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Abstract: Genome structural variation, broadly defined as alterations longer than 50 bp, are important sources for
genetic variation among humans, including those that cause complex diseases such as autism, developmental delay, and
schizophrenia. Although there has been considerable progress in characterizing structural variation since the beginnings
of the 1000 Genomes Project, one form of structural variation called segmental duplications (SDs) remained largely
understudied in large cohorts. This is mostly because SDs cannot be accurately discovered using the alignment files
generated with standard read mapping tools. Instead, they can only be found when multiple map locations are considered.
There is still a single algorithm available for SD discovery, which includes various tools and scripts that are not portable
and are difficult to use. Additionally, this algorithm relies on a priori information for regions where no structural
variations are discovered in large number of genomes. Therefore, there is a need for fully automated, portable, and
user-friendly tools to make SD characterization a part of genome analyses. Here we introduce such an algorithm and
efficient implementation, called mrCaNaVaR, that aims to fill this gap in genome analysis toolbox.
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1. Introduction
The changes in DNA sequences are classified depending on their size and organization. The smallest form
of genomic variation, called single nucleotide variation (SNV), are single basepair substitutions between two
segments of DNA sequences [1], typically called sample and reference. There can be also insertions and deletions
of short sequences (1–50 bp), named indel polymorphisms [2]. Other forms of genomic variation include
expansion and contraction of short tandem repeats (microsatellite polymorphisms) [3], balanced rearrangements
such as inversions [4] and translocations [5], and copy number variation (CNV) [6]. CNVs, by definition,
alter the amount of DNA material in cells, and they can be deletions, insertions, and duplications of genomic
segments [7], as well as mobile element retrotranspositions [8]. The 1000 Genomes Project that ran between
2008 and 2015 generated the most comprehensive map of genomic variation in the genomes of 2504 individuals
from 26 populations, aiming to characterize genetic diversity within the human species [9–11].

CNVs, insertions, mobile element retrotranspositions, inversions, and translocations are also collectively
referred to as structural variations [12]. Interest in characterizing structural variations (SVs) has increased
dramatically since the inception of high-throughput sequencing (HTS) [13], especially when it is understood
that SNVs do not explain the heritability of most complex diseases alone [14]. However, the fact that SVs are
typically in repeat-rich regions of the genome [15] makes it very difficult to accurately discover and genotype
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SVs. There are a plethora of algorithms that aim to characterize SVs that use one of the four sequence mapping
signatures, namely, read pair, read depth, split reads, and assembly [16]. Some of the earlier methods that
were also used in the 1000 Genomes Project [11] include VariationHunter [17, 18] (read pair), CNVnator [19]
(read depth), Pindel [20] (split reads), and NovelSeq [21] (assembly). More modern algorithms try to integrate
multiple sequence signatures and characterize several forms of SVs, such as TARDIS [22, 23], LUMPY [24],
TIDDIT [25], and Manta [26].

Among the CNVs, segmental duplications (SDs) are defined as large segments of DNA (typically >1 kbp)
that are copied to other regions of the genome at high sequence identity (>90%) [27]. Similarly, deletions are
losses of DNA that stretches longer than 50 bp [17]. Both CNV types have been associated with various human
diseases [28–30] and shown to play important roles in great ape evolution [31, 32]. Although characterization of
deletions are now regarded as a solved problem [11, 33, 34], discovering segmental duplications and predicting
copy numbers of genes is omitted in most large scale studies due to the additional computational costs. Any
read that originates from a duplicated segment aligns to multiple regions of the reference genome [35]; however,
the standard read mapping process in HTS analysis keeps only one mapping selected randomly among other
potential map locations [36]. Therefore, SD discovery is not part of routine genome analyses, and performed
only when required by the specifics of the project at hand.

Currently there is only one algorithm publicly available to characterize SDs [37]. It has been used
to analyze genomes of humans [38], great apes [39], cattle [40], water buffalo [41], dogs [42], cats [43], and
grapevine [44]. However, in each of these studies, the existing code needed to be modified for the genome at
hand, and the entire analysis pipeline was composed of multiple steps that were not streamlined, often requiring
manual intervention. The lack of a fully automated and streamlined SD characterization tool made it difficult
to fully understand the copy number spectrum in many organisms.

Here we introduce mrCaNaVaR, a comprehensive tool for SD characterization and copy number predic-
tion. Different from its predecessor implementation [37], it is straightforward to apply to nonhuman genomes
as it requires only a reference genome and the coordinates for the assembly gaps that are released as part of
draft and finished genome assemblies. For read mapping, it uses the mrsFAST aligner that we have previously
developed specifically for tracking multiple map locations for accurate CNV discovery [45]. mrCaNaVaR can
take as input raw FASTQ files, or alignment files in BAM [46] or CRAM [47] format generated with any read
mapper such as BWA-MEM [48]. arXiv 2013; arXiv:13033997. and Bowtie2 [49]. We provide BAM and CRAM
file support to enable mrCaNaVaR use for data sets where the raw FASTQ files are deleted after alignment.
We also package both mrCaNaVaR and mrsFAST into a single Docker container to enable seamless portability
to different environments, operating systems, and cloud infrastructures. Source code, Docker file, and workflow
scripts for mrCaNaVaR are available at https://github.com/BilkentCompGen/mrcanavar and a prebuilt Docker
image is available at https://hub.docker.com/r/alkanlab/mrcanavar.

