
Turk J Elec Eng & Comp Sci
(2020) 28: 17 – 33
© TÜBİTAK
doi:10.3906/elk-1901-193

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A review on embedded field programmable gate array architectures and
configuration tools

Khouloud BOUAZIZ1,2,∗, Abdulfattah M. OBEID3, Sonda CHTOUROU1, Mohamed ABID1,2
1Computer and Embedded Systems (CES) Laboratory, National School of Engineers of Sfax,

University of Sfax, Sfax, Tunisia
2Digital Research Center of Sfax (CRNS), Sfax, Tunisia

3National Center for Electronics and Photonics Technology, KACST, Riyadh, Saudi Arabia

Received: 28.01.2019 • Accepted/Published Online: 07.08.2019 • Final Version: 27.01.2020

Abstract: Nowadays, systems-on-chip have reached a level where nonrecurring engineering costs have become a great
challenge due to the increase of design complexity and postfabrication errors. Embedded field programmable gate arrays
(eFPGAs) represent a viable alternative to overcome these issues since they provide postmanufacturing flexibility that
can reduce the number of chip redesigns and amortize chip fabrication cost. In this paper, we present an overview
on eFPGAs and their architectures, computer aided design (CAD) tools, and design challenges. An eFPGA must be
well-designed and accompanied by an optimized CAD tool suite to respond to target application’s requirements in terms
of power consumption, area, and performance. In this survey, we studied coarse-grained eFPGAs with customized blocks
which are used for domain-specific applications and fine-grained eFPGAs that are used for general purposes but have
lower performance.

Key words: Embedded field programmable gate array, computer aided design tools, mesh-based architecture, tree-based
architecture, field programmable gate array performance

1. Introduction
Current integrated circuits (ICs) exhibit an increasing logic density due to shrinking transistor sizes. This
increase in transistor count has led to the emergence of system-on-chip (SoC) design methodologies to manage
the increase in design size and complexity. SoC design methodologies, predesigned intellectual property (IP)
blocks are combined on a single chip. These blocks may include embedded processors, memories, and dedicated
coprocessors to accelerate specific processing functions. Incorporating IP blocks increases productivity gains,
interdevice communication bandwidth and removes pin limitations. One major issue in SoC design today is
the significant cost of design errors found after fabrication. These errors can be due to design errors not
detected by simulation or it may be due to a change in design requirements. Therefore, an SoC must have some
postmanufacturing flexibility to reduce the number of chip redesigns and to amortize chip development costs.
The best way to solve this problem is to incorporate programmable logic cores into the SoC. The programmable
logic core is a flexible logic fabric that can be customized to implement different applications or implement
design changes after fabrication. Hence, it can be used to change design specifications and compensate for
postmanufacturing errors costs. Field programmable gate arrays (FPGAs) have been known for their flexibility
thanks to their reconfiguration capacity. Several companies have already proposed the inclusion of processors
∗Correspondence: khouloud.bouaziz@enis.tn

This work is licensed under a Creative Commons Attribution 4.0 International License.
17

https://orcid.org/0000-0003-0770-1419
https://orcid.org/0000-0003-0770-1419
https://orcid.org/0000-0001-7409-292X


BOUAZIZ et al./Turk J Elec Eng & Comp Sci

(in soft or hard forms) inside the FPGAs (see Figure 1a). Hence, SoC designers can use the programmable logic
cores to design different IPs and connect them to the FPGA’s processor. However, compared to application-
specific integrated circuits (ASICs), FPGAs pay for their flexibility in terms of area, power consumption, and
performance. To illustrate the magnitude of this problem, we refer to the work presented in [1] where authors
show that on average, an FPGA consumes 12 times more dynamic power than an equivalent ASIC, it is also 40
times larger and 3.2 times slower compared to ASIC [1]. This gap makes, FPGAs a less ideal choice for high
performance, low power SoC designs. In addition, there are many cases where SoC designers would prefer to
have small regions of programmable logic closest to the desired IP size, rather than large programmable logic
regions in order to save chip area and minimize the area penalty. Therefore, the ideal solution for semiconductor
companies wanting to add configurability to their chips is to have SoCs with embedded FPGA (eFPGA) IP [2]
rather than stand-alone FPGAs (see Figure 1a). eFPGA can provide future SoC with hardware flexibility in a
cost-effective way. In fact, once connected to the rest of the SoC components, the eFPGA can be configured to
behave as a high-performance coprocessor or high-speed interface controller. eFPGA IPs can be reconfigured;
hence, they reduce time-to-market and amortize chip development costs over several design derivatives. eFPGA
can connect to an SoC through standard digital signaling which can be wide and fast, and enables lower latency
compared to FPGA interfaces used for communication 1. Moreover, eFPGAs’ response latency is faster than
FPGAs because communication bandwidth between eFPGAs and processors can be controlled through data
bandwidth while it is limited by the interface bandwidth for FPGA. Hence, eFPGA offers the best tradeoff
between the full FPGA and full ASIC solutions in terms of flexibility, performance, and power consumption.
In this paper, we aim to introduce commercial and academic eFPGA solutions and discuss the challenges of
eFPGA design in terms of power consumption, area, and performance. The organization of the rest of the paper
is as follows: In Section 2, we present existing eFPGA architectures and topologies. Then, we detail eFPGA
configuration flow used for eFPGA design implementation and layout generation. Section 3 provides an overview
on academic and industrial eFPGAs solutions while discussing their advantages and limits. Afterwards, Section
4 recapitulates the main types of eFPGAs based on their granularity.

Figure 1. FPGA including processor vs. SoC including eFPGA

1Menta (2018). eFPGA vs FPGA [online]. Website http://www.menta-efpga.com/efpga-vs-fpga.html [accessed 06 10 2018]

18



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

2. Embedded FPGA: eFPGA
In this section, we present existing eFPGA architectures and topologies. Then, we detail eFPGA computer
aided design (CAD) tools. Afterwards, we detail the eFPGA design challenges in terms of power consumption,
area, and performance.

