
Turk J Elec Eng & Comp Sci
(2020) 28: 275 – 287
© TÜBİTAK
doi:10.3906/elk-1906-151

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

On the automorphisms and isomorphisms of MDS matrices and their efficient
implementations

Muharrem Tolga SAKALLI1,∗, Sedat AKLEYLEK2, Kemal AKKANAT1, Vincent RIJMEN3
1Department of Computer Engineering, Faculty of Engineering, Trakya University, Edirne, Turkey

2Department of Computer Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Turkey
3Department of ESAT/COSIC, KU Leuven and imec, Leuven, Belgium

Received: 24.06.2019 • Accepted/Published Online: 23.09.2019 • Final Version: 27.01.2020

Abstract: In this paper, we explicitly define the automorphisms of MDS matrices over the same binary extension field.
By extending this idea, we present the isomorphisms between MDS matrices over F2m and MDS matrices over F2mt ,
where t ≥ 1 and m > 1 , which preserves the software implementation properties in view of XOR operations and table
lookups of any given MDS matrix over F2m . Then we propose a novel method to obtain distinct functions related
to these automorphisms and isomorphisms to be used in generating isomorphic MDS matrices (new MDS matrices in
view of implementation properties) using the existing ones. The comparison with the MDS matrices used in AES,
ANUBIS, and subfield-Hadamard construction shows that we generate an involutory 4× 4 MDS matrix over F28 (from
an involutory 4× 4 MDS matrix over F24) whose required number of XOR operations is the same as that of ANUBIS
and the subfield-Hadamard construction, and better than that of AES. The proposed method, due to its ground field
structure, is intended to be a complementary method for the current construction methods in the literature.

Key words: MDS matrix, branch number, block cipher

1. Introduction
Confusion and diffusion as defined by Claude Shannon [1] are two important properties required for the design
of block ciphers. Diffusion is provided by a linear transformation, which improves the avalanche characteristics
of a block cipher. Maximum distance separable (MDS) matrices derived from MDS codes are used as diffusion
layers in most of the block ciphers like the Advanced Encryption Standard (AES) [2] and hash functions
like Whirlpool [3], the PHOTON family [4], and Whirlwind [5]. MDS matrices also provide security against
differential cryptanalysis [6] and linear cryptanalysis [7] along with the use of a nonlinear layer (e.g., S-boxes)
in a round function of a block cipher. Thus, it is important to find MDS matrices having nice implementation
properties.

The methods to generate MDS matrices can be divided into two groups: direct construction methods
and search-based methods. The former group contains the methods based on Cauchy matrices [8], companion
matrices [4, 9], Vandermonde matrices [10, 11], shortened BCH codes [12, 13], and skewed recursive structures
[14]. The latter group consists of several interesting ideas. These are to use recursive structures [15, 16], hybrid
structures [17], and special matrix forms [9, 18, 19]. One of the easiest construction methods yielding efficient
∗Correspondence: tolga@trakya.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
275

https://orcid.org/0000-0002-6322-0989
https://orcid.org/0000-0001-7005-6489
https://orcid.org/0000-0002-6448-7378
https://orcid.org/0000-0001-7401-2088

SAKALLI et al./Turk J Elec Eng & Comp Sci

implementation is to use special matrix forms: circulant and finite field Hadamard (FFHadamard or simply
Hadamard) matrices. Circulant matrices, a typical example of which is the AES MixColumns transformation,
are preferred in MDS matrix constructions since each row of a circulant matrix differs from the previous row
by a right shift, which provides a nice property to be implemented especially in hardware. On the other
hand, Hadamard matrices are very useful in constructing involutory (self-inverse) MDS matrices. Involutory
diffusion layers have an important effect on the performance of the block ciphers, since they provide the same
implementation properties in encryption and decryption phases. In this respect, in [20], the authors proposed a
generalization of the Hadamard matrix to generate new types of involutory/noninvolutory MDS matrices easily
and they show that the idea used to generalize a Hadamard matrix can also be applied to k × k (involutory)
MDS matrices, where k is not necessarily a power of 2.

In addition to construction methods described for MDS matrices, recently, MDS construction methods
have evolved to find MDS matrices with minimal XOR counts [21], which is a metric used in the estimation
of hardware implementation cost. In the literature, some studies focusing on generating MDS matrices with
low/minimum XOR counts are given in [20, 22–24]. In this paper, we focus on a complementary method to
generate isomorphic MDS matrices from existing ones to be applied to any MDS matrix generated by any
construction method, which makes it generic over all construction methods. Also, implementation issues of
MDS matrices are limited to software implementation properties in view of XOR operations, table lookups, or
multiplication of byte a by 2h (denoted by xtime (a), and 2h corresponds to x in polynomial form).

1.1. Motivation
Generating MDS matrices over binary extension fields yielding efficient implementations is a challenging issue.
We focus on the following question: Can we generate new MDS matrices via known MDS matrices by using
algebraic construction methods? In [25], a method called subfield construction was proposed to generate an
m×m MDS transform over F28n from m n× n MDS transforms over F28 . The method is mainly based on a
divide-and-conquer idea and one MDS matrix from the known one can be generated by using this method. In [26]
and [27], the transactions between MDS matrices are defined, but the explicit algorithms running in polynomial
time are not given. There is a lack of a generic method generating isomorphic MDS matrices over different field
representations, which may have better implementation properties than the existing ones, hence improving the
efficiency of other construction methods. Moreover, many known methods such as those based on circulant and
Hadamard matrices (except for Cauchy and Vandermonde matrix-based methods) to generate MDS matrices
over large binary extension fields with efficient implementations involve some kind of time-consuming exhaustive
search increasing computational complexity. Therefore, there is a need for a method to build MDS matrices
over the large binary extension fields used in [5, 28] and at the same time provide MDS matrices with good
software implementation properties in view of the required operations such as XOR operations, table lookups,
or multiplication of byte a by 2h (denoted by xtime (a), and 2h corresponds to x in polynomial form).