2. Materials and methods
The main algorithm behind mrCaNaVaR was previously described [37]; however, we introduce new improve-
ments (Figure). Briefly, using the map locations generated by the mrsFAST aligner, the algorithm first cal-
culates the read depth distribution over diploid control regions (no known CNVs). It then applies the LOESS
smoothing technique [50] to correct for sequencing biases related to regions with high and low G+C content
with respect to A+T [51]. The resulting distribution is expected to be Poisson [37], and any deviations from
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the distribution flags potential duplicated or deleted segments. Next, the algorithm merges CNV regions that
overlap to report putative duplications and deletions. Finally, it calculates genome-wide copy numbers over
nonoverlapping intervals of 1 kb, by simply dividing the read depth over each region by the average read depth
in control regions.
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Figure 1: Steps of calling CNVs and copy numbers using mrCaNaVaR. We first generate a file (extension
.cnvr) that contains G+C ratios within overlapping sliding windows using mrcanavar prep command. This
step is needed only once for each new reference genome, and the resulting .cnvr file can be reused for other
samples. Next, mrcanavar read command loads the SAM/SAM.gz files generated by mrsFAST for the sample
to be analyzed and saves the G+C normalized read depth values in a native file format with .depth extension.
Finally, mrcanavar call command loads the .depth file and optionally the list of gene coordinates to predict
copy numbers and CNVs (both deletions and duplications). The additional mrcanavar-auto wrapper merges
all of these steps into a single command that also includes mrsFAST mapping.

Here we introduce the following improvements:

1. The existing implementation requires a set of genomic regions to be passed as input. This makes it
especially difficult to characterize CNVs in nonhuman genomes, and even with newer versions of the
human reference genomes, as obtaining a set of diploid regions is a cumbersome task since one must
collect all known CNVs in the genomes of a given species. Additionally, the set of known CNVs is not
necessarily complete; genome of any given individual might harbor additional CNVs, which might skew
the expected Poisson distribution. The new mrCaNaVaR bypasses the need for control regions, by simply
analyzing the read depth over the entire genome, removes the outlier regions with too high or too low
read depth until a Poisson distribution is achieved.

2. The previous version is made up of several shell scripts, Perl scripts, and C programs that are manually
run one after the other. mrCaNaVaR is a fully-integrated single program implemented in C, which makes
it very easy for nonexperts to analyze large number of genomes.
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3. We also provide a wrapper for mrCaNaVaR, which also automates the read mapping step with mrsFAST,
and feeds the read map locations to mrCaNaVaR without any user intervention. The wrapper also
supports BAM and CRAM files. We also modified mrsFAST code to support standard input and output
ports to remove the necessity of creating large files. This is especially important to decrease the storage
requirements and helps reduce the costs when cloud platforms are used.

4. Finally, we packaged the entire pipeline into a single Docker container, and we additionally provide
workflow scripts written in Common Workflow Language [52].

We implemented the entire mrCaNaVaR package in ANSI C language without the use of any external
libraries.

3. Results
We tested mrCaNaVaR in two directions. First, we calculated the computational requirements of the entire
mrCaNaVaR run, including mrsFAST remapping using three different data sets at different depth of coverage
values. Next, we tested mrCaNaVaR on nine human genome data sets, previously sequenced and analyzed
by the Human Genome Structural Variation Consortium [53] using various long and short read sequencing
technologies, optical mapping [54], and StrandSeq protocol [55].

3.1. Computational requirements
We tested the analysis pipeline using three human genome data sets at three different depths of coverage. We
obtained the HG00096 genome data set (5× coverage) from the 1000 Genomes Project [11], the LP6005441
genome (42× coverage) from the Simons Genome Diversity Project [56], and the HG00512 genome (82×
coverage) from the Human Genome Structural Variation Consortium [53].

Table 1 summarizes the run time and memory requirements of characterizing CNVs and predicting copy
numbers using mrsFAST and mrCaNaVaR. We ran all experiments on the Amazon Web Services (AWS) cloud
using a c5.4xlarge spot instance. Table 1 also lists the end-to-end running costs of each experiment. Human
genome whole genome sequence data is typically generated at ≈30–35× depth of coverage; therefore, the
LP6005441 experiment demonstrates the most common scenario. We observed that, as expected, most of the
run time and the memory requirements are spent at mrsFAST remapping. On the other hand, mrCaNaVaR
needed less than 10 min even with the largest data set and used less than 177 MB main memory in the worst
case. Overall, the average cost (42× coverage) for mrsFAST and mrCaNaVaR analysis on the AWS cloud was
$2.05. We note that this cost may be further reduced by adjusting the number of threads and peak memory
usage for the mrsFAST read mapping step.