2.1. eFPGA architectures and topologies

An eFPGA is an FPGA core that, rather than being sold as a packaged chip, is sold as a block of semiconductor
IP that can be integrated into an SoC. In this section, we presented popular FPGA architectures and interconnect
topologies since they are the basis for many eFPGAs used today. FPGA architectures are generally based on a
clustered architecture where several look-up-tables (LUTs) are grouped together to act as a configurable logic
block (CLB), also called a cluster. FPGA routing interconnect assures different connections among FPGA
components. In this section, we present the two existing types of FPGA routing interconnect topologies which
are mesh-based and tree-based interconnects (see Figure 2):

• Mesh-based FPGAs, also called island-style FPGAs, are used in most academic and commercial SRAM-
based FPGA architectures 2 [3–6]. In mesh-based FPGA architecture, LBs are placed in a 2D grid and
surrounded by routing channels as illustrated in Figure 2. Generally, in mesh-based FPGA, the routing
interconnect is composed of connection block (CBs), switch block (SBs), and wire segments. The group of
programmable switches used to connect LB inputs and outputs to an adjacent routing channel is the CB.
Similarly, the group of programmable switches used to connect horizontal and vertical channels intersection
is the SB. The SB controls all connections between horizontal and vertical channels. Each vertical and
horizontal routing channel contains W parallel wire segments.

• Tree-based or also called multilevel hierarchical FPGAs are used in a number of academic and commercial
FPGA families [7–10]. This kind of architecture groups LBs into separated clusters recursively connected
to form a hierarchical structure. Only architectures with more than 2 levels of hierarchy can be considered
multilevel hierarchical interconnect.

Figure 2. Mesh-based vs. tree-based FPGA interconnects.

2Virtex (2019). Xilinx Support [online]. Website http://www.xilinx.com/support/documentation/data [accessed 02 01 2019]

19



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

Mesh-based FPGAs are generally designed to maximize logic utilization whereas tree-based FPGAs
are designed to increase interconnect utilization. The hierarchical FPGA architecture exploits the locality of
connections to provide better performance and more predictable timing behavior. In the tree-based structure,
the number of switches in series used to connect two LBs increases as a logarithmic function of the Manhattan
distance d whereas the number of segments in series increases linearly with d for mesh structure. However, the
wires delay increases exponentially with higher hierarchical levels and then the use of high hierarchical levels
can impede the tree-based FPGA performance. In addition, the mesh model is more scalable than tree-based
model since it has a regular structure. Hence, each architecture has its advantages. In order to use architecture
resources to their optimal potential, the development of efficient CAD tools is of great importance.

2.2. eFPGA CAD tools

CAD tools are crucial for creating, exploring, programming, and validating different eFPGA architectures, as
illustrated in Figure 3. They optimize architecture parameters such as LUT size, cluster size, and channel
width. Figure 3 presents the diagram of eFPGA Analyser and Creator [11], providing the global overview of
the tool suite including exploration and creation flows. Exploration phase enables to create efficient customized
eFPGAs based on the set of eFPGA library components. The available components are pre-designed, pre-
verified and sometimes silicon validated by test chips. Creation flow achieves the architectural exploration
part which helps to create comprehensive libraries including a set of best cases and types which can either
directly be suitable for target eFPGA or a good start point to narrow down the design space exploration
direction. The building elements of eFPGA Creator are library and architecture Managers, hardware description
language (HDL) generator, eFPGA programmer and analyzer. The library manager provides an infrastructure
to create a central database of all components/blocks of eFPGA architecture. It consists of components like
LBs and SBs with different architectural parameters (i.e. LUT size, cluster size, channel width, SB topologies,
etc.). Thus, this flow procures a database of customized components and their silicon implementation to make
architectural decisions. Architecture manager builds the architecture of eFPGA core using library manager
data base components. Besides, it automatically creates lacking components required for core generation (i.e.
components at the boundary of core, inputs/outputs etc.) if they are not provided by the library. Afterwards,
architecture manager stores obtained components for future reuse. This tool also conceives the core’s hardware
for silicon implementation. The HDL generator creates HDL files along with front-end and back-end scripts to
implement eFPGA RTL. eFPGA programmer (Figure 3) maps applications on the target eFPGA. It requires
corresponding architecture files (including silicon information) to retrieve all the architectural and timing
information needed to map applications on the created architecture. The first stage of this flow is synthesis. It
converts a circuit description, typically written in an HDL, into a gate-level representation. This representation
is a network composed of Boolean logic gates and flip-flops (FFs). The second stage is mapping where the gate-
level presentation is further optimized then transformed into LBs relying on the available eFPGA technology.
Subsequently, clustering enables to group sets of n LBs into clusters to be easily mapped into the eFPGA
afterwards. Placement determines which LB within an eFPGA will implement the LB used by the circuit.
Finally, routing determines how connections of LBs are realized within the prefabricated routing interconnect.
The analyzer tools enable to determine the possibility to implement an application on the target architecture. It
decides whether the architecture specifications meet the application requirements or not. And if the architecture
does not possess enough resources, it determines the better tuning direction to optimize the architecture.

20



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

Figure 3. eFPGA CAD tools

2.3. eFPGA design challenges
Since eFPGA has FPGA-like classical architecture, it shares its limits and hence it brings similar challenges.
As eFPGAs’ capacities continue to grow, there is a considerable demand for eFPGAs with less area, lower
power consumption, and less delay. As shown in Figure 4 [12], there is a high interdependency between eFPGA
quality metrics which are: area, power dissipation, performance, and cost. For instance, decreasing the number
of interconnect switches enables area, power consumption, and manufacturing cost improvement while it can
penalize interconnect flexibility and thus affect performance. Hence, the main eFPGA design challenge is to
find a good tradeoff between flexibility and performance in terms of area, power consumption, and delay. To do
so, both academic and industrial communities have worked on various eFPGA types ranging from fine-grained
architecture 3 4 with almost absolute flexibility to coarse-grained, customized ones with high performance 5 6.
Moreover, to ensure efficient design implementation and eFPGA integration, they use CAD tools tailored to
satisfy eFPGA architecture specifications.

