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Abstract: Alzheimer’s disease is a brain disease that causes impaired cognitive abilities in memory, concentration,
planning, and speaking. Alzheimer’s disease is defined as the most common cause of dementia and changes different
parts of the brain. Neuroimaging, cerebrospinal fluid, and some protein abnormalities are commonly used as clinical
diagnostic biomarkers. In this study, neuroimaging biomarkers were applied for the diagnosis of Alzheimer’s disease
and dementia as a noninvasive method. Structural magnetic resonance (MR) brain images were used as input of the
predictive model. T1 weighted volumetric MR images were reduced to two-dimensional space by several preprocessing
methods for three different projections. Convolutional neural network (CNN) models took preprocessed brain images,
and the training and testing of the CNN models were carried out with two different data sets. The CNN models achieved
accuracy values around 0.8 for diagnosis of both Alzheimer’s disease and mild cognitive impairment. The experimental
results revealed that the diagnosis of patients with mild cognitive impairment was more difficult than that of patients
with Alzheimer’s disease. The proposed deep learning-based model might serve as an efficient and practical diagnostic
tool when MRI data are integrated with other clinical tests.

Key words: Alzheimer’s disease diagnosis, dementia diagnosis, convolutional neural networks, deep learning, structural
MRI

1. Introduction
The causes of Alzheimer’s disease are not still clearly known by scientists, but its diagnosis goes back to the
past century. In 1906, Doctor Alois Alzheimer gave a remarkable lecture in which he described for the first time
a form of dementia; later on it was named Alzheimer’s disease. He introduced a 51-year-old woman patient
from Frankfurt who had shown progressive cognitive impairment, focal symptoms, hallucinations, delusions, and
psychosocial incompetence [1]. Depression, insomnia, incontinence, delusions, and hallucinations may manifest
disease progression and neurological signs can occur such as sudden muscle contraction and gait disturbance
[2]. Alzheimer’s disease is the most common form of dementia, which is defined as sustained deterioration of
intellectual functions in a patient. Operationally, because of diminished cognitive ability, a demented person
conducts everyday activities worse compared to past performance. The formal diagnosis criteria of dementia
include the development of multiple cognitive defects that include memory impairment and at least one of
the following cognitive disturbances: aphasia, apraxia, agnosia, or a disturbance in executive functioning.
Alzheimer’s disease, with or without comorbid conditions, is by far the leading cause of dementia, observed in
75% or more of all pathological diagnoses of dementing disorders [3, 4]. The risk of having Alzheimer’s disease
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increases with age. Although most patients are older than 65 years of age, some of them might be younger than
65. In 2018, there were approximately 50 million Alzheimer’s patients in the world and this number is expected
to increase to 152 million in 2050 1. Accordingly, the estimated worldwide treatment costs were set at around
$186 billion in 2018. This figure is expected to be about four times higher in 30 years 2. Unfortunately, scientists
have not yet developed a cure that can precisely treat and prevent Alzheimer’s disease. The disease is divided
into four stages: very mild dementia, mild dementia, moderate dementia, and severe dementia according to the
accepted Clinical Dementia Rating (CDR) value. The treatment cost of very mild dementia patients and severe
dementia patients is not the same; therefore, an early diagnosis of dementia diseases is important in terms of
patient recovery and treatment cost. The initial diagnosis criteria of Alzheimer’s disease were established in 1984
and focused on clinical symptoms only, since at this time Alzheimer’s pathological changes in patients could not
be measured in vivo, and so the disease could be definitively diagnosed only after death of a patient. With the
advent of MRI and the discovery of cerebrospinal fluid (CSF) biomarkers and amyloid PET, the International
Working Group (IWG) proposed new criteria in 2014, which formed the inspiration for a subsequent set of
criteria by the National Institute of Aging and Alzheimer’s Association (NIA–AA). Mild cognitive impairment
is recognized as prodromal Alzheimer’s disease in both the IWG and the NIA–AA criteria when it is supported
by the presence of amyloid and neurodegeneration. Biomarker evidence can be used to attribute the clinical
syndrome of dementia or mild cognitive impairment to underlying Alzheimer’s pathological changes with high,
intermediate, or low likelihood in the NIA–AA criteria [5, 6].