1.2. Contribution
Our main contribution is to present a novel method that can be used to generate isomorphic MDS matrices (new
MDS matrices in view of implementation properties over F2mt , where m > 1 and t ≥ 1) from MDS matrices
over F2m . The main idea is to obtain distinct functions related to the automorphisms and isomorphisms, which
allow us to preserve the MDS property. Then these functions are applied to MDS matrices over F2m in order to
generate new MDS matrices over F2mt . Moreover, we generate an involutory 4× 4 MDS matrix over F28 with

276

SAKALLI et al./Turk J Elec Eng & Comp Sci

the same implementation cost as the involutory MDS matrix used in ANUBIS [29] and the subfield-Hadamard
construction [17], and better implementation cost than the MDS matrix used in AES in view of the required
number of XOR operations.

1.3. Organization
This paper is organized as follows: Section 2 describes how to find automorphisms and isomorphisms of MDS
matrices over binary extension fields by using finite field properties. Then a generalization of this idea is studied
and a novel method is presented, which defines distinct functions related to the isomorphisms to be used in
generating new MDS matrices over F2mt (where m > 1 and t ≥ 1) from MDS matrices over F2m . In Section
3, some important properties of the method are given and implementation details of MDS matrices generated
by the method are discussed. Section 4 concludes the paper.

2. The proposed method to generate MDS matrices over F2mt from MDS matrices over F2m

In this section, we provide a detailed explanation to find distinct functions related to the automorphisms and
isomorphisms of MDS matrices over binary extension fields. In Section 2.1, we investigate the automorphisms
and distinct functions related to these automorphisms, which can be used in generating new MDS matrices from
an MDS matrix over the same binary extension field. In Section 2.2, we generalize the idea given in Section
2.1 by defining the isomorphisms of MDS matrices over the same extension degree. In Section 2.3, we propose
a novel method to obtain the isomorphisms and distinct functions related to these isomorphisms to be used in
generating new MDS matrices over F2mt , where t ≥ 1 , from an MDS matrix over F2m .

In this paper, we focus on MDS matrices over F2m . Let β be the primitive element used to construct the
finite field F2m , and then any finite field element is in the form am−1β

m−1 + am−2β
m−2 + . . .+ a1β + a0 with

ai ∈ {0, 1} . It can also be represented by the hexadecimal form of bits (am−1am−2 . . . a1a0) . Throughout this
paper, we use the hexadecimal notation or powers of a primitive element (for nonzero elements) to represent
the finite field elements.

Now we recall some facts about MDS matrices. Let C be an [n, k, d] code; then C is called MDS if the
equality d = n− k + 1 holds. MDS matrices are derived from MDS codes. They are used to provide diffusion
in block ciphers and hash functions.

Definition 1 [2] The differential and linear branch number of a k × k matrix A: Fk
2m → Fk

2m are defined by
Bd(A) = min{wt(x)+wt(A ·xT)|x ∈ Fk

2m −{0}} and Bl(A) = min{wt(x)+wt(AT ·xT)|x ∈ Fk
2m −{0}}, where

wt(x) is the number of nonzero components in x , respectively.

MDS matrices have the maximum differential and linear branch number (k+1 for k×k MDS matrices).
Some important properties of MDS matrices can be given as follows:

1. A square matrix A is MDS if and only if every square submatrix of A is nonsingular.

2. The MDS property of a matrix is preserved upon permutations of rows/columns. Similarly, multiplication
of a row/column of a matrix by a nonzero constant c ∈ F2m does not affect its MDS property. In general,
the minimum distance d of an [n, k, d] code C with generator matrix G = [I|A] , where A is a k× (n−k)

matrix, is preserved after applying the above operations to A [30].

3. The MDS property of a matrix is preserved under the transpose operation [30].

277

SAKALLI et al./Turk J Elec Eng & Comp Sci

2.1. MDS automorphisms

In this section, we investigate the automorphisms of MDS matrices over the same binary extension field and
distinct functions related to these automorphisms with the help of properties 1 and 2. One can generate new
MDS matrices over the same binary extension field by applying these automorphisms and distinct functions to
any MDS matrix. In Proposition 1, we discuss the nonsingularity of these automorphisms.

Proposition 1 Let A be a k×k matrix over the finite field F2m . Let A′ be generated by applying any distinct
automorphism fi : b 7→ b2

i to the elements of A with 0 ≤ i ≤ m− 1 and b ∈ F∗
2m . Then the determinant of A′

is equal to 0 if and only if the determinant of A is equal to 0.

By Theorem 2.21 in [31], the automorphisms of F2m over F2 are given as b2
i for all nonzero b ∈ F2m and

0 ≤ i ≤ m− 1 . These mappings are one-to-one because each element in F2 maps to itself. Since the mappings
are distinct, the determinant is related to the automorphism. Then the determinant of any matrix generated by
applying any distinct automorphism to A remains unchanged, being either zero or nonzero, i.e. if det(A) 6= 0

or det(A) = 0 , then det(A′) 6= 0 or det(A′) = 0 , respectively.
Proposition 1 is related to property 1 satisfied after applying the automorphism. The number of distinct

automorphisms of F2m over F2 is m . On the other hand, one can obtain m · (2m − 1) distinct and bijective

functions with a constant multiplication after applying the automorphisms, i.e. fi,c : b 7→ b2
i · c for any nonzero

element b ∈ F2m , 0 ≤ i ≤ m− 1 , and c ∈ F∗
2m . In Theorem 1, we define distinct and bijective functions related

to the automorphisms to be used in generating new MDS matrices.

