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Abstract: The quality of randomness in numbers generated by true random number generators (TRNGs) depends
on the source of entropy. However, in TRNGs, sources of entropy are affected by environmental changes and this
creates a correlation between the generated bit sequences. Postprocessing is required to remove the problem created by
this correlation in TRNGs. In this study, an S-box-based postprocessing structure is proposed as an alternative to the
postprocessing structures seen in the published literature. A ring oscillator (RO)-based TRNG is used to demonstrate the
use of an S-box for postprocessing and the removal of correlations between number sequences. The statistical properties
of the numbers generated through postprocessing are obtained according to the entropy, autocorrelation, statistical
complexity measure, and the NIST 800.22 test suite. According to the results, the postprocessing successfully removed
the correlation. Moreover, the data rate of the bit sequence generated by the proposed postprocessing is reduced to 2/3

of its original value at the output.
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1. Introduction
Randomness is the absence of a specific pattern or predictability in phenomena. Systems that are not random are
deterministic. Random numbers are defined as numbers that have no relation to each other, whose occurrence
probabilities are equal, and that are defined over a specific interval. Random numbers are used in many areas,
such as simulation, sampling, numerical analysis, entertainment, and cryptography. Random numbers are
especially important in cryptographic systems. In cryptography, random numbers are needed for key generation
and distribution, for the generation of starting vectors, for identity verification protocols, for prime numbers,
and for password generation. The security of a cryptographic system relies on the true randomness of the
numbers obtained. For this reason, random number generators form the most critical aspect of cryptography
[1]. Random number generators are divided into 2 classes, pseudorandom number generators (PRNGs) and true
random number generators (TRNGs). PRNGs are algorithms that create number sequences with characteristics
similar to random numbers. These number sequences are calculated deterministically using a initial value called
the seed. No PRNG generates true random numbers because all PRNGs use a deterministic algorithm. For
this reason, PRNGs are not suitable for cryptography applications. In TRNGs, a nondeterministic source of
entropy is used to generate random numbers. In TRNG designs, sampling is achieved by digitizing the signals
obtained from a source of entropy. After the sampling process, generated bit sequences are postprocessed in
order to make the bit sequences independent of each other and remove any correlation between them. As shown
∗Correspondence: eavaroglu@mersin.edu.tr
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in Figure 1, a TRNG is formed by 3 basic units. These are, in order, the source of entropy, the sampler, and
the postprocessing [1, 2].

Figure 1. Basic units of TRNGs [3].
The true randomness of TRNGs is completely dependent on the source of entropy. If the source of entropy

is of high quality, numbers generated by the TRNG have good statistical properties. Human-driven interaction
and physical processes such as noise based on thermal, shot, and atmospheric sources, and metastability-
containing circuits, jitter, and Brownian motion are used as sources of entropy in the published literature [1]. In
the sampling unit, random signals generated by the source of entropy are transformed into digital signals. For
the sampling unit, periodic sampling, mixing, or aperiodic sampling circuits are used in the published literature
[1]. Postprocessing is usually used to remove correlation to the source of entropy and increase the randomness of
the signal. Another advantage of postprocessing is that it makes the system more robust against environmental
changes and side-channel attacks. The security of the generator is increased by removing correlation due to the
postprocessing algorithm. However, postprocessing decreases the data rate of generated numbers as a result of
removing correlation in the bit sequences. Postprocessing is used to remove correlation in the source of entropy
in TRNG systems. Most of the postprocessing algorithms proposed in the published literature reduce the data
rate of the TRNG. For example, the data rate of an XOR corrector, Von Neumann corrector, H function, and
resilient function are reduced by a 1/2 1, a 1/4 (approximate) [4], a 1/2 [5], and by 1/16, respectively. In the
present study, a novel postprocessing algorithm is proposed that removes the statistical weaknesses and reduces
the data rate of a TRNG to 2/3 of the original. The proposed postprocessing is performed by substitution
boxes (S-boxes), which are used in the safe design of block encryption systems. S-boxes are nonlinear bijective
(one-to-one and surjective) transformations that change an n-bit input value to an m-bit output value. In the
present study, an RO-based TRNG system is defined and S-box postprocessing is used to remove correlation
between the sequences of numbers generated by this number generator. The RO-based TRNG uses the Sunar
structure [6]. Statistical tests on the numbers are conducted using the NIST 800.22 test suite. The rest of this
study is organized as follows: section 2 describes related work about postprocessing in the published literature.
The proposed postprocessing algorithms are explained in section 3. Section 4 outlines the proposed use of
an S-box for postprocessing. In section 5, statistical test results, scale index, and autocorrelation results are
produced by the NIST 800.22 test suite in order to demonstrate the usability of random numbers obtained
in real time for cryptographic systems. In the conclusion section, interpretation of the statistical tests of the
proposed system is discussed by mentioning the advantages and disadvantages of the proposed system.

2. Related work
Various postprocessing algorithms have been proposed to mitigate the statistical shortcomings of numbers
generated by TRNG systems. Some of these are the XOR corrector Von Neumann corrector [4], H function [5],
SHA-12, and resilient functions [6]. The SHA-1 postprocessing algorithm, together with Von Neumann, was

1Davies RB (2002) Exclusive OR (XOR) and hardware random number generators [online]. Website
http://www.robertnz.net/pdf/xor2.pdf [accessed 14 April 2019]

2Kocher PB (1999) The intel random number generator [online]. Website https://www.rambus.com/wp-
content/uploads