Images from for example computed tomography (CT), structural and functional magnetic resonance
imaging (MRI), and positron-emission tomography (PET) are used as imaging biomarkers for assessment
of Alzheimer’s disease. MRI has been extensively investigated in Alzheimer’s disease and, consistent with
pathology, very early changes have been observed in the hippocampus and entorhinal cortex, but the most
suitable structure for early diagnosis remains unclear. Both structural and functional imaging have made
important contributions to the differential diagnosis of dementia and to understand its neurobiology, and showed
great promise with regard to monitoring disease progression [7].

There are several publications about diagnosis of Alzheimer’s disease using different imaging techniques.
Feature-based morphometry (FBM) was used to determine patterns of patients and healthy individuals in
volumetric MRI [8]. Another study proposed an image analysis method that reveals discriminative brain patterns
associated with the presence of neurodegenerative diseases based on fusion strategy [9]. After the discriminative
patterns were determined, the performance of classification with a support vector machine (SVM) was evaluated
on different data sets. In another study, a classification method based on multilevel brain partitions was
presented [10]. Histogram-based features obtained from MRI data were applied to classify different brain levels
by using an SVM. A recent study provided a method for automatically detecting anatomical changes in the
hippocampus, amygdala, planum temporale, and thalamus regions [11]. Differences and similarities between
two individuals were identified according to gray level histogram values on MRI data. Unlike others, another
recent study proposes to construct cascaded convolutional neural networks (CNNs) to learn the multilevel and
multimodal features from MRI and PET brain images for Alzheimer’s disease classification [12]. Most of the
previous studies applied several feature extraction methods on image samples; the selection of these methods

1Statista (2018). Estimated number of people with dementia worldwide in 2018, 2030, and 2050 (in millions) [online]. Website
https://www.statista.com/statistics/264951/number-of-people-with-dementia-from-2010-to-2050/ [accessed 01 November 2018].

2Statista (2018). Costs of care for individuals in the US with Alzheimer’s disease to Medicare and Medicaid from 2018 to 2050
(in billion US dollars). [online]. Website https://www.statista.com/statistics/643072/alzheimers-medicare-medicaid-care-costs-us/
[accessed 01 November 2018].
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affects the performance of machine learning methods. Few studies utilized multiple data sets for training and
evaluation of models; hence the limited number of samples might reduce the prediction performance of models.
Compared to many studies on the diagnosis of Alzheimer’s disease, fewer studies have attempted an automatic
diagnosis of MCI patients.

In the present study, we aim to accurately determine Alzheimer’s and dementia patients by analyzing MR
image data with the help of deep learning approaches. The first novelty of this study is the learning of features
automatically from MR image data by integrating a CNN model as the first phase of the diagnostic method.
Another novelty is not applying a specific age limitation while annotating samples as Alzheimer’s disease and
dementia, which eventually generated a challenging prediction problem due to a wide range of age distribution.
The study is divided into three main parts. The first part involves obtaining and processing three-dimensional
MR data and converting it into two dimensions, the second involves preprocessing of the data, and the last part
involves the application of deep learning models to the MR image data to classify Alzheimer’s and dementia
patients.

2. Materials and methods
In this section, we present general information about the study, descriptions of data sets, and stages of the
study.

2.1. General framework
T1-weighted MR image samples were used to distinguish between healthy individuals, patients with Alzheimer’s
disease, and those with mild cognitive impairment. An overview of the study is shown in Figure 1. One of the
MR data sets was used for the training process, while the other data set was used for testing. After obtaining
the image data, MR slices were selected in three-dimensional space and reduced to two dimensions. Since
the number of images for different projections was unbalanced, a data augmentation technique was applied.
Some preprocessing methods were performed before images were given as input to the model. CNN models
with different numbers of layers were created and then applied for classification of Alzheimer’s disease types.
Performance was compared in terms of the diagnostic power of the proposed model.

2.2. MRI data set
The Open Access Series of Imaging Studies (OASIS) data set was used for the training of the CNN models [13]. It
presents MRI data sets of the brain free of charge for scientific studies. Patients older than 60 years were mostly
diagnosed with mild to moderate Alzheimer’s disease. It includes at least three acquired T1-weighted image
records of patients who participated in MRI studies at the University of Washington. Subjects with serious
head injury, history of clinically meaningful stroke, and use of psychoactive drugs were excluded, and subjects
with gross anatomical abnormalities evident in their MRI images such as tumors were also eliminated. However,
subjects with aged typical brain changes were accepted. The subjects consisted of 30 Alzheimer’s patients, 70
MCI patients, and 316 healthy individuals. For each subject, three to four individual T1-weighted magnetization
prepared rapid gradient echo (MP-RAGE) images were acquired on a 1.5-T Vision scanner (Siemens, Erlangen,
Germany) in a single imaging session [14].

The Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD) data set, which was not
provided in the training phase, was used only for testing of the model [15]. Similar to OASIS, it is a series
of longitudinal volumetric T1-weighted MRI scans of 46 mild moderate Alzheimer’s subjects and 23 healthy
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Figure 1. An overview of the study.

controls. It consists of 708 scans conducted on the same 1.5-T Signa MRI scanner (GE Medical systems,
Milwaukee, WI, USA) and acquired by the same radiographer. Three-dimensional T1-weighted images were
acquired with an IR-FSPGR (inversion recovery prepared fast spoiled gradient recalled) sequence, field of view
24 cm, 256 × 256 matrix, 124 1.5 mm coronal partitions, TR 15 ms, TE 5.4 ms, flip angle 15◦ , TI 650 ms.
Sequences were collected at intervals of 2, 6, 14, 26, 38, and 52 weeks and 18 and 24 months from baseline, with
accompanying information on sex, age and Mini Mental State Examination (MMSE) scores.

2.3. Preprocessing of brain MRI data

Volumetric brain MRI data were read and image processing procedures were applied. Three-dimensional data
formats of Nifti (neuroimaging informatics technology initiative) and hdr (high dynamic range rendering) were
used. Alzheimer’s disease and dementia are neurological diseases that affect nerve cells and so it is wise to
eliminate unnecessary data. Because the skull, eyes, fat, and muscle are not affected by these diseases, these
regions are unnecessary data in raw images. The Brain Extraction Tool (BET) of the FMRIB’s Software Library
(FSL) was used for skull stripping [16, 17]. FSL is a comprehensive library of analysis tools for functional
magnetic resonance imaging (FMRI), MRI, and diffusion tensor imaging (DTI) data. BET is an automated
method for segmenting MRI images as brain and nonbrain regions. The histogram density is calculated from the
input image. Once the threshold value is obtained, the image is expressed in binary to find the center of gravity
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and the approximate head size. A triangular tessellation of a sphere’s surface is initialized inside the brain and
allowed a slow deformation one vertex at a time, following forces that keep the surface well spaced and smooth,
while attempting to move toward the brain’s edge. It is reprocessed with a higher smoothness constraint until
a properly clean solution is achieved. As a result of this process, nonbrain elements are eliminated from the
input image [18].

We selected ten slices from the axial, sagittal, and coronal projections for each patient’s volumetric brain
data. While selecting these slices, we paid attention to choose regions such as the hippocampus, thalamus,
hypothalamus, amygdala, cerebellum, frontal lobe, parietal lobe, occipital lobe, and corpus callosum, which
are affected in dementia and Alzheimer’s disease. A data augmentation method was applied because of the
unbalanced number of patient samples, which might lead to overfitting of the model. For this purpose, 10%
right and left, up and down shifting, 20% zoom, and 20% shear operations were applied; zoomed and changed
position images were produced. After an equal number of patient samples were obtained, the images were
resized to 150×150×1. In this process, bicubic interpolation over a 4×4 pixel neighborhood was used. Contrast
limited adaptive histogram equalization (CLAHE) is a contrast enhancement method developed by Zuiderveld
[19]. CLAHE was originally developed for medical imaging. In the present study, it was applied to prevent
clustering in the histogram and to correct its distribution. Histogram clipping is performed while correcting
the histogram distribution. Cropped pixels are redistributed equally to the entire histogram to keep the total
number of histograms equal. This method solves the problems of global linear minimum maximum windowing
and global histogram equalization without manual intervention.

It is better if there are no unnecessary details in the image detected by the computer. That is why a
two-dimensional Gaussian smoothing filter was applied to reduce sharp pixel transitions between pixels and to
soften the brain image. At the same time, the noise in the image was removed by applying this filter to the
image.

g(x) =
1√
2πσ2

e−x2/2σ2

. (1)

Equation (1) shows the Gaussian function, where σ represents the standard deviation of the Gaussian
distribution, and x is the distance from its position to the origin of the image. It is expected that the applied
Gaussian function will not be zero at every point of the image. Figure 2 shows the stages of the processing to
obtain the input brain images for the models. Images are generated from different projections to protect the
volumetric information. After the images have been processed and produced, they are given as input of different
CNN models.

