from the CGM and an already known dietary
schedule is supplied as input to the NN-based glucose predictor. An optimized NN-based feedback controller is
designed to keep the blood glucose levels within the euglycemic range by regulating the insulin infusion rate.
The experimental results obtained show good glycemic control and the developed model is more accurate than
the Zone-MPC (model predictive controller) developed by Grosman et al. [27].

2. Methodology

A CNN-based human activity/context recognition classification algorithm is proposed to identify six different
human activities a(t) that have an effect on the glucose dynamics of T1D patients. The recognized activity
a(t) is supplied as one of the inputs to the glucose prediction model. The glucose prediction model, in addition
to a(t) , receives predefined food intake f(t) and past glucose readings gm(t) using a feedback loop as inputs.
Based on the input, the glucose prediction model employs a NN to predict blood glucose levels gpred(t+15) at
time t with prediction horizon of 15 min. Finally, a feedback controller is used to calculate the insulin bolus
i(t) . The controller uses a feedback loop to receive i(t) as one input and glucose prediction error ge , calculated
using gpred(t+ 15) and glucose settling point, as the other. The complete model is shown in Figure 2.

2.1. Proposed activity recognition model
The activity recognition model is a classification algorithm based on CNNs, which we train to classify six basic
human activities (jogging, walking, moving upstairs, moving downstairs, sitting, and standing) using a publicly
available dataset.1 The data were collected using smartphone accelerometers and data distribution with respect
to various activities as given in Figure 3.

A CNN is a special kind of feedforward NN that significantly reduces the number of parameters in a
deep neural network with many units, without losing too much in the quality of the model. CNNs have found
applications in image and text processing where they outperform many previously established benchmarks. The
architecture of the CNN used for activity recognition is shown in Figure 4.

1AIM ’94 (1994). Diabetes Data Set [online]. Website https://archive.ics.uci.edu/ml/datasets/Diabetes [accessed 23
August 2019].
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Figure 2. Feedback controller.
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Figure 3. Physical activity data distribution.

Data from the smartphone sensors need to be transformed and segmented so that features can be easily
drawn from them. The continuous stream of data can be segmented using a sliding window of fixed or varied
length. In this study, input data from the 3 channels (x-axis, y-axis, z-axis) were prepared by dividing the raw
data signal into fixed sized segments. These segments were stacked along a vertical dimension so that the input
would be of the form (input width, input height, and number of channels). The segmentation window consists
of 90 data points (4.5 s of data) with 50% data overlap. Windows from three channels were stacked to perform
the one-dimensional convolution over the input signal. Acceleration values were normalized to have zero mean
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Figure 4. CNN architecture.

and unit standard variance. The NN uses backpropagation to compute the gradients and parameters were
optimized using the gradient descent algorithm. The model shown in Figure 4 consists of a max pooling layer
separating the two convolution layers. The convolution layer is followed by a fully connected layer, which is
further connected to a softmax layer. Both max pool and convolution layers are temporal or 1-dimensional. The
first convolutional layer has a filter size and depth of 60 (number of channels, as output from the convolutional
layer), and after performing the 1D convolution over the input channel data, output is passed through the ReLU
activation function. Training hidden layers with the ReLU has been thoroughly discussed in the literature, and
it is significant to avoid the vanishing gradient problem. The pooling layer has a filter size of 20 with a stride
of 2. The convolutional layer at the top takes an input from the max-pooling layer, applying the filter size of 6
and having a tenth of the depth of the max pooling layer. The output is flattened for the fully connected layer,
which consists of 1000 neurons. It uses the tanh(.) function as defined by Eq. (1) for nonlinearity. Finally, the
softmax layer is defined by Eq. (2) to output the probabilities of class labels.

ux
ij = tanh(bij +ΣmΣpi−1

p=0 wp
ijmux+p

(i−1)m) (1)

Here, tanh(.) is the tangent function, m is the index over the set of feature maps in the (i - 1)th layer
connected to the current feature map, bij is the bias for this feature map, wp

ijm is the value at position p of
the convolutional kernel, and Pi is the length of convolutional kernel. For the j th feature map in the ith layer
of the CNN, the value in the xth row is denoted as ux

ij . The softmax function is defined as follows:

uij =
exp(u(i−1)j)

Σc
j=1exp(u(i−1)j)

(2)

Here, C is the number of output classes. Table 1 shows the confusion matrix for our CNN model.