3. Examples of eFPGA solutions
In this section, the main existing eFPGAs and their configuration tools are detailed. There are both academic
and commercialized eFPGAs.

3.1. MorphoSys: RC array

In [13], authors presented the MorphoSys project. MorphoSys architecture includes a reconfigurable processing
unit, a general processing unit, a general-purpose processor along with a high bandwidth memory interface.

3Adicsys (2019). Adicsys: eFPGA Company [online]. Website http://www.adicsys.com/technology [accessed 02 01 2019]
4Achronix (2018). Speedcore eFPGA [online]. Website https://www.achronix.com/product/speedcore/ [accessed 01 12 2018]
5Menta (2018). Embedded Programmable Logic [online]. Website http://www.menta-efpga.com [accessed 30 11 2018]
6EFLEX (2018). Add Flexibility To Your SoC [online]. Website https://flex-logix.com/efpga/ [accessed 30 11 2018]

21



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

Figure 4. FPGA design challenges [12]

The reconfigurable processing unit, also called reconfigurable cell array (RC array), is an 8 × 8 array of coarse-
grained reconfigurable cells (RCs). The general processing unit controls the RC array operation. Implementing
applications into MorphoSys is achieved through a comprehensive programming environment represented in
Figure 5. This tool suite includes 2 simulators, a graphical user interface, a context parser, and a C compiler.
Mulate and MorphoSim are respectively C++ and VHDL simulators. MorphoSim models MorphoSys compo-
nents and simulates applications using QuickVHDL simulation environment. While Mulate includes a C-based
GUI to display and debug the application program during execution. mView is the GUI destined for RC array.
It maps applications into RC array then verify and debug simulation runs. Besides, mView enables to study RC
array simulation behavior. mView includes 2 run modes: a programming mode and a simulation mode. The
programming mode’s main role is to place and route applications into the RC array. Afterwards, it generates a
context file for the implemented application. Regarding the simulation mode, it uses the context file to display
RC states while executing user application. In order to simulate the whole system, mLoad is used to generate
processor instructions and RC array context words. Furthermore, a MorphoSys C language compiler, mcc, is
required to compile hybrid code for MorphoSys after manual partitioning between processor and RC array.
Experimentation results showed that the use of MorphoSys to implement a data encryption application amelio-
rates performance compared to Pentium II processor and HipCrypto ASIC. Hence, this coarse-grained solution
has a high performance for high-throughput, data-parallel applications. Besides MorphoSys [13], other works
like [14–16] used reconfigurable solutions including a matrix of computational elements with reconfigurable
interconnect targeting DSP applications for traditional SoCs.

3.2. Totem project: RaPiD

The work in [17] represents the Totem project. This project uses reconfigurable-pipelined datapath (RaPiD) ar-
chitecture as a reconfigurable structure. RaPiD has intermediate flexibility standing between FPGA and ASIC.
It aims to provide ASIC-like performance while maintaining FPGA-like reconfigurability. RaPiD achieves re-
configurability through the use of block components (memories, multipliers, and pipeline registers...). However,
unlike commercial FPGAs, RaPiD does not target random logic. However, it mainly uses coarse-grained, com-
putationally intensive functions. Standard cell libraries utilization ensures layout generation process automation
while preserving domain-specific flexibility. The CAD flow of this eFPGA start with RaPiD components be-

22



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

Figure 5. Software and simulation environment for MorphoSys [13].

havioral Verilog generation. The synthesis phase of the obtained output uses Synopsys 7 to produce Structural
Verilog based on Tanner standard cells library 8. Subsequently, placement and routing are achieved using Sil-
icon Ensemble (SE). SE is part of the Cadence Envisia Tool Suite, it is capable of routing multiple layers of
metal, including routing over the cells. SE is able to run from macro files which minimize user intervention.
Finally, Cadence performs layout generation using the TSMC 0.25µm design rules for all layouts. Epic Tool
Suite, a robust circuit simulator, is utilized for performance analysis. Experimental results showed that if the
application domain is known well in advance, FPGA-specific standard cells are 46% smaller and 36% faster than
full-custom designs. However, if no reduction from the full functionality is possible, a standard cell approach is
42% larger and 64% slower compared to full-custom designs.

3.3. Hard eFPGA: VariCore
Authors in [18] represented a system including an embedded reconfigurable processor. This processor combines
a configurable and extensible processor core and VariCore, an SRAM-based eFPGA. VariCore Embedded
Programmable Gate Array is a hard IP core having a mesh-based topology. It consists of an array of PEG blocks
surrounded by memory blocks, input/output pins and other interfaces. Each PEG includes an 8 × 8 array
of functional group (FG) blocks along with the routing network to ensure communication between FG blocks.
An FG encloses 4 logic units (LUs) joined with hard-wired carry chain for arithmetic use. VariCore can be
configured through interfaces like JTAG. The design flow consists of a system-to-RTL and RTL-to-layout design
flows. System-to-RTL flow is used for system architecture exploration and integration. It starts with an untimed
model of the system. This model is written using C/C++ programming language, it describes the desired
application. During this stage, the verification is done through simulations in CoWare N2C environment [19].
This methodology allows users to validate the system specifications. Subsequently, partitioning and interface
synthesis enable the verification of the system at a cycle accurate abstraction level. Extensive simulations using
profiler helps to group time-consuming segments of codes to be mapped on the eFPGA while implementing the

7Synopsys (2018). Silicon Design and Verification [online]. Website https://www.synopsys.com/ [accessed 15 10 2018]
8Tanner (2018). Tanner Research [online]. Website http://www.tanner.com/ [accessed 16 10 2018]

23



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

rest onto the microprocessor. RTL-to-layout flow includes both silicon implementation and eFPGA configuration
flows which are executed at different times. Once the silicon implementation flow has generated the routed
database, eFPGA flow can be implemented. eFPGA flow is repeated for each different function built as a soft
macro. The RTL code of the CPU core, interface modules and IP blocks is synthesized and integrated with
RAM blocks and FPGA hard macro in the floor planning environment. Timing requirements must be considered
during synthesis for the logic cells that interfaces eFPGA with the rest of the system. After placement and
routing, the final database is verified statically and dynamically against the RTL simulations. Finally, the
bitstream and the timing analysis are generated. Implementation of intensive-computing applications using
system including eFPGA enables up to 8 times speedups compared to the use of only one microprocessor.
Hence, the use of hard eFPGA can increase flexibility and performance. However, its use is consuming in terms
of area since it occupies 40% of the system surface.