2.4. Implementation of models

After preprocessing of the image data, we created CNNs and performed evaluations on these models. CNNs are
deep artificial neural networks and commonly used in image related applications such as image classification,
clustering, and interpretation. They are inspired by the layered vision mechanism of humans. The improvement
of the hardware and the increased processing capacity of graphics processing units (GPUs) has allowed the
training of deep networks on computers more efficiently.

Big data, which can be collected from many platforms, are the basis for the implementation of CNNs
and other deep learning models. Because CNNs are designed as deep models, they can provide sufficient results
in solving complex problems. One of the pioneering studies, the LeNet model, was developed by LeCun et al.
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Figure 2. The stages of obtaining input images.

[20] in the 1990s and has achieved significant success in handwriting digit recognition. The model, which is
trained with the back-propagated algorithm, could make predictions on the pixels of the image without feature
extraction. In the following years, many successful deep models such as AlexNet, ZFNet, GoogleNet, VGGNet,
and ResNet have been created [21–25].

The structure of CNNs consists of a convolutional layer, a pooling layer, and fully connected layers.
Generally, many convolutional layers and pooling layers are stacked one after the other to produce a feature
map, and the generated map is fed into the fully connected layer. In the convolutional layer, a filter with a
determined size of n×n is applied to the image expressed as pixel matrices. The filter is applied by moving over
the pixel matrices and navigating the entire image matrix. Depending on the type of filter applied, some features
of the image are revealed. In the pooling layer, the size of the spatial dimension is reduced by performing the
subsampling process. In this way, pooling layers provide ease of computation as well as providing a solution for
overfitting. This layer can optionally be selected as maximum or average pooling. In the maximum pooling,
the maximum pixel in the window is selected, while the average of the pixels in the window is obtained in the
average pooling. After these operations, classification according to the feature map containing the extracted
features is made by the fully connected layer, which might be multilayer perceptrons.

In the present study, three CNN models of similar structure were constructed. The type of pooling
layer was determined as maximum pooling. A rectified linear unit (ReLU), which is widely used in modern
deep learning models, was used as the activation function. Let x and f(x) be the number of inputs and an
activation function, respectively. The ReLU is defined as f(x) = max(0, x) . Moreover, a binary cross-entropy
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function was employed as a loss function. The binary cross-entropy function is defined as in Equation (2).

L = − 1

N

N∑
i=1

yi. log(p(yi)) + (1− yi). log(1− p(yi)), (2)

where N is the number of entries,i indicates iteration, yi shows i ’s element label, and p(yi) is the
predicted label. This function also called log loss due to logarithmic operations. Different models were obtained
by changing the total number and positions of the layers. The designed CNNs and their layers, filters, and
dropout rates are presented in Figure 3. Model 1 consists of three convolutional layers, two pooling layers,
and two fully connected layers. It has 16,938,561 parameters in total. Model 2 is a smaller model, with two
convolutional layers, two pooling layers, and three fully connected layers. It has 1,311,697 parameters. Model
3 is a larger model, with five convolutional layers, three pooling layers, and four fully connected layers. It is
based on Alexnet with 36,446,129 parameters in total. Since the input of the original network receives three
channel color images, the network was modified to take grayscale images. The dropout layer randomly blocks
neurons by the determined percentage during training; thus it helps to avoid overfitting. The initial learning
rate was determined as 0.0002 and the preferred schedule decay value as 0.004. Nesterov-accelerated adaptive
moment estimation (Nadam) was used as an optimizer. Nadam is a different version of the Adam optimizer,
which is widely used in deep learning models. Nadam contains an extra momentum term so as to not stuck in
local minimum points.
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Figure 3. Architecture of Model 1 (A), Model 2 (B), and Model 3 (C).

3. Results and discussion
In this section we present evaluations of the proposed models. In the experimental evaluation, two types
of dementia (mild cognitive impairment and Alzheimer’s disease) were diagnosed. The entire workflow was
implemented using the Python programming language; training processes and evaluations were conducted on
a DELL PowerEdge R740 Linux server, which has a 2.2 GHz Intel Xeon central processing unit (CPU) with
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32 cores and 128 GB RAM capacity. The models were trained with different projections and several evaluation
metrics were calculated.