Theorem 1 There exist m · (2m − 1) distinct and bijective functions related to the automorphisms in the form

of fi,c : β 7→ (β2i) · c , where β is any primitive element of F2m , c ∈ F∗
2m , and 0 ≤ i ≤ m− 1 . These functions

preserve the MDS property of a square matrix over the same binary extension field, i.e. new MDS matrices are
generated from the existing ones.

Proof Here we need to show that the properties of being an MDS matrix are satisfied after applying distinct
functions. The main idea depends on the fact that every square submatrix of an MDS matrix is nonsingular.
We divide the proof into three parts. Note that all elements of an MDS matrix must be nonzero. Let p(x) be
an irreducible polynomial of degree m over F2 and β ∈ F2m be a primitive element. We divide the proof into
three parts.

• Letting fi : x 7→ x2i , we have detA′ = fi(detA) . If detA 6= 0 , then fi(detA) 6= 0 since fi is an
automorphism.

• Let gc(x) 7→ c ·x , where c ∈ F∗
2m , and then detA′ = c ·detA from elementary linear algebra. Since c 6= 0

and detA 6= 0 , detA′ 6= 0 .

• Now let fi,c = gc(β)◦fi(β) = gc(fi(β)) = c ·β2i . Then detA′ = c ·fi(detA) . Since detA 6= 0 , detA′ 6= 0 .

Note that if detA′ 6= 0 , then we obtain detA 6= 0 by considering detA = fm−i(
1
c detA

′) . Since every square
submatrix of A is invertible and each row or column of A is linearly independent, the MDS property is preserved.
In conclusion, detA′ 6= 0 if and only if detA 6= 0 . 2

278

SAKALLI et al./Turk J Elec Eng & Comp Sci

In Example 1, we provide an automorphic involutory MDS matrix over F24 in Hadamard matrix form.
Recall that a k × k Hadamard matrix A is constructed with α0, α1, . . . , αk−1 such that Ai,j = αi⊕j for
0 ≤ i, j ≤ k − 1 , and then A = had(α0, α1, . . . , αk−1) .

Example 1 Let F24 be defined by the primitive polynomial p(x) = x4 + x + 1 . Let α be a root of p(x) .
Then M1 = had(1h, 2h, 4h, 6h)=had(1, α, α2, α5) is an involutory 4× 4 MDS matrix. By Theorem 1, consider
f2,1 : α 7→ α4 automorphism. Then the new involutory 4×4 MDS matrix generated from M1 by f2,1 is as follows:

M
′

1 = had(1h, 3h, 5h, 6h)=had(1, α4, α8, α5). M
′

1 is called an automorphism of M1 under f2,1 : α 7→ α4 . Note
that by Theorem 1 one can generate 59 more MDS matrices by using the MDS matrix M1 .

2.2. MDS isomorphisms

In this section, we clearly define the isomorphisms and distinct functions related to these isomorphisms. Then
we give a novel method to obtain these isomorphisms and distinct functions between MDS matrices over F2m

and MDS matrices over F2mt , where m > 1 and t ≥ 1 . The proposed idea is based on substituting the elements
over the same binary extension field defined by different irreducible polynomials.

Proposition 2 Let A be a k × k matrix over the finite field F2m/p1(x) and β1 be any primitive element of
F2m/p1(x) . Let A′ be a k × k matrix over the finite field F2m/p2(x) generated by applying the isomorphism
fsu : β1 7→ βsu

2 to the elements of A (which can also be represented as βd
1 for 0 ≤ d ≤ 2m − 2), where β2 is

any primitive element of F2m/p2(x) , su = e · 2i for 1 ≤ e ≤ 2m − 2 , gcd(e, 2m − 1) = 1 , p1(β
su
2) = 0 , and

0 ≤ u, i ≤ m− 1 . Then the determinant of A′ is equal to 0 if and only if the determinant of A is equal to 0.

Proof The proof is similar to Proposition 1 since we have the same mapping up to the isomorphism and
all entries of an MDS matrix remain nonzero after applying the isomorphism. Note that each fsu maps each
element in F2 to itself. The isomorphism fsu is related to automorphism as defined in Proposition 1 due to
the structure of su . 2

Theorem 2 There exist m · (2m − 1) distinct functions obtained by using isomorphisms in the form of
fsu,c : β1 7→ (βsu

2) · c , where β1 and β2 are respectively any primitive element of F2m/p1(x) and F2m/p2(x) ,
c ∈ F∗

2m , su = e · 2i for 1 ≤ e ≤ 2m − 2 , gcd(e, 2m − 1) = 1 , p1(β
su
2) = 0 , and 0 ≤ u, i ≤ m − 1 . These

functions can be used in generating new MDS matrices over F2m/p2(x) from an MDS matrix over F2m/p1(x) ,
which preserve the MDS property of a square matrix.