3.4. Programmable logic cores

In [2], the authors proposed the use of programmable logic core (PLC). PLC is a flexible, fine-grained, logic
fabric that can be customized to implement any digital circuit after fabrication. PLC is intended to overcome
FPGA’s main issues. Two main PLC architectures were explored. The first one is the directional architecture
which resembles the standard mesh-based FPGA architecture. However, it is destined only for combinational
logic since PLC targets only small and simple circuits. Besides, its interconnect network is directional (from
left to right). The second one is the gradual architecture which is more area-efficient than the directional
architecture because it includes fewer switches and has more input/output flexibility. Concerning the CAD flow
for PLC generation, it starts with partitioning the design into fixed logic and programmable logic written in
HDL language and destined to be integrated into the PLC. The programmable logic is then written in RTL
description. Afterwards, the designer merges the behavioral descriptions of the fixed part and the programmable
logic core to create a behavioral description of the block. Standard ASIC synthesis, place, and route tools
achieve the implementation of the soft PLC behavioral description. Hence, both the programmable logic core
and fixed logic are implemented simultaneously. Finally, the IC is fabricated. After generating the PLC, the
user can configure it for the target application. Circuit placement uses VPR simulated annealing approach
with modifications required to adapt to the target PLC architectures: if the directional architecture is used,
the cost function depends on the delay of potential connections and distance of Manhattan between pins.
Besides, it uses physical layout representation instead of conceptual representation in VPR case to increase
estimation accuracy. As for the gradual architecture, the cost function depends on the number of nets demands
for each multiplexer as well as multiplexer’s capacity according to its column disposition in the PLC. Those
modifications were necessary to guarantee routability. That is why routing used VPR negotiated congestion
without any modification. Experimentation results showed that the use of the soft PLC requires 6.4 times more
area and twice the critical path delay compared to a hardcore. These results prove that the use of fine-grained
eFPGA with high flexibility is less efficient compared to a customized eFPGA.

3.5. Tactical eFPGA
The Tactical eFPGA [20, 21] introduced tactical cells as an intermediate solution between ASIC specific cells and
FPGA standard cells. Since using ASIC specific cells induces time to market overhead while FPGA Standard
cells use causes an area overhead. Tactical cells are created by efficiently modifying NMOS/PMOS distribution
inside each cell. Tactical cell eFPGA is based on Island-style FPGA architecture described in VHDL RTL. This

24



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

architecture’s regular structure improves runtime and Layout generation since it is enough to synthesize one tile
and then replicate it to build the whole architecture. Besides, it decreases intertile wire length by an average of
38.5% because a structured layout is firm on placement. Thus, connections between tiles are reduced to short
hops. As a result, the critical path delay decreases by 3%. Furthermore, the regular island-style architecture
can use diffusion instead of buffering for inputs of multiplexer cell layouts to improve area and density. In order
to implement applications into this eFPGA, VPR 4.30 is used for placement and routing. This academic tool
has numerous advantages. Since it determines FPGA architecture required parameters to implement just the
target circuit. VPR area model also can be used to explore area results. Even though this model gives an
optimistic estimation, its values can be considered a lower bound. Besides, delay estimation depends on timing
path exception that is generated based on program bitstream extracted from VPR. Experimental results proved
that in terms of area, Tactical eFPGA is 58% smaller compared with standard cells eFPGA. However, it is up
to 2.8 times larger than full-custom designs. If Tactical eFPGA is compared to hard eFPGA cores where only
1/20 to 2/3 of the area is used, the area’s gain ranges from 1/3 to 19/20. However, there is no automatized
tool to choose the appropriate eFPGA size to implement on SoC. That is why the designer should interfere to
choose an eFPGA that ensures implementing target circuits while taking into consideration an error range. In
terms of delay, Tactical eFPGA improves delay by an average of 40% compared to standard cells eFPGA while
it is 10% slower than full-custom designs.

3.6. Arithmetic eFPGA
In [22], authors focused on designing a coarse-grained eFPGA architecture destined for arithmetic applications.
Compared to control-dominated applications (Table 1), arithmetic applications require mostly short connections
because of their high locality, few intermediate connections, and some long connections. Hence, in order to
optimize architecture for arithmetic applications, logic elements (LEs) are designed to preserve communication
locality for arithmetic datapaths like carry chains and to ensure that frequently used logic operations are directly
mapped to one LE or LE cluster. Moreover, dedicated logic and interconnect are used to increase area efficiency.
Thanks to the regular architecture of arithmetic eFPGA, it is possible to automate layout generation by using
flexible datapath generator (DPG). The CAD flow in this work starts with detailing the configuration of single
eFPGA components (routing switch (RS), CB, LE). Then it combines the obtained set of configurations to
configure a complete macro. Afterwards, it automatically generates a configuration data bitstream and control
bitstream which serve as input for the Cadence simulation environment. Arithmetic eFPGA was tested for
different arithmetic applications along with Altera Cyclone I and Stratix. Compared to Altera Cyclone I,
arithmetic eFPGA offers 5 to 10 times reduction in terms of energy, 3 to 5 times reduction in terms of area
and 20% to 80% improvement in terms of delay. As for Altera Stratix, arithmetic oriented eFPGA outperforms
it in terms of energy and delay. This reduction is mainly achieved since arithmetic eFPGA uses specific logic
block elements destined for arithmetic applications whereas Cyclone I and Stratix contain general-purpose logic
block elements. Arithmetic oriented eFPGA can implement control-oriented applications, but it is penalizing
compared with commercial FPGAs.