3.1. Performance in Alzheimer’s disease prediction
Table 1 reports the performance of various projections on different models for discrimination of Alzheimer’s
patients and healthy individuals. Axial, sagittal, and coronal represent the brain projection taken from the
image. The type “All” indicates training of a model with all brain projections together. On the other hand,
“All - Axial”, “All - Sagittal”, and “All - Coronal” indicate that a model is trained with all the projections and
evaluated with only axial, sagittal, or coronal projections, respectively. These results show that there are minor
differences between the performances of Model 1, Model 2, and Model 3.

Table 1. The model performances for distinguishing healthy individuals from Alzheimer’s patients*.

Data type Model Epoch Time (h) AUC ACC SENS SP
Axial Model 1 100 12:51 0.81 0.78 0.95 0.65
Axial Model 2 100 02:43 0.78 0.75 0.91 0.62
Axial Model 3 100 12:40 0.81 0.81 0.86 0.75
Sagittal Model 1 100 12:51 0.63 0.70 0.69 0.71
Sagittal Model 2 100 02:43 0.62 0.67 0.70 0.60
Sagittal Model 3 100 12:40 0.63 0.70 0.70 0.69
Coronal Model 1 100 12:51 0.79 0.76 0.92 0.63
Coronal Model 2 100 02:43 0.75 0.75 0.82 0.66
Coronal Model 3 100 12:40 0.74 0.79 0.77 0.82
All Model 1 105 40:20 0.73 0.74 0.64 0.81
All - Axial Model 1 105 – 0.85 0.83 0.72 0.94
All - Sagittal Model 1 105 – 0.60 0.68 0.69 0.68
All - Coronal Model 1 105 – 0.76 0.71 0.57 0.94
All Model 2 100 07:30 0.71 0.73 0.78 0.64
All - Axial Model 2 100 – 0.78 0.78 0.86 0.68
All - Sagittal Model 2 100 – 0.59 0.64 0.68 0.54
All - Coronal Model 2 100 – 0.77 0.77 0.84 0.67
All Model 3 100 37:30 0.67 0.73 0.73 0.73
All - Axial Model 3 100 – 0.81 0.82 0.86 0.75
All - Sagittal Model 3 100 – 0.50 0.61 0.62 0.37
All - Coronal Model 3 100 – 0.71 0.75 0.75 0.74
* ACC: Accuracy, SENS: Sensitivity, SP: Specificity

Figure 4 shows some brain images of Alzheimer’s patients. The group indicated by a presents the correctly
classified Alzheimer’s patients and group b covers the images of misclassified patients. The best performance in
the classification of healthy individuals and those with Alzheimer’s disease was obtained when the model was
trained with all brain projections. This model gave the best result (0.83) during the evaluation of axial images.
On the other hand, the poorest metric value (0.61) was obtained while evaluating the sagittal images on the
model trained according to all projections. Since Alzheimer’s disease is associated with sex, the sex ratios of
misclassified patients were also examined. Out of the 172 male patients, 66 of them were incorrectly estimated,
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while 22 of the 223 females were incorrectly predicted. In general, the model led to more mistakes in male
patients than in female patients.

a} b}
Figure 4. Some examples for correctly classified (a) and misclassified (b) images of Alzheimer’s patients.

3.2. Performance in mild cognitive impairment prediction

Table 2 presents classification performance results for determining the difference between individuals with mild
cognitive impairment and healthy individuals. The accuracy values are reported according to different models
and projections. Similar to the diagnosis of Alzheimer’s disease, there are minor performance differences between
the models in estimating MCI patients except for the sagittal projection. The results indicate that the capability
of discrimination of healthy individuals with mild cognitive impairment is lower than that of healthy individuals
with the Alzheimer’s disease classification. The images of MCI patients who were misclassified by the best
predictive model are shown in Figure 5. Group a represents the images of patients diagnosed correctly, while
group b represents images of misdiagnosed patients. Since MCI is the earlier stage of dementia it does not
show dramatic brain region differentiation. When the results were examined in terms of projections, although
the best success was obtained with axial and coronal images, more unsuccessful results were obtained with
sagittal images. When the results in Figure 6 (a) are examined in terms of brain projections, the models trained
with axial images were more successful than those trained with sagittal and coronal projections to identify
Alzheimer’s patients. Compared to other models, Model 3 is more successful on the sagittal projection to
identify MCI patients as shown in Figure 6 (b). The model trained with axial images achieved 0.82 accuracy
and higher than 0.9 sensitivity value. Sex ratios also were examined in MCI patients. Unlike Alzheimer’s
patients, more misclassifications were observed in the prediction of female patients with MCI. While there was
only 1 error in 16 male patients, 21 false predictions were made in 54 female patients.