Proof Let β ∈ F2m be a primitive element. Recall that the minimal polynomial of the set β, β2, . . . , β2m−1 ,
where m is the smallest integer such that β2m = β , is the same. Since the proof is similar to Theorem 1, we
omit it. 2

Algorithm 1 presents how to compute su values to define the isomorphisms in Theorem 2. Algorithm 1
only receives the primitive polynomial as an input. The main idea in Algorithm 1 is to substitute the elements
with the powers of primitive elements. This helps us to define the isomorphisms between primitive polynomials
for the same binary extension, i.e. the powers of a given primitive element are checked for whether it is a root
of p1(x) modulo p2(x) .

279

SAKALLI et al./Turk J Elec Eng & Comp Sci

Algorithm 1 Computing su values to define the isomorphisms in Proposition 2.
Input: p1(β1) , β2 , and p2(x)
Output: su , where 0 ≤ u ≤ m− 1

1: for su = 1 to 2m − 2 do
2: y1 ← p1(β

su
2) (mod p2(x))

3: if y1 = 0 then
4: Return (su)
5: end if
6: end for

Example 2 Let F24 be defined by the irreducible polynomial p1(x) = x4+x3+x2+x+1 . Then β1 , defined by
β1 = α+1 , is a primitive element, where α is a root of p1(x) and M2 = had(1h, 2h, 4h, 6h)=had(1, β12

1 , β9
1 , β

13
1)

is an involutory 4× 4 MDS matrix over F24/p1(x) . We can rewrite p1(α) = α4 + α3 + α2 + α+ 1 in terms of
β1 as p1(β1) = β4

1 + β3
1 + 1 . Consider the finite field F24/p2(x) , where p2(x) = x4 + x+ 1 . Let the primitive

element β2 of F24/p2(x) be α1 , which is also a root of p2(x) . Then we can obtain 4 distinct isomorphisms
from F24/p1(x) to F24/p2(x) by computing su values (which are s0 = 7 , s1 = 11 , s2 = 13 , and s3 = 14) in
Algorithm 1. These isomorphisms are f7,1 : β1 7→ α7

1 , f11,1 : β1 7→ α11
1 , f13,1 : β1 7→ α13

1 , and f14,1 : β1 7→ α14
1 .

For example, by using the isomorphism f7,1 : β1 7→ α7
1 , we can generate the involutory 4× 4 MDS matrix M

′

2

over F24/p2(x) from M2 over F24/p1(x) as follows: M
′

2 = had(1h, Ah, 8h, 2h)=had(1, α9
1, α

3
1, α1) .

Note that by Theorem 2 one can generate 59 more MDS matrices over F24/p2(x) by using the MDS
matrix M2 over F24/p1(x) . In Example 2, each su is a representative of the same cyclotomic coset Cs modulo
F24 − 1 with gcd(s, 24 − 1) = 1 (C1 = {1, 2, 4, 8} or C7 = {7, 11, 13, 14}). Thus, the computations to identify
su values in Algorithm 1 can be performed by only using two coset leaders (s = 1 or s = 7) of these cyclotomic
cosets.

2.3. Generalization of MDS isomorphisms

In this section, we give a generalization of the proposed idea for large dimensions to be used in generating
new MDS matrices over F2mt , where t ≥ 1 , from an MDS matrix over F2m . By modifying the idea given in
Proposition 2, Theorem 2, and Algorithm 1, a general method to obtain the isomorphisms and distinct functions
related to these isomorphisms can be given as follows:

Step 1. Choose a primitive polynomial p1(x) of degree m and the primitive elements β1 and β2 for the finite
fields F2m/p1(x) and F2mt/p2(x) , respectively.

Step 2. Generate m isomorphisms, i.e. compute su values by using Algorithm 2.

Step 3. Compute m · (2mt − 1) distinct functions related to the isomorphisms by multiplying the isomorphisms
generated in Step 2 with all nonzero constants c ∈ F2mt .

Remark 1 Let p1(x) be an irreducible polynomial but not primitive in Step 1. Then a primitive polynomial is
constructed by evaluating β1 in p1(x) , i.e. p1(β1) . This polynomial is used as an input to Algorithm 2.

280

SAKALLI et al./Turk J Elec Eng & Comp Sci

Algorithm 2 Computing su values to define the isomorphisms between MDS matrices over F2m and MDS
matrices over F2mt .

Input: p1(β1) , β2 , and p2(x)
Output: su , where 0 ≤ u ≤ m− 1

for su = 1 to 2mt − 2 do
2: y1 ← p1(β

su
2) (mod p2(x))

if y1 = 0 then
4: Return su

end if
6: end for

Remark 2 In Algorithm 2, each su is a representative of the same cyclotomic coset Cs modulo 2mt − 1 with
gcd(s, 2mt − 1) = 2mt−1

2m−1 = (2m)t−1 + (2m)t−2 + · · ·+ 1 for t ≥ 1 since 2m − 1 elements of F2m are mapped to
2m − 1 elements of F2mt .

Example 3 Let F24 be defined by the primitive polynomial p1(x) = x4 + x + 1 . Let α be a root of p1(x) .

Then M3 =


1 α α2 α4

1 1 α3 α2

1 α2 1 α
α 1 1 1

 =


1h 2h 4h 3h
1h 1h 8h 4h
1h 4h 1h 2h
2h 1h 1h 1h

 is an involutory 4× 4 MDS matrix over F24/p1(x)

generated by the generalized Hadamard construction method given in [20]. Consider the finite field F28/p2(x) ,
where p2(x) = x8 + x4 + x3 + x + 1 . Let the primitive element β2 of F28/p2(x) be α1 + 1 , where α1 is a
root of p2(x) . Then we can obtain 4 distinct isomorphisms from F24/p1(x) to F28/p2(x) by computing su

values in Algorithm 2. These isomorphisms are f17,1 : α 7→ β17
2 , f34,1 : α 7→ β34

2 , f68,1 : α 7→ β68
2 , and

f136,1 : α 7→ β136
2 . For example, by using the isomorphism f17,1 : α 7→ β17

2 , we can generate the involutory 4×4

MDS matrix M
′

3 over F28/p2(x) from M3 over F24/p1(x) as follows:

M
′

3 =


1 β17

2 β34
2 β68

2

1 1 β51
2 β34

2

1 β34
2 1 β17

2

β17
2 1 1 1

 =


01h E1h 5Ch E0h
01h 01h 0Ch 5Ch

01h 5Ch 01h E1h
E1h 01h 01h 01h

 .