3.7. XiSystem: PiCoGA and eFPGA

The XiSystem SoC, in [23], includes two main reconfigurable devices. The first reprogrammable device is the
Pipelined Configurable Gate Array (PiCoGA) [24]. PiCoGA is a coarse-grained array of rows. Each row includes
16 reconfigurable logic cells (RLC). RLC includes 2 4-input 2-output LUTs, 4 registers, and dedicated logic for

25



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

Table 1. Arithmetic datapath application vs. control-dominated application.

Arithmetic datapath application Control-dominated application
Mostly short connections (cause: high locality) Much less short connections
Few intermediate connection length High fraction of intermediate segments
Some long connections Much less long connections

fast carry chain. PiCoGA routing network is a programmable interconnect matrix including switches with 1-bit
granularity for better routability. PiCoGA configuration requires a C source code to generate the Dataflow
Graph (DFG). Therefore, array core configuration bitstream and control unit configuration bitstream can be
generated. The second configurable device is a 2D mesh-based, fine-grained eFPGA. eFPGA logic structure
consists of 1-bit granularity Logic Cell (LC). LC includes 4:1 LUT, an FF, and a Multiplexer to choose between
registered or asynchronous outputs. eFPGA routing network is a programmable interconnect matrix with 1-bit
granularity switches. eFPGA communicates with SoC components through either advanced high-performance
Bus (AHB) or input/output pads. Figure 6 illustrates the configuration flow for XiSystem software Toolchain.
XiSystem SoC requires a dedicated C-based programming flow in the first place to generate the execution code
for the XiRisc processor and the configuration bit-stream for PiCoGA and eFPGA. Configuration data for the
PiCoGA are generated starting from a description using Griffy-C [25], a simplified sequential C-based language.
The eFPGA configuration flow starts with HDL code synthesis then eFPGA mapping to generate bit-stream.
Experimentation results show that PiCoGA can be 2 to 3 times more efficient than eFPGA for DSP applications.
Besides, PiCoGA offers up to 89% energy savings, 15 times speedups, and 7 times increase of computational
density compared to DSP-like architectures. As for eFPGA case, even if it cannot improve energy consumption
or performance, it offers system interfacing flexibility. In addition, it can play the role of an accelerator for
time-consuming tasks: for example, LCD display requires RGB pixel format while a MPEG decoder computes
frames in YUV format, implementing the necessary conversion in the eFPGA and removing this procedure from
the central core achieved 6% energy saving and 10% speedup on the whole decoder application. Moreover, the
coprocessor configuration of the eFPGA was used to implement the row processing part of the IDCT algorithm,
achieving a further 6% speedup.

3.8. Menta
Menta eFPGA is a standard-cell based eFPGA IP offered by Menta Corporation 9 to ensure flexibility in SOC
designs. Its fabric allows modifications to the hardware during both development and postmanufacturing; thus,
it enables reducing development time and cost. Menta product is qualified for GLOBALFOUNDRIES’ (GF)
advanced 14nm Fin Field Effect Transistor (FinFET) and 32nm Silicon on Insulator (SOI) process technologies.
GF’s advanced 14nm Low Power Process (LPP) can meet the requirements of reliability, power, stability, and size
of coprocessing of complex next-generation SoCs. It can be used for defense, aerospace, ADAS, Internet of things,
and data center systems applications. These characteristics were recently demonstrated in an eFPGA used by
a large aerospace company in the United States. Menta eFPGA Figure 7a has a heterogeneous architecture. It
includes embedded logic blocks (eLBs) able to map any Boolean operation and are interconnected as an array
using programmable routing resources. A hardwired carry chain that connects eLBs to support high-speed
arithmetic functions is included. Besides, embedded custom blocks (eCBs) can be added to increase performance

9Menta (2018). Embedded Programmable Logic [online]. Website http://www.menta-efpga.com [accessed 30 11 2018]

26



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

Figure 6. XiSystem software Toolchain [23].

for application-oriented designs. The Core IP can also include memory blocks (eMBs). Designers can choose a
predefined IP core from the available preconfigured IP blocks (IPMs) families or can use Origami Designer to
customize an eFPGA with the optimal size and perfect mix of blocks (eLBs, eCBs, eMBs). Figure 7b represents
Origami Programmer design flow. Origami Programmer includes all the steps of a typical FPGA design flow and
has an intuitive graphical interface. Origami Programmer requires an RTL design (VHDL, SystemVerilog, or
Verilog), eFPGA architecture and Synopsys Design Constraints (SDC) to compute the programming bitstream
file. It also generates speed estimations along with a model that can be used in standard simulation flow and
for equivalence check. Menta solution enables customers to take instant benefit of eFPGA integration in their
system while obtaining a custom solution for a specific node based on target market constraints. In [26], authors
investigated the use of Menta eFPGA as a reconfigurable coprocessor joined with LEON3 processor and its effect
on performance. They proved that at the cost of small area overhead, eFPGA enables a gain in terms of power
consumption and speed.

3.9. EFLEX

EFLEX eFPGA is a Flex Logix product 10. EFLEX coarse-grained architecture consists of reconfigurable
building blocks (RBBs)and multiplier-accumulators (MACs) for DSP applications. RBB latest generation
(second generation) includes 6-input LUTs, which can also be configured as dual 5-input LUTs with two
bypassable FFs on the outputs. The choice of 6-input LUTs improves performance by 25% and density by 20%

10EFLEX (2018). Add Flexibility To Your SoC [online]. Website https://flex-logix.com/efpga/ [accessed 30 11 2018]

27



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

Figure 7. Menta architecture and configuration flow.

compared to the dual-4-input-LUTs used in the first generation 11. In terms of routing network, EFLEX utilizes
a patented mixed radix hierarchical-mesh interconnect [27] inspired by Benes Networks [28]. This interconnect
structure improves area efficiency by about 50% compared to traditional 2D FPGAs. EFLEX CAD flow requires
an HDL file as input, it uses Synopsys Synplify synthesis tool to generate an ‘.edif’ file. Afterwards, EFLEX
Compiler Flex Logix uses the ‘.edif’ file to pack, place, route, and compute the worst-case path timing and
then generates the appropriate bitstream. EFLEX proved to be efficient in various applications like software
reconfigurable input/output pin multiplexing and flexible input/output for MCU and IoT and even SoCs. In
addition, EFLEX enables extending battery life for MCU and IoT since EFLEX can implement DSP applications
at lower energy than ARM Cortex M4 12. This product also allows fast control logic for reconfigurable cloud
data centers, DSP acceleration, debugging, and reconfigurable accelerators.