In addition to obtaining sex ratios, the age distribution of all patients was analyzed, since dementia
diseases were mostly associated with aging. The age distribution histograms for Alzheimer’s and MCI patients
are shown in Figure 7. Patient ages are between 57 and 87 years. In addition, the age distribution of
misdiagnosed patients is given in the plot by orange and red bars. The age distribution of the patients who
are incorrectly predicted from Alzheimer’s patients is more widespread between 57 and 87; those who are
misdiagnosed with MCI are generally older than 66. According to these results, it is more difficult to estimate
MCI patients among elderly individuals.
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Table 2. The model performances for distinguishing healthy individuals from those with mild cognitive impairment*.

Data type Model Epoch Time (h) AUC ACC SENS SP
Axial Model 1 100 12:51 0.60 0.82 0.93 0.81
Axial Model 2 100 02:43 0.53 0.78 0.55 0.79
Axial Model 3 100 12:40 0.54 0.78 0.57 0.79
Sagittal Model 1 100 12:51 0.53 0.72 0.30 0.79
Sagittal Model 2 100 02:43 0.49 0.69 0.20 0.77
Sagittal Model 3 100 12:40 0.50 0.77 0.20 0.78
Coronal Model 1 100 12:51 0.56 0.80 0.71 0.80
Coronal Model 2 100 02:43 0.58 0.79 0.56 0.81
Coronal Model 3 100 12:40 0.54 0.79 0.67 0.79
All Model 1 105 40:20 0.52 0.74 0.30 0.78
All - Axial Model 1 105 – 0.51 0.78 1.00 0.78
All - Sagittal Model 1 105 – 0.52 0.65 0.25 0.79
All - Coronal Model 1 105 – 0.53 0.78 0.63 0.79
All Model 2 100 07:30 0.60 0.74 0.41 0.82
All - Axial Model 2 100 – 0.59 0.76 0.48 0.81
All - Sagittal Model 2 100 – 0.61 0.67 0.34 0.84
All - Coronal Model 2 100 – 0.59 0.79 0.57 0.81
All Model 3 100 37:30 0.51 0.78 0.50 0.78
All - Axial Model 3 100 – 0.50 0.78 0.00 0.78
All - Sagittal Model 3 100 – 0.50 0.77 0.25 0.78
All - Coronal Model 3 100 – 0.51 0.78 1.00 0.78
* ACC: Accuracy, SENS: Sensitivity, SP: Specificity

a} b}
Figure 5. Some examples for correctly classified (a) and misclassified (b) images of MCI patients.

3.3. Comparison with other studies

When the results of this study are compared with the literature, the observations are in the same direction.
In previous studies, generally a higher performance in the diagnosis of Alzheimer’s patients has been reported;
however, diagnosis is more difficult in MCI patients. SVM is a widely preferred machine learning technique for
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Figure 6. Alzheimer’s disease (a) and MCI (b) diagnosis accuracy performances according to different projections (axial,
sagittal, coronal).
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diagnosing patients due to its high achievement in classification problems in medical applications. However,
serious feature engineering should be carried out to develop a successful SVM model. Poor diagnosis results
might be obtained using wrong image features. Since many structural changes occur in the brain in dementia and
other brain diseases, the data should be examined for atrophy of many regions, not for a single region. Popular
deep learning methods are also used in medical applications and their usage will become more widespread.
The novelty of the current study is the design of the image features, since two-dimensional slice selections were
made from three-dimensional images and automatic extraction was obtained by learning of features directly
from image data. Deep learning methods have been applied to different types of image data (e.g., MRI, CT,
PET scan) and multimodal models have been developed by combining these methods. In the present study, the
achievement of CNN models on brain MRI data was measured.