Note that one can generate 1019 (4 · (28−1)−1) more MDS matrices over F28/p2(x) by using the MDS matrix
M3 over F24/p1(x) .

Remark 3 The 4 × 4 involutory MDS matrix M3 over F24 was generated by GHadamard matrix type
Ghad(1, α8;α8, α;α, α10;α9) given in [20], where α is a root of the primitive polynomial x4 + x+ 1 .

Remark 4 By Remark 2, each su in Example 3 can belong the same cyclotomic coset Cs with gcd(s, 28−1) =

28−1
24−1 = 17 (C17 = {17, 34, 68, 136} or C119 = {119, 187, 221, 238}). Therefore, one can only try two coset
leaders of these cyclotomic cosets (s = 17 or s = 119) to identify su values in Algorithm 2.

Recall that a k × k circulant matrix A = circ(a0, a1, . . . , ak−1) over F2m can be given as Ai,j = aj−i (mod k) ,
where 1 ≤ i, j ≤ k . In Example 4, we generate a 4× 4 MDS matrix over F28 from the circulant MDS matrix

281

SAKALLI et al./Turk J Elec Eng & Comp Sci

circ(2h, 3h, 1h, 1h)= circ(α, α4, 1, 1) (the same MDS matrix used as the AES MixColumns transformation but
not over F28) over F24 defined by the primitive polynomial x4 + x+ 1 .

Example 4 Consider the AES MixColumns transformation M4 = circ(2h, 3h, 1h, 1h) = circ(α, α4, 1, 1) over
F24/p1(x) , where p1(x) = x4+x+1 and α is a root of p1(x) . Then, by using the isomorphism f17,1 : α 7→ β17

2

given in Example 3, we can generate M
′

4 over F28/p2(x) , where p2(x) = x8+x4+x3+x+1 , as follows: M
′

4 =

circ(E1h, E0h, 01h, 01h) = circ(β17
2 , β68

2 , 1, 1) . Since the inverse of the matrix M4 can be obtained as M−1
4 =

circ(Eh, Bh, Dh, 9h) = circ(α11, α7, α13, α14) over F24/p1(x) , we can generate (M
′

4)
−1 over F28/p2(x) as fol-

lows: (M
′

4)
−1 = circ(B1h, ECh, 51h, 0Dh)=circ((β17

2)11, (β17
2)7, (β17

2)13, (β17
2)14)=circ(β187

2 , β119
2 , β221

2 , β238
2) .

In Example 5, we generate an involutory 8 × 8 MDS matrix over F216 from the KHAZAD diffusion
matrix [32], which is an involutory 8× 8 MDS matrix over F28 .

Example 5 Consider the KHAZAD diffusion matrix M5 = had(1h, 3h, 4h, 5h, 6h, 8h, Bh, 7h)=had(1, α25, α2, α50,

α26, α3, α238, α198) over F28/p1(x) , where the primitive polynomial p1(x) = x8 + x4 + x3 + x2 + 1 and α is a
root of p1(x) . Consider the finite field F216/p2(x) , where the primitive polynomial p2(x) = x16+x14+x13+x9+

x5 + x4 + 1 , and let the primitive element β2 of F216/p2(x) be α1 , which is also a root of p2(x) . Then we can
obtain 8 distinct isomorphisms from F28/p1(x) to F216/p2(x) by computing su values in Algorithm 2. These
isomorphisms are f11051,1 : α 7→ β11051

2 , f22102,1 : α 7→ β22102
2 , f22873,1 : α 7→ β22873

2 , f25957,1 : α 7→ β25957
2 ,

f38293,1 : α 7→ β38293
2 , f44204,1 : α 7→ β44204

2 , f45746,1 : α 7→ β45746
2 , and f51914,1 : α 7→ β51914

2 . For example,

by using the isomorphism f11051,1 : α 7→ β11051
2 , we can generate the involutory 8 × 8 MDS matrix M

′

5 over
F216/p2(x) from M5 over F28/p1(x) as follows:

M
′

5 = had(1, β14135
2 , β22102

2 , β28270
2 , β25186

2 , β33153
2 , β8738

2 , β25443
2)

= had(0001h, 3D2Ah, 420Ch, 420Dh, 7F27h, DF69h, E243h, 7F26h).

3. Properties of the proposed method and implementation details
In this section, we discuss the implementation details along with some important properties of the proposed
method. In Sections 3.1 and 3.2, we respectively present some important properties of the proposed method
and implementation properties of the generated MDS matrices.