3.10. Synthesizable programmable core

Synthesizable programmable core (SPC) is a soft eFPGA core commercialized by Adicsys company 13 and it
targets ASICs, SoCs, and silicon IPs in general. SPC has a fine-grained, mesh-based FPGA architecture which
makes it scalable and available for various sizes. SPC structure is mainly based on a standard cell library to
decrease nonrecurring engineering and verification costs. This eFPGA has a LUT-based programmable core.
This core ensures mapping generic RTL functions. The CAD flow of SPC starts with RTL checking, elaboration,
and synthesis achieved by ADICSYS distributable RTL front end. Then the synthesis of ASIC and FPGA are
required to generate special RTL description. Afterwards, ADICSYS technology mapper, placer, and router
enable to generate the bitstream. SPC is then fully integrated into RTL SoC design flow. Adicsys product offers
15% to 33% higher FPGA density compared to academic Mesh of Trees [29].

11EFLEX (2018). LUT6 [online]. Website http://www.flex-logix.com/6lut-faster-denser [accessed 16 09 2018]
12EFLEX (2018). EFLEX for DSP [online]. Website http://www.flex-logix.com/energy-efficient-dsp [accessed 30 11 2018]
13Adicsys (2019). Adicsys: eFPGA Company [online]. Website http://www.adicsys.com/technology [accessed 02 01 2019]

28



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

3.11. ArcticPro
QuickLogic Corporation 14 created ArcticPro product as an ultralow-power eFPGA technology. It is designed
to be easily integrated into SoCs. ArcticPro has a fine-grained architecture which can implement multiple input
functions and ensures high logic cell utilization. Logic cells can be configured as two independent 3-input LUTs
or one 4-input LUT. ArcticPro flexible and multidrop routing network reduces routing delays and covers an
array size ranging from 16 × 16 to 64 × 64. Aurora utilizes Mentor Graphics Precision tool for synthesis and
a simulation tool compatible with industry standard EDA simulators (NC-Sim, VCS, Questa, ModelSim). The
software ArcticPro IP generation requires Aurora Place and Route Tools. To achieve the layout generation of
this IP, Borealis Compiler defines the required size of the eFPGA array then generates all necessary files for
SoC integration.

3.12. Speedcore eFPGA

Speedcore IP eFPGA is the product of Achronix corporation 15. Speedcore has a coarse-grained architecture.
Its components are arranged in homogeneous columns with customizable height and number, the mixture
of components is automatically defined by Achronix according to user application requirements. The device
includes reconfigurable logic blocks (RLBs) consisting of 4-input LUTs, registers, and fast adders. Besides, it has
logic RAM (LRAM) blocks and DSP building blocks designed in a modular structure which allows customers to
define any quantity of resources required for their end system. Speedcore architecture is decided using Achronix
ACE design tool. There are design rules that dictate the minimum and the maximum relative quantities for
each of the available resources responding to customer requirements. This ACE generates the standard GDSII
IP format which can be used for IC layout. In addition, Achronix ACE integrates Snapshot real-time design
debugging tool to enable real-time user design evaluation.

4. Synthesis
Table 2 summarizes the main criteria of eFPGA examples denoted in Section 3. As illustrated in Table 2,
eFPGAs can be imported as soft IP or hard IP. Hard IP approach offers highly optimized eFPGA core and
predesigned with full-custom layout techniques. Nevertheless, only few variations of the eFPGA core are possible
and there are numerous sources of underutilization. To overcome these limits, soft IP approach offers more
flexible process since it proposes CAD flow to automatically generate an eFPGA fabric within the ASIC design
flow (synthesis, place, and route). The main idea here is that an eFPGA architecture is described in behavioral
RTL. Then, the ASIC design flow is used to create the physical IC layout. Moreover, eFPGA can be obtained
without the bottleneck of a node-specific hard eFPGA solution.

We can also classify eFPGAs structures into fine-grained, coarse-grained, or heterogeneous architectures.
Table 3 classifies eFPGAs into 3 main categories according to their granularity and compares them in terms
of flexibility and performance based on the observation of eFPGAs examples in Section 3. Coarse-grained
eFPGAs can reach high performance but their flexibility is limited to specific application domains. Meanwhile,
fine-grained eFPGAs are generally more flexible and cover a wider range of applications which degrades their
performance compared to customized platforms. To achieve a trade-off between both flexibility and performance,
a heterogeneous eFPGA with mixed granularity is an appealing solution which needs to be backed up with
optimized CAD tool suit to define and utilize eFPGA resources efficiently based on the target application’s
requirements.

14QuickLogic (2019). QuickLogic [online]. Website https://www.quicklogic.com/ [accessed 03 01 2019]
15Achronix (2018). Speedcore eFPGA [online]. Website https://www.achronix.com/product/speedcore/ [accessed 01 12 2018]

29



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

Table 2. eFPGAs: Creation flow output, configuration flow, and integration into SoC (N. A: not available)

eFPGA eFPGA Characteristics eFPGA CAD Tools
eFPGA
Integration
into SoC

Soft/
Hard

Granularity

MorphoSys : RC
Array

Hard IP Coarse-grained Fully IP-specific: Mview: map-
ping, verification, debugging

Control through
general process-
ing unit

Totem project:
RaPiD

Soft IP Coarse-grained Partially IP-specific: Synopsys
for synthesis, Silicon Ensemble
(SE) for placement and routing

N. A

Hard eFPGA :
VariCore

Hard IP Coarse-grained Fully IP-specific Processor Data-
path, Bus (AHB), I/O pins