Table 1. Confusion matrix for proposed CNN.

Downstairs Jogging Sitting Standing Upstairs Walking
Downstairs 618 19 12 0 22 30
Jogging 36 1825 0 0 103 36
Sitting 3 0 357 21 1 11
Standing 1 0 2 275 6 4
Upstairs 38 21 0 0 648 81
Walking 17 62 0 1 133 2488
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The model was trained on a desktop machine with a Core i5 processor with 6 GB of RAM and 2 GB
NVIDIA graphics card. Table 2 shows the experimental setup of the CNN.

Table 2. Experimental setup.

Parameter Input
height

Input
vector size

Number of
channels

Learning
rate

Batch
size

Hidden
neurons

Kernel
size

Depth

Value 1 90 3 0.0001–0.001 10–15 1000 60 60

2.2. Neural network-based glucose prediction model

Neural networks are interconnected networks of nonlinear elements with adjustable weights. Much like biological
neurons in the human brain, these nonlinear elements have as their inputs a weighted sum of the outputs of
other elements. These networks are mostly used now for providing a nonlinear mapping between input and
output. An artificial neural network changes its structure based on data provided during the training phase,
and once the training is complete, verification is done by testing the performance of the trained model with
data that were left out during the training. A neural network is a mathematical function of the following form:

y = fNN(x) = fl(z) (3)

fl(z) = gl(Wlz + bl) (4)

Here, l is a layer number and can vary from 1 to the number of layers in a network, gl is an activation function,
and Wl and bl are the weighted matrix and bias calculated during optimization.

In this study, a NN model is trained for each patient using his or her clinical data. The dataset is
distributed as follows: 60 data instances are used for training the network and the remaining 10 data instances
are used for testing the accuracy of the model. The NN model shown in Figure 5 is a fully connected feedforward
network with a three-layer structure. The input layer consists of twelve neurons, which are fully connected with
the five neurons of the hidden layer. An output layer has a single neuron predicting the glucose output of a
patient. These predictions are made 15 min ahead of the present time to deal with uncertain disturbances.
Both input as well as the hidden layer use a hyperbolic tangent function as their transfer function. For the
outer layer a simple linear transfer function is used to make the predictions.

The proposed glucose prediction model in Table 3 is trained on a publicly available dataset2 containing
data from 70 patients collected over several weeks to months. A patient (#2) is randomly selected among 70
patients and his clinical data are shown in Figure 6. The data shown in Figure 6 constitute a 24-h profile
of a patient, where insulin and blood glucose measurements were taken every 5 min (1853 samples in a day).
It should be noted that the data are collected after the predefined dietary schedule where fixed amounts and
times were assigned to breakfast (08:00), lunch (12:00), dinner (18:00), and bedtime (22:00). Table 3 shows the
mean glucose levels, standard deviation, minimum and maximum values of insulin bolus, and measured plasma
glucose levels.

The glucose prediction model shown in Figure 5 was trained individually for each patient with glucose
level gm measured at a particular time t , insulin infusion rate i(t) , physical activity of a patient a(t) , and
carbohydrate (food) intake f(t) as inputs and the predicted level of glucose gpred(t+ t1) as output. The input

2AIM ’94 (1994). Diabetes Data Set [online]. Website https://archive.ics.uci.edu/ml/datasets/Diabetes [accessed 23
August 2019].
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Figure 5. Neural network architecture.

Table 3. Glucose prediction model setup.

Model inputs Model structure Activations Accuracy (average RMSE)
Activity a(t), food intake f(t),
measured glucose gm(t),
insulin bolus i(t)

Single input layer,
2 hidden layers,
single output unit

Hyperbolic tangent,
linear

5.84
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Figure 6. Patient Clinical data.
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vector is of the form of Eq. (5).

gpred(t+ t1) = Layer1(gm(t), i(t), a(t), f(t)) (5)

To accommodate for the carbohydrate consumption rate, the authors have built a mathematical function that
considers the calorie consumption rate of a patient as described in [28]. Devices like continuous glucose monitors
(CGMs) are also subject to some inherent delay [29], and while making glucose predictions this subcutaneous
delay is also taken into account. Similarly, there is also some delay associated with the absorption rate of
carbohydrates, which is usually calculated as glucose response during fasting. Keeping in view the difficulty of
calculating this parameter, this parameter was determined using the values provided in [30].