3.1. Some important properties of the proposed method
The proposed method introduced in Section 2 takes an MDS matrix as input to generate new MDS matrices.
In this respect, it may help other construction methods to generate isomorphic MDS matrices, which may have
better implementation properties than the ones constructed by these methods (Example 6). Also, it presents the
relationship between MDS matrices over F2m and MDS matrices over F2mt , and it provides a way to generate
isomorphic MDS matrices over F2mt having the same implementation properties (in view of XOR operations
and table lookups) as those of MDS matrices constructed over F2m . This is because of the fact that the proposed
method moves the finite field F2m into the finite field F2mt by the help of isomorphisms obtained and therefore
2m − 1 elements of F2mt corresponding to 2m − 1 elements of F2m are used to construct and implement any
MDS matrix over F2mt . Some important properties of the proposed method can be given as follows:

282

SAKALLI et al./Turk J Elec Eng & Comp Sci

• The method is intended to be applied to other construction methods in the literature to generate new
MDS matrices from the existing ones.

• The method can be considered as a complementary method for the current construction methods, allowing
them to look for MDS matrices having better implementation properties by mapping them to different
field representations (see Example 6).

• The method helps to map any k × k MDS matrix over F2m to its isomorphic k × k MDS matrix over
F2mt .

• An MDS matrix generated over F2mt from an existing MDS matrix over F2m can take advantage of the
small number of table lookups in the implementation, which can only be used with XOR operations.
By the help of isomorphisms, it can also be implemented by the same number XOR operations and table
lookups as that of an existing MDS matrix over F2m (see Section 3.2). In this respect, the method helps to
generate MDS matrices over F2mt with efficient software implementations when mt is large (see Example
5, where an 8× 8 involutory MDS matrix over F216 generated by the KHAZAD diffusion matrix, which
is an 8× 8 involutory MDS matrix over F28).

• Assume that an [n, k, d] code C with generator matrix G = [I|A] , where A is a k × (n − k) matrix,
is given. Then the minimum distance d of C is preserved after the application of any distinct function
generated in Section 2.3 to A .

3.2. Implementation properties of the generated MDS matrices by the proposed method
In this section, we present important properties of the proposed method in generating MDS matrices with
efficient software implementation on 8-bit platforms. We also compare the implementation properties of the
generated MDS matrices with the MDS matrix constructed in [11] and the MDS matrices used in the well-known
block cipher AES, namely AES MixColumns transformation, and the ANUBIS block cipher.

In the literature, the two types of implementation of an MDS matrix multiplication differ according to the
use of two different operations, which are table lookups and xtime operations. The proposed method presents an
advantage in the implementation in light of the small number of table lookups since an MDS matrix over F2mt

can be generated from an MDS matrix over F2m by using the proposed method. The involutory MDS matrix
M

′

3 over F28 given in Example 3 can take advantage of the small number of table lookups in the implementation
since it is generated from M3 over F24 . A multiplication by M

′

3 can be implemented by using 12 XORs and
10 table lookups as follows:

y[0] = x[0]⊕ table[x[1]⊕ table[x[2]⊕ table[table[x[3]]]]],

y[1] = x[0]⊕ x[1]⊕ table[table[table[x[2]]⊕ x[3]]],

y[2] = x[0]⊕ x[2]⊕ table[table[x[1]]⊕ x[3]],

y[3] = table[x[0]]⊕ x[1]⊕ x[2]⊕ x[3],

where the input is in x[0..3] and the output in y[0..3] . Also, the multiplication by β17
2 is performed by one

table lookup, namely table .

In Example 4, the MDS matrix M
′

4 generated over F28 can be implemented by 15 XORs and 4 table
lookups and in a similar way to the AES MixColumns transformation as given in [2]. On the other hand, the

283

SAKALLI et al./Turk J Elec Eng & Comp Sci

matrix M−1
4 over F24 in Example 4 has elements for which powers of the primitive element belong to the

same cyclotomic coset. Then the inverse matrix of M
′

4 over F28 , (M
′

4)
−1 , can also be expressed as follows:

(M
′

4)
−1 = circ((β119

2)8, (β119
2), (β119

2)4, (β119
2)2) . Hence, the matrix (M

′

4)
−1 can easily be implemented by 12

XORs and 16 table lookups (using two tables) as follows:

y[0] = table2[table2[x[0]]⊕ x[2]]⊕ table1[table1[x[3]]⊕ x[1]],

y[1] = table2[table2[x[1]]⊕ x[3]]⊕ table1[table1[x[0]]⊕ x[2]],

y[2] = table2[table2[x[2]]⊕ x[0]]⊕ table1[table1[x[1]]⊕ x[3]],

y[3] = table2[table2[x[3]]⊕ x[1]]⊕ table1[table1[x[2]]⊕ x[0]],

where the input is in x[0..3] and the output is in y[0..3] . Also, the multiplications by β119
2 and (β119

2)4 (=
β221
2) are performed by two different table lookups, namely table1 and table2 , respectively.

In Example 5, the involutory MDS matrix M
′

5 over F216 can be implemented in a similar way to the
KHAZAD diffusion matrix and by the same number of XOR operations and table lookups of the KHAZAD
diffusion matrix (56 XOR operations and 24 table lookups as given in [32]).

In Example 6, the MDS matrix M
′

6 can be implemented with 12 xtimes and 14 XOR operations and is
generated from the MDS matrix M6 given in [11], which needs 12 xtimes and 16 XOR operations. We compare
4× 4 MDS matrices over F28 obtained by the proposed method with some of the known 4× 4 MDS matrices
in the Table, where temp stands for the temporary variables.

Table . Comparison of 4× 4 MDS matrices over F28 .