Programmable
Logic Cores

Hard IP Fine-grained Partially IP-specific: Standard
ASIC tools for synthesis, place,
and route

I/Os

Tactical eFPGA Soft IP Fine-grained Partially IP-specific: VPR 4.30
for placement and routing

N. A

Arithmetic eFPGA Hard IP Coarse-grained Partially IP-specific: automat-
ically generates a configuration
data bitstream and control bit-
stream which serve as input for
the Cadence simulation environ-
ment

N. A

XiSystem : PiCoGa Hard IP Coarse-grained Fully IP-specific Datapath
XiSystem : eFPGA Hard IP Fine-grained Fully IP-specific Bus (AHB),

I/Os pins
Menta Hard IP Heterogeneous Fully IP-specific: Origami Pro-

grammer
Customized

EFlex Hard IP Coarse-grained Partially IP-specific: Synopsys
Synplify for the synthesis

Bus (APB),
Data path, I/O
Pins

Synthesizable Pro-
grammable Core

Soft IP Fine-grained Fully IP-specific Customized ac-
cording to appli-
cation

ArcticPro Hard IP Fine-grained Partially IP-specific: Mentor
Graphics Precision tool for syn-
thesis, Aurora for Placement and
Routing

Borealis Com-
piler generates
all necessary
files for SoC
integration

SpeedCore eFPGA Hard IP Coarse-grained Fully IP-specific: Achronix ACE
design tool

Customized

All presented eFPGAs in this paper are synthesizable. Some of them developed prototypes of their eFPGA
and other ones propose a CAD flow that automates synthesis and the process of layout generation of eFPGA.
As illustrated in Table 2, eFPGA CAD tools can be fully IP-specific or partially IP-specific. A fully IP-specific
flow is tailored to create and program the target eFPGA without relying on or being restricted with other

30



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

Table 3. eFPGAs Types and their main criterion.

eFPGA Types Flexibility Performance
Coarse-grained Specific application domain High performance: close to ASIC performance
Fine-grained High flexibility Medium performance: intermediate between processor and ASIC
Heterogeneous Good/high flexibility Good/high performance

existing tools, unlike partially IP-specific tools. Creating partially an IP-specific tool is more constrained and
complex. However, generating an eFPGA solution compatible with existing environments is indeed beneficial
since it enables the test and validation of the output [22] or its integration into other existing systems 16.

Finally, in Table 2 we highlight different techniques used for eFPGA integration into SoC which can be
realized through using APB bus, Datapath, or I/O pins. Nevertheless, some eFPGAs were not integrated into
SoCs [17, 20–22] mainly because of implementation problems. Moreover, some eFPGA constructors offer the
possibility to customize the integration into SoC according to the target application 17 18.

5. Conclusion
eFPGA is growing to be a trending technology since it offers the best tradeoff between the full FPGA and full
ASIC solutions in terms of flexibility, performance, and power consumption. Its reconfiguration capacity as an IP
to be implemented in hardware systems like SoCs makes it a very appealing solution for many fields. This paper
revolves around eFPGA solutions for SoCs integration. We presented eFPGA architectures and interconnect
topologies, associated CAD flow, and crucial challenges they are facing. We surveyed existing academic and
industrial eFPGA solutions for SoCs integration. Then, we analyzed and classified these solutions based on their
eFPGA design, CAD tools, and different techniques to integrate them into the SoC. In the light of our survey,
we studied coarse-grained eFPGAs with customized blocks which are used for domain-specific applications and
fine-grained eFPGAs that are used for general purposes but have lower performance. We discussed also the
concept, motivation, and limits of hard and soft eFPGAs IPs.

Acknowledgment

This work is supported by Computer and Embedded Systems Laboratory and Digital Research Center of Sfax.

References

[1] Kuon I, Rose J. Measuring the gap between FPGAs and ASICs. IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems 2007; 26 (2): 203-215. doi: 10.1109/TCAD.2006.884574

[2] Wilton SJE, Kafafi N, Wu JCH, Bozman KA, Aken’Ova VO et al. Design considerations for soft embedded pro-
grammable logic cores. IEEE Journal of Solid-State Circuits 2005; 40 (2): 485-497. doi: 10.1109/JSSC.2004.841038

[3] Li A, Wentzlaff D. PRGA: An open-source framework for building and using custom FPGAs. In: The First Workshop
on Open-Source Design Automation; Florence, Italy; 2019. pp. 1-6.

16Achronix (2018). Speedcore eFPGA [online]. Website https://www.achronix.com/product/speedcore/ [accessed 01 12 2018]
17Menta (2018). Embedded Programmable Logic [online]. Website http://www.menta-efpga.com [accessed 30 11 2018]
18Achronix (2018). Speedcore eFPGA [online]. Website https://www.achronix.com/product/speedcore/ [accessed 01 12 2018]

31



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

[4] Chtourou S, Marrakchi Z, Amouri E, Pangracious V, Abid M et al. Performance analysis and optimization of
cluster-based mesh FPGA architectures: design methodology and CAD tool support. Turkish Journal of Electrical
Engineering and Computer Sciences 2017; 25 (3): 2044-2054. doi: 10.3906/elk-1506-51

[5] Gaillardon PE, Tang X, Kim G, De Micheli G. A novel FPGA architecture based on ultrafine grain reconfigurable
logic cells. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2015; 23 (10): 2187-2197. doi:
10.1109/TVLSI.2014.2359385

[6] Rose J, Luu J, Yu CW, Densmore O, Goeders J et al. The VTR project: architecture and CAD for FPGAs from
verilog to routing. In: Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays; Monterey, CA, USA; 2012. pp. 77-86.