Another vital parameter that serves as input to the proposed model and has an effect on the glucose
dynamics of a patient is the patient’s current activity. The proposed activity recognition model in Figure
4 predicts a patient’s activity based on his data with an accuracy of 90 percent. Outputs from the activity
recognition model shown in Figure 4 were turned into a six-level code ranging from 0 to 5 (0 (sitting), 1 (walking),
2 (jogging), 3 (standing), 4 (moving upstairs), 5 (moving downstairs)) and fed as input to the NN-based glucose
prediction model based on the activity a user is performing. Table 4 shows part of the input profile of a patient
for a single day.

Table 4. Plasma parameters of patients

Parameter Glucose (mg/dL) Insulin (mU/min)
Mean 132.771 12.767
SD 36.284 3.823
Minimum 52 5.49
Maximum 260 26.15

Weights of the neural network are started from small random values initially and are updated using a
backpropagation algorithm. Because of the simple architecture of the proposed NN model, the model is trained
using a damped least-squares optimization technique [31]. This technique is proven to converge faster when the
size of the network is not very large [31]. The optimization algorithm is applied in batch mode where changes
are accumulated over all patterns and are done after a complete pass (epoch) over the whole training set is
made. Finally, the NN model response is validated with 10 test data instances in the dataset.

2.3. Neural network feedback controller
The NN-based feedback controller in Figure 2 is designed for the calculation of optimal insulin infusion, delivered
via an insulin pump. Glucose predictions from the model discussed in the above section are used to calculate
the error ge between measured glucose gm and glucose settling point gsp (120 mg/dL). ge calculated along
with past insulin intake i(t− t1) serves as input to the controller while the amount of insulin i(t) to be given
in order to bring ge close to gsp is taken as output (Eq. 6).

i(t) = (ge(t), i(t− t1)) (6)

An optimal three-layered NN structure was obtained with 3 units in the input layer and a single neuron
in the output layer. The hidden layer contains an adequate number of neurons, which is considered to be
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patient-specific. The control parameter was adjusted using the backpropagation of ge and the network was
trained in a similar way as discussed in the above section with the same least-square optimization technique,
also called the Levenberg–Marquardt method [31, 32].

3. Results and discussion
In order to evaluate the performance of the glucose prediction model, the measured and predicted glucose levels
of a patient were plotted as in Figure 7 and the root mean square (RMS) error was calculated. Table 5 shows
the RMS error values and correlation coefficient of 10 randomly selected patients among a group of a total of
70 patients in the dataset.
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Figure 7. Glucose Prediction Model.

Table 5. Input profile of a patient.

Glucose level 258 116 112 146 128 114
Insulin inf. rate 22.59 10.3 11.99 13.53 11.96 10.58
Activity 1 1 2 4 0 0
Carbohydrate intake 0 0 82 54 0 0
Time 10:01 14:01 18:01 22:01 0:01 04:01

Glucose: mg/dL Insulin inf. rate: mU/min Carbohydrate intake: g

Figure 8 shows the performance of a NN-based feedback controller for a patient (#2). In order to bring
the glucose levels close to the settling point (120 mg/dL), as shown in Figure 8a, the control algorithm, based
on the predictions made by the glucose prediction model, manipulates the control variable (insulin bolus), as
shown in Figure 8b. Table 6 shows the hyper- and hypoglycemic events for the same 10 subjects whose RMSE
values are shown in Table 5.

The proposed NN model showed good prediction capability (Figure 7) during nominal meal conditions for
each patient. There were very few hyper- and hypoglycemic events in the original dataset because the dataset
includes data from diabetic patients who were under treatment. The predicted glucose levels from the model
showed the acceptable average RMS percentage value (5.84) calculated from Table 5.
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Figure 8. Controller performance, (a) Glucose Level maintained, (b) Insulin bolus calculated.