MDS matrix # XOR # table lookups
or # xtimes

temp involutory

M ′
3 12 10 - Yes

M ′
4 15 4 3 No

(M
′

4)
−1 12 16 - No

M ′
6 14 12 - Yes

M6 [11] 16 12 4 Yes
M7 [17] 12 12 - Yes
M8 [17] 12 4 4 Yes
ANUBIS [29] 12 6 4 Yes
AES [2, 33] 15 4 3 No

Example 6 M6 = had(1, α50, α224, α129) = (01h, 05h, 12h, 17h) is an involutory 4 × 4 MDS matrix over
F28/p1(x) given in [11], where the primitive polynomial p1(x) = x8 + x4 + x3 + x2 + 1 and α is a root of
p1(x) . Consider the finite field F28/p2(x) , where p2(x) = x8 +x4 +x3 +x+1 . Let the primitive element β2 of
F28/p2(x) be α1 +1 , where α1 is a root of p2(x) . Then we can obtain 8 distinct isomorphisms from F28/p1(x)

to F28/p2(x) by computing su values in Algorithm 2. These isomorphisms are f1,1 : α 7→ β1
2 , f2,1 : α 7→ β2

2 ,

284

SAKALLI et al./Turk J Elec Eng & Comp Sci

f4,1 : α 7→ β4
2 , f8,1 : α 7→ β8

2 , f16,1 : α 7→ β16
2 , f32,1 : α 7→ β32

2 , f64,1 : α 7→ β64
2 , f128,1 : α 7→ β128

2 . For

example, by using the isomorphism f1,1 : α 7→ β1
2 , we can generate the involutory 4× 4 MDS matrix M

′

6 over

F28/p2(x) from M6 over F28/p1(x) as follows: M
′

6 = had(1h, 04h, 12h, 16h)=had(1, β50
2 , β224

2 , β129
2) .

Remark 5 By using the same isomorphism (f17,1 : α 7→ β17
2) given in Example 3, one can generate 4 × 4

isomorphic involutory MDS matrix M
′

7 = had(1, β34, β238, β221) = had(01h, 5Ch, 0Ch, 51h) over F28 defined by
the irreducible polynomial x8+x4+x3+x+1 from the 4×4 involutory MDS matrix M7 = (1h, 4h, 9h, Dh) over
F24 defined by the primitive polynomial x4 + x+ 1 , which is also used to construct the 4× 4 involutory MDS
matrix with XOR count 144 by using subfield-Hadamard construction in [17]. The 4× 4 isomorphic involutory
MDS matrix generated can be implemented by 12 XOR operations and 12 table lookups (and using two different
tables). On the other hand, the 4× 4 involutory MDS matrix M8 = had(01h, 02h, B0h, B2h) over F28 defined
by the irreducible polynomial x8 + x6 + x5 + x2 + 1 with XOR count 160 given in [17] can be implemented by
12 XOR operations, 4 table lookups, and 4 temporary variables (and using two different tables).

4. Conclusion
In this study, we present a novel method to generate distinct functions related to the automorphisms and iso-
morphisms of MDS matrices. These functions take any MDS matrix generated by any construction method as
input to generate new MDS matrices from the existing ones, which makes the proposed method generic over
all construction methods in the literature. Using the isomorphisms obtained, the method helps to generate
isomorphic MDS matrices over different binary extension fields, which may have better implementation prop-
erties than an existing MDS matrix. Moreover, the proposed method can be used to generate MDS matrices
over large binary extension fields (with good software implementation properties in light of the number of XOR
operations and table lookups) for which many known methods involve some kind of exhaustive search. Finally,
we compare the MDS matrices generated by the proposed method with the previous ones used in block ciphers
in light of the number of XOR operations and table lookups.

Acknowledgments

The authors would like to express their gratitude to the anonymous reviewers for their invaluable suggestions
in putting the present study into its final form. Sedat Akleylek was partially supported by TÜBİTAK under
Grant No. EEEAG-116E279.

References

[1] Shannon CE. Communication theory of secrecy systems. Bell System Technical Journal 1949; 28: 656-715. doi:
10.1002/j.1538-7305.1949.tb00928.x

[2] Daemen J, Rijmen V. The Design of Rijndael, AES - The Advanced Encryption Standard. Berlin, Germany:
Springer-Verlag, 2002.

[3] Barreto PSLM, Rijmen V. Whirlpool. In: van Tilborg HCA, Jajodia S. (editors). Encyclopedia of Cryptography
and Security. 2nd ed. Boston, MA, USA: Springer, 2011, pp. 1384-1385.

[4] Guo J, Peyrin T, Poschmann A. The PHOTON family of lightweight hash functions. In: Proceedings of CRYPTO;
Santa Barbara, CA, USA; 2011. pp. 222-239.

285

SAKALLI et al./Turk J Elec Eng & Comp Sci

[5] Barreto PSLM, Nikov V, Nikova S, Rijmen V, Tischhauser E. Whirlwind: A new cryptographic hash function.
Design, Codes and Cryptography 2010; 56: 141–162. doi: 10.1007/s10623-010-9391-y

[6] Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems. In: Proceedings of CRYPTO; Santa
Barbara, CA, USA; 1990. pp. 2-21.

[7] Matsui M. Linear cryptanalysis method for DES cipher. In: Proceedings of EUROCRYPT; Lofthus, Norway; 1993.
pp. 386-397.

[8] Youssef AM, Mister S, Tavares SE. On the design of linear transformation for substitution permutation encryption
networks. In: Proceedings of SAC; Ottowa, Canada; 1997. pp. 40-48.

[9] Gupta KC, Ray IG. On constructions of circulant MDS matrices for lightweight cryptography. In: Proceedings of
ISPEC; Fuzhou, China; 2014. pp. 564-576.