3.2. Biological sample comparisons
In our second test we aimed to assess the prediction performance of mrCaNaVaR. Previously we had shown
the accuracy of characterizing segmental duplications and gene copy numbers in three genomes together with
experimental validation [37]. Here, we analyzed the genomes of nine human individuals from three populations
and compared our predictions with orthogonal results obtained from multiple genome sequencing and optical
mapping techniques.

We downloaded the human genome data sets from the Human Genome Structural Variation (HGSV)
Consortium [53]. The depth of coverage of all samples were in the range 80–82× . We also downloaded the
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Table 1: Computational requirements of mrsFAST and mrCaNaVaR.

mrsFAST mrCaNaVaR
Sample Coverage Time Peak memory Time Peak memory AWS cost
HG00096 [11] 5× 0 h 35 min 20 GB 3 min 14 s 138 MB $0.32
LP6005441 [56] 42× 3 h 58 min 20 GB 9 min 47 s 177 MB $2.05
HG00512 [53] 82× 9 h 54 min 28 GB 11 min 06 s 138 MB $5.12

We ran all experiments on an AWS c5.4xlarge instance using 16 threads for mrsFAST mapping (Intel Xeon Platinum 8000
processor at clock speed of up to 3.5 GHz). mrCaNaVaR is a single-threaded application. Note that the memory requirements
of mrsFAST aligner can be adjusted using the --mem parameter. AWS: Amazon Web Services.

structural variation call sets generated by the consortium using the same samples from database of large scale
genomic variants [57] (dbVar ID: nstd1521).

We remapped the reads to the human reference genome (GRCh38) using mrsFAST, and we then used
mrCaNaVaR to call segmental duplications and large deletions (both >10 kb). As expected, most of the
segmental duplications (>90%) we detected were common; i.e. present in the reference genome [27, 58, 59]).
The HGSV project did not specifically aim to characterize large segmental duplications; however, the call set
included an average of 760 kb of segmental duplications larger than 10 kb per genome that are not present in
the reference genome. We observed that mrCaNaVaR called 20%–40% of such SDs. Additionally, we identified
an average of 17 Mb of SDs per genome. We summarize our findings in Table 2. Similarly, we compared our
deletion predictions with the HGSV call set. In total we predicted 150 kb to 2 Mb of deletions in the genomes
we analyzed and compared with the deletion calls released by the HGSV Consortium.

Table 2: Segmental duplication and large deletion prediction results from 9 human genomes.

Segmental duplications (>10 kb) Deletions (>10 kb)
Sample Predicted Common SDs Known [53] Novel Predicted Known [53] Novel
HG00512 212.4 Mb 192.5 Mb 0.183 Mb 19.7 Mb 1.8 Mb 0.392 Mb 1.4 Mb
HG00513 181.5 Mb 163.5 Mb 0.285 Mb 17.7 Mb 0.5 Mb 0.440 Mb 0.06 Mb
HG00514 181.3 Mb 163.5 Mb 0.140 Mb 17.7 Mb 0.4 Mb 0.352 Mb 0.05 Mb
HG00731 211.5 Mb 192.4 Mb 0.191 Mb 18.9 Mb 1.8 Mb 0.151 Mb 1.65 Mb
HG00732 187.3 Mb 170.1 Mb 0.148 Mb 17 Mb 0.2 Mb 0.085 Mb 0.11 Mb
HG00733 184.3 Mb 166.9 Mb 0.086 Mb 17.3 Mb 0.15 Mb 0.151 Mb 0 Mb
NA19238 188.4 Mb 171.5 Mb 0.415 Mb 16.5 Mb 0.22 Mb 0.184 Mb 0.04 Mb
NA19239 201.3 Mb 182.7 Mb 0.179 Mb 18.4 Mb 2 Mb 0.138 Mb 1.93 Mb
NA19240 186.3 Mb 169.1 Mb 0.378 Mb 16.8 Mb 0.15 Mb 0.164 Mb 0 Mb

We obtained all genomes and known CNV call sets from [53]. Here we compare SDs with the reference genome and the known
CNV calls. We only report the intersection of nonreference SDs with those reported in [53]. All samples have ≈ 82× depth of
coverage.

1Chaisson et al. (2019). Human Genome Structural Variation Consortium Call Set [online]. Website
https://www.ncbi.nlm.nih.gov/dbvar/studies/nstd152/ [accessed 15 March 2019].
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4. Conclusion
In this paper we introduced mrCaNaVaR, an extension to our previous algorithm to characterize large CNVs.
The implementation of mrCaNaVaR is also completely novel, efficient, and user-friendly. We also built a Docker
image that contains all dependencies, including a modified version of the mrsFAST aligner. Finally, we provide
workflow scripts written in the Common Workflow Language (CWL) that can be run using any CWL execution
tool2. Especially Docker and CWL provide straightforward portability to cloud environments, which in turn
will make SD characterization a routine part of genome analyses.
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