Table 6. NN controller performance.

Patient Median >180 mg/dL (%) <70 mg/dL (%) 70–180 mg/dL (%)
1 132.8 6.6 0 93.4
2 153.2 9.7 3.2 87.1
3 143.1 7.4 0 92.6
4 148.3 7.6 2.1 90.3
5 134.6 5.3 0 94.7
6 138.3 3.9 0 96.1
7 143.7 4.4 1.8 93.8
8 135.9 5.8 0 94.2
9 141.6 8.4 0 91.6
10 133.6 7.6 0 92.4

The proposed feedback controller was successful in providing tight control of the glucose levels. Data
from Table 6 reveal that the controller adjusted well to the activity and meal disturbances by keeping the
subcutaneous glucose levels within the normal glycemic range. There were very few hypoglycemic events (Table
5) during the control and the average euglycemic rate was 92.62%. Table 7 provides the comparison of the
proposed technique with other existing techniques used in the literature [27] in terms of average RMS error
and percentage of values in the nondiabetic range. The glucose prediction technique used in the MPC (model
predictive control) of [27, 33] is based on regression (ARX models), which uses a cost function to minimize the
error between actual and predicted output. The system is modeled using the minimal Bergman model composed
of 3 equations to represent the dynamic human glucose insulin behavior.

dG/dt = −P1 −X(G+Gb) +D(t) (7)

dX/dt = −P2X + P3I (8)

dI/dt = −n(I + Ib) + U(t)/V1 (9)
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Here, G is plasma glucose conc. (mmol/L) above basal value, X is proportional to I in remote compartment
(mU/L), I is plasma insulin conc. (mU/L) above basal value, D(t) is meal glucose disturbance, U(t) is
manipulated insulin infusion rate (mU/min), and Gb and Ib are basal values of glucose and insulin conc.
(4.5 mmol/L, 15 mU/L). The initial model parameters are shown in Table 8. After the prediction is made, the
MPC controller is engaged to manipulate the control variable (insulin infusion rate) in order to keep the blood
glucose levels in a nondiabetic range for a fixed prediction horizon. The work described in [27] also provides
control for a zone instead of control for a fixed settling point, which helps in minimizing the frequent controller
adjustments. Proportional, integral, and derivative (PID) controllers were one of the early approaches used in
closed-loop insulin delivery systems [33]. PID controllers have also shown good control in insulin regulation but
issues like increased controller tuning, computational delays, signal conditioning, and noise cancellation need to
be addressed more rigorously while implementing PIDs on digital hardware.

Table 7. Performance comparison of different techniques.

Average RMSE (%) Average 70–180 (%)
Zone-MPC 8.75 89.71
PID-controller 11.58 85.69
Proposed technique 5.84 92.62

All the simulations were done in the MATLAB programming environment. Both the neural network
glucose prediction model and feedback controller were trained on a Core i5 processor with 6 GB of RAM and
2 GB NVIDIA graphics card.

Table 8. Initial model configuration.

P1 = 0 min−1 P2 = 0.025 min−1

P3 = 0.000013 mU/L V1 = 12 L n = 5/54 min−1

4. Conclusion

In this study, an optimized closed-loop insulin delivery system based on neural networks for model identification
and control of diabetes mellitus is proposed. Convolutional neural networks are employed to recognize the
physical activity of the subject and the recognized activity is incorporated into the model using a code to
improve the glucose predictions. Experimental results reveal that the NN-based model performed well with
an acceptable value of RMS error. Use of the NN-based feedback controller as a design choice for closed-loop
control of diabetes proved to be a good choice. The controller performed well in keeping the blood glucose levels
in a euglycemic range with accuracy of more than 90 percent. Several other factors, other than those discussed
in this article, that affect blood glucose levels in an individual are stress, unpredicted meals, complex activities,
etc. Consideration of these factors to further enhance the efficiency of the proposed model provides scope for
future research. Further studies will also consider the use of hybrid models (i.e. recurrent NNs and CNNs) in
modeling and experimentation with feedback controllers for improved control of the disease.
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