[10] Lacan J, Fimes J. Systematic MDS erasure codes based on Vandermonde matrices. IEEE Transactions on Commu-
nications Letters 2004; 8 (9): 570-572. doi: 10.1109/LCOMM.2004.833807

[11] Sajadieh M, Dakhilalian M, Mala H, Omoomi B. On construction of involutory MDS matrices from Vandermonde
matrices in GF(2q) . Design, Codes and Cryptography 2012; 64 (3): 287-308. doi: 10.1007/s10623-011-9578-x

[12] Augot D, Finiasz M. Direct construction of recursive MDS diffusion layers using shortened BCH codes. In: Pro-
ceedings of FSE; London, UK; 2014. pp. 3-17.

[13] Berger TP. Construction of recursive MDS diffusion layers from Gabidulin codes. In: Proceedings of INDOCRYPT;
Mumbai, India; 2013. pp. 274-285.

[14] Cauchois V, Loidreau P, Merkiche N. Direct construction of quasi-involutory recursive-like MDS matrices from 2-
cyclic codes. IACR Transactions on Symmetric Cryptology 2016; 2016 (2): 80-98. doi: 10.13154/tosc.v2016.i2.80-98

[15] Sajadieh M, Dakhilalian M, Mala H, Sepehrdad P. Recursive diffusion layers for block ciphers and hash functions.
In: Proceedings of FSE; Washington, DC, USA; 2012. pp. 385-401.

[16] Wu S, Wang M, Wu W. Recursive diffusion layers for (lightweight) block ciphers and hash functions. In: Proceedings
of SAC; Windsor, Canada; 2012. pp. 355-371.

[17] Sim SM, Khoo K, Oggier F, Peyrin T. Lightweight MDS involution matrices. In: Proceedings of FSE; İstanbul,
Turkey; 2015. pp. 471-493.

[18] Li Y, Wang M. On the construction of lightweight circulant involutory MDS matrices. In: Proceedings of FSE;
Bochum, Germany; 2016. pp. 121-139.

[19] Liu M, Siu SM. Lightweight MDS generalized circulant matrices. In: Proceedings of FSE; Bochum, Germany; 2016.
pp. 101-120.

[20] Pehlivanoğlu MK, Sakallı MT, Akleylek S, Duru N, Rijmen V. Generalisation of Hadamard matrix to generate
involutory MDS matrices for lightweight cryptography. IET Information Security 2018; 12 (4): 348-355. doi:
10.1049/iet-ifs.2017.0156

[21] Jean J, Peyrin T, Sim SM, Tourteaux J. Optimizing implementations of lightweight building blocks. IACR Trans-
actions on Symmetric Cryptology 2017; 2017 (4): 130–168. doi: 10.13154/tosc.v2017.i4.130-168

[22] Güzel GG, Sakallı MT, Akleylek S, Rijmen V, Çengellenmiş Y. A new matrix form to generate all 3× 3 involutory
MDS matrices over F2m . Information Processing Letters 2019; 147: 61-68. doi: 10.1016/j.ipl.2019.02.013

[23] Kranz H, Leander G, Stoffelen K, Wiemer F. Shorter linear straight-line programs for MDS matrices. IACR
Transactions on Symmetric Cryptology 2017; 2017 (4): 188-211. doi: 10.13154/tosc.v2017.i4.188-211

[24] Sarkar S, Syed H. Lightweight diffusion layer: importance of Toeplitz matrices. IACR Transactions on Symmetric
Cryptology 2016; 2016 (1): 95-113. doi: 10.13154/tosc.v2016.i1.95-113

[25] Choy J, Yap H, Khoo K, Guo J, Peyrin T et al. SPN-Hash: improving the provable resistance against differential
collision attacks. In: Proceedings of AFRICACRYPT; Ifrane, Morocco; 2012. pp. 270-286.

286

SAKALLI et al./Turk J Elec Eng & Comp Sci

[26] MacWilliams FJ. Combinatorial properties of elementary abelian groups. PhD, Radcliffe College, Cambridge, UK,
1962.

[27] Bonneau PGA. Codes et combinatoire. PhD, Université Pierre et Marie Curie, Paris, France, 1984 (in French).

[28] Buchmann J, Pyshkin A, Weinmann RP. Block ciphers sensitive to Gröbner basis attacks. In: Proceedings of
CT-RSA; San Jose, CA, USA; 2006. pp. 313-331.

[29] Barreto PSLM, Rijmen V. The Anubis block cipher. In: First Open NESSIE Workshop, KU-Leuven, Belgium; 2000.

[30] MacWilliams FJ, Sloane NJA. The Theory of Error Correcting Codes. Amsterdam, the Netherlands: North Holland,
1986.

[31] Lidl R, Niederreiter H. Introduction to Finite Fields and Their Applications. Cambridge, UK: Cambridge University
Press, 1986.

[32] Barreto PSLM, Rijmen V. The Khazad legacy-level block cipher. In: First Open NESSIE Workshop, KU-Leuven,
Belgium; 2000.

[33] Junod P, Vaudenay S. Perfect diffusion primitives for block ciphers. In: Proceedings of SAC; Waterloo, Canada;
2004. pp. 84-99.

287

	Introduction
	Motivation
	Contribution
	Organization

	The proposed method to generate MDS matrices over F2mt from MDS matrices over F2m
	MDS automorphisms
	MDS isomorphisms
	Generalization of MDS isomorphisms

	Properties of the proposed method and implementation details
	Some important properties of the proposed method
	Implementation properties of the generated MDS matrices by the proposed method

	Conclusion