Table 3 provides a comparison of previous studies developed for Alzheimer’s disease and MCI diagnosis.
Rueda et al. [9] generated a saliency map from brain MRI data and applied fusion optimization for identifying
anatomical patterns. Eighteen intensity- and contrast-based features were evaluated on Alzheimer’s disease; the
classification performance was assessed using an SVM model on the OASIS and MIRIAD data sets. Although
the same data sets were also used in the current study, the setup in the study by Rueda et al. [9] is different due
to separate evaluation of data sets. They obtained 86% accuracy on the OASIS data set for the identification
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of Alzheimer’s patients aged 60–80 years; they reported 80% accuracy in the test set with ages of 60–96 and
70% accuracy was found in the determination of disease stages. The proposed CNN model obtained superiority
with 83% accuracy in elderly individuals up to 87 years of age. On the other hand, Rueda et al. [9] achieved
84% accuracy on the MIRIAD data set, which covers individuals aged 62–76 years. In the current study, no
age limitation was applied in any type of evaluation. Although a similar accuracy value was obtained with the
MIRIAD data set in the current study, the age range was higher, which creates a different diagnostic problem.
In other metric values, Rueda et al. [9] reported 0.83 and 0.82 specificity values for MIRIAD and OASIS,
respectively; the proposed model showed a superior success with a 0.94 specificity value. In another study, Li et
al. [10] presented a method that can identify Alzheimer’s and Parkinson’s patients based on multilevel partition.
They extracted Scale-Invariant Feature Transform (SIFT) features from the MRI data and constructed Bag-
of-visual-words (BOVW) to express the obtained features. In contrast, in the current study, the selected brain
slices were evaluated as a whole; the brain was not divided into partitions. They employed an SVM classifier
to identify the Alzheimer’s patients from the OASIS data set and various accuracy values have been reported
based on brain partition levels. They obtained the highest accuracy of 75% with 7 levels of unity. In the current
study, the proposed model demonstrated a higher accuracy with 83% on the whole brain images.

Table 3. Comparisons of previous studies and the proposed model*.

Author Diagnosis type Data set AUC ACC SENS SP
Rueda et al. [9] Alzheimer’s (MRI) OASIS – 0.80 0.75 0.82
Rueda et al. [9] Alzheimer’s (MRI) MIRIAD – 0.84 0.85 0.83
Li et al. [10] Alzheimer’s (MRI) OASIS – 0.75 0.74 0.78
Giraldo et al. [11] Alzheimer’s (MRI) OASIS+MIRIAD 0.92 – 0.90 0.90
Zhang et al. [26] Alzheimer’s (MRI) ADNI – 0.85 – –
Ahmed et al. [27] Alzheimer’s (MRI) ADNI – 0.84 0.79 0.88
Ahmed et al. [27] Alzheimer’s (MRI) BORDEAUX-3CITY – 0.78 0.80 0.75
Demirhan [28] Alzheimer’s (MRI) OASIS – 0.80 0.80 0.80
Proposed Method Alzheimer’s (MRI) OASIS+MIRIAD 0.85 0.83 0.72 0.94
Giraldo et al. [11] MCI (MRI) OASIS+MIRIAD 0.74 – 0.85 0.91
Zhang et al. [26] MCI (MRI) ADNI – 0.74 – –
Ahmed et al. [27] MCI (MRI) ADNI – 0.69 0.63 0.75
Demirhan [28] MCI (MRI) ADNI – 0.82 0.84 0.80
Proposed Method MCI (MRI) OASIS+MIRIAD 0.60 0.82 0.93 0.81
* ACC: Accuracy, SENS: Sensitivity, SP: Specificity, ADNI: Alzheimer’s Disease Neuroimaging Initiative database (adni.loni.usc.edu)