[7] Yuan FL, Wang CC, Yu TH, Marković D. A multi-granularity FPGA with hierarchical interconnects for
efficient and flexible mobile computing. IEEE Journal of Solid-State Circuits 2015; 50 (1): 137-149. doi:
10.1109/JSSC.2014.2372034

[8] Marrakchi Z, Mrabet H, Farooq U, Mehrez H. FPGA interconnect topologies exploration. International Journal of
Reconfigurable Computing 2009; 2009 (6): 1-13. doi: 10.1155/2009/259837

[9] Hutton M, Adibsamii K, Leaver A. Timing-driven placement for hierarchical programmable logic devices. In:
Proceedings of the 2001 ACM/SIGDA Ninth International Symposium on Field Programmable Gate Arrays;
Monterey, CA, USA; 2001. pp. 3-11.

[10] Lai YT, Wang PT. Hierarchical interconnection structures for field programmable gate arrays. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 1997; 5 (2); 186-196. doi: 10.1109/92.585219

[11] Syed Zahid A. eFPGAs: Architectural explorations, system integration and a visionary industrial survey of pro-
grammable technologies. PhD, University of Montpellier, Montpellier, France, 2011.

[12] Hutton M. The design of modern FPGA Architectures. In: International Symposium The Future of Configurable
Hardware; Gent, Belgium; 2004.pp.1-10.

[13] Singh H, Lee MH, Lu G, Kurdahi FJ, Bagherzadeh N et al. MorphoSys: an integrated reconfigurable system for
data-parallel and computation-intensive applications. IEEE Transactions on Computers 2000; 49 (5): 465-481. doi:
10.1109/12.859540

[14] Becker J, Glesner M. A parallel dynamically reconfigurable architecture designed for flexible application-tailored
hardware/software systems in future mobile communication. The Journal of Supercomputing 2001; 19 (1): 105-127.
doi: 10.1023/A:1017456815823

[15] Zhang H, Prabhu V, George V, Wan M, Benes M et al. A 1 V heterogeneous reconfigurable processor IC for
baseband wireless applications. In: IEEE International Solid-State Circuits Conference; San Francisco, CA, USA;
2000. pp. 68-69.

[16] Obeid AM, Qasim SM, BenSaleh MS, AlJuffri A. HyDRA: hybrid dynamically reconfigurable architecture for DSP
applications. IEICE Transactions on Electronics 2016; 99 (7): 866-877. doi: 10.1587/transele.E99.C.866

[17] Phillips S, Hauck S. Automatic layout of domain-specific reconfigurable subsystems for system-on-a-chip. Proceed-
ings of the 2002 ACM/SIGDA Tenth International Symposium on Field-Programmable Gate Arrays; Monterey,
CA, USA; 2002. pp. 165-173.

[18] Borgatti M, Lertora F, Forêt B, Calí L. A reconfigurable system featuring dynamically extensible embedded
microprocessor, FPGA, and customizable I/O. IEEE Journal of Solid-State Circuits 2003; 38 (3): 521-529. doi:
10.1109/JSSC.2002.808288

[19] Schewel J. A hardware/software co-design system using configurable computing technology. In: Parallel Processing
Symposium; Orlando, FL, USA; 1998. pp. 620-625.

[20] Aken’Ova VO. Bridging the gap between soft and hard eFPGA design. PhD, University of British Columbia,
Canada, 2005.

32



BOUAZIZ et al./Turk J Elec Eng & Comp Sci

[21] Aken’Ova VC, Lemieux G, Saleh R. An improved ”soft” eFPGA design and implementation strategy. In: Inter-
national Conference on Application-specific Systems, Architectures and Processors; San Jose, CA, USA; 2006. pp.
125-131.

[22] von Sydow T, Neumann B, Blume H, Noll TG. Quantitative analysis of embedded FPGA-architectures for arith-
metic. In: Proceedings of the IEEE 2005 Custom Integrated Circuits Conference; Steamboat Springs, CO, USA;
2005. pp. 179-182.

[23] Lodi A, Cappelli A, Bocchi M, Mucci C, Innocenti M et al. XiSystem: a XiRisc-based SoC with reconfigurable IO
module. IEEE Journal of Solid-State Circuits 2006; 41 (1): 85-96. doi: 10.1109/JSSC.2005.859319

[24] Lodi A, Toma M, Campi F. A pipelined configurable gate array for embedded processors. In: Proceedings of the
2003 ACM/SIGDA eleventh international symposium on Field programmable gate arrays; Monterey, California,
USA; 2003. pp. 21-30.

[25] Mucci C, Chiesa C, Lodi A, Toma M, Campi F. A C-based algorithm development flow for a reconfigurable processor
architecture. In: International Symposium on System-on-Chip; Tampere, Finland; 2003. pp. 69-73.

[26] Syed Zahid A, Julien E, Laurent R, Jean-Baptiste C, Gilles S et al. Exploration of power reduction and performance
enhancement in LEON3 processor with ESL reprogrammable eFPGA in processor pipeline and as a co-processor.
In: Proceedings of the Conference on Design, Automation and Test in Europe; Nice, France; 2009. pp. 184-189.

[27] Yuan FL, Wang CC, Yu TH, Marković D. A multi-granularity FPGA with hierarchical interconnects for
efficient and flexible mobile computing. IEEE Journal of Solid-State Circuits 2015; 50 (1): 137-149. doi:
10.1109/JSSC.2014.2372034

[28] Nassimi D, Sahni S. A self-routing Benes network and parallel permutation algorithms. IEEE Transactions on
computers 1981; C-30 (5): 332-340. doi: 10.1109/TC.1981.1675791

[29] Balkan AO, Qu G, Vishkin U. Mesh-of-trees and alternative interconnection networks for single-chip paral-
lelism. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2009; 17 (10): 1419-1432. doi:
10.1109/TVLSI.2008.2003999

33


	Introduction
	Embedded FPGA: eFPGA
	eFPGA architectures and topologies
	eFPGA CAD tools
	eFPGA design challenges

	Examples of eFPGA solutions
	MorphoSys: RC array
	Totem project: RaPiD
	Hard eFPGA: VariCore
	Programmable logic cores
	Tactical eFPGA
	Arithmetic eFPGA
	XiSystem: PiCoGA and eFPGA
	Menta
	EFLEX
	Synthesizable programmable core
	ArcticPro
	Speedcore eFPGA

	Synthesis
	Conclusion