A limited number of studies in the literature use separate data sets for training and evaluation purposes.
In the current study, the OASIS data set was used only for the training stage and the MIRIAD data set used
only in the evaluation stage. This setup was not applied in recent studies except for in the study by Giraldo
et al. [11], who used a special method to extract brain regions, which were represented by histograms of gray
levels, and the differences between subjects were determined by using Earth mover’s distance. They employed
a Random Unit Sampling Boost method to perform diagnosis of patients. In the current study, the proposed
CNN method achieved a close accuracy value (0.83) and a higher specificity value (0.94) in the Alzheimer’s
disease diagnosis. They did not provide an accuracy value for model performance. Although the proposed CNN
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model has a lower AUC value (0.85) compared to the study by Giraldo et al. [11] (0.92), the proposed model
does not explicitly extract MRI features (i.e. brain parcellation process on MRI); instead it uses automatically
computed features provided by convolutional and pooling layers of the CNN model. The proposed CNN model
has the best performance in terms of accuracy values for diagnosis of MCI. The other study [11] reported a
0.74 AUC value, which is higher than the 0.6 AUC value of the proposed CNN model. However, the feature
engineering applied in the other study [11] should be evaluated carefully while comparing the performance of
the two studies. A higher AUC performance in the other study [11] could have originated due to focusing on
specific brain regions (hippocampus, amygdala, planum temporale, etc.), which eventually might lead to more
accurate diagnosis, especially in MCI patients.

4. Conclusion
Dementia causes difficult times for both patients and caregivers. Unfortunately, there is no known proper
treatment for the prevention of Alzheimer’s disease. Therefore, diagnosis of the disease at an early stage by
utilizing the possibilities of technology can prevent the progression of the disease. Besides the benefit of early
diagnosis to the patients, it also contributes to the national economy. This economic contribution is related to
the lower cost of treatments applied in early stages of dementia compared to in later stages.

The use of imaging techniques such as MRI, CT, and PET provides crucial data about neurological
diseases. The image should be interpreted correctly to determine a stage or to diagnose any disease by using
an advanced image analysis technique. From this point of view, it is necessary to have a human expert to
interpret these images in an appropriate way. Deformations might occur in some parts of brain with aging.
When examining brain images, it is more difficult to determine dementia in elderly individuals. In such cases,
the use of an expert system can definitely help physicians. An expert system can process images by taking
raw inputs and a decision about the health condition of the patient is returned according to the previously
developed expert model. The present study investigates the diagnostic biomarkers in MR images of patients by
using deep learning and image analysis methods. The discrimination of mild cognitive impairment individuals
from Alzheimer’s disease patients is not a trivial task in the clinic. Therefore, in addition to the diagnosis of
Alzheimer’s disease patients, our study also aims to identify individuals with mild cognitive impairment. The
diagnosis of patients in the cognitive impairment stage of dementia will help for slowing disease progression by
decreasing the earlier symptoms with appropriate medication.

MR images were evaluated by an expert machine learning system for assisting in diagnosis within the
scope of the study. MR images in three-dimensional space were reduced to two dimensions to limit the total
running time of the system. It was ensured that the objects in images other than the brain region were eliminated
using a well-known FSL library. In order to obtain a large amount of patient samples, images were reproduced
by applying some data augmentation methods. In addition, focusing on multiple regions was achieved by
producing images from different projections of the brain. For this purpose, axial, coronal, and sagittal images
were produced separately for each patient. As with most medical image processing applications, the brain region
in the image was highlighted with filters to enhance contrast and to remove noise. Deep learning models are
used in the diagnosis of many brain diseases with high accuracy when the data size is appropriate. Therefore,
CNN models were applied in the interpretation of brain images. The OASIS and the MIRIAD data sets were
used together to enlarge patient MRI samples. The experiments revealed accuracy values of greater than 0.8
with deep learning models for the diagnosis of Alzheimer’s disease using T1 weighted MRI data. The diagnosis
of mild cognitive impairment was found to be more difficult than that of Alzheimer’s disease. The comparison
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with previous studies revealed that the proposed CNN-based model has great potential for the diagnosis of both
types of dementia. The proposed model does not require extra feature extraction or feature selection procedures
that should be applied to the MRI data. Once an optimum CNN model is constructed and its parameters set,
this model can be applied to new patient data without human intervention. These advantages will increase the
practical usage of the proposed model as an automatic clinical diagnostic tool in the near future.

In future work, for more accurate prediction of dementia and Alzheimer’s disease, it is planned to develop
a volumetric deep learning model that accepts different types of brain images (PET, MRI, etc.) as 3D input. It
is also desirable to use a large data set with more patient samples for better generalization performance. Besides
the image techniques, other factors such as the patient’s history, age, socioeconomic status, and MMSE test
score are used in the clinic for the diagnosis of dementia. An ideal diagnostic tool should consider all of these
factors during the training of an intelligent system to improve its diagnosis ability. The diagnostic consistency
and interpretation of such a system will be more satisfactory, since it consults different aspects of the disease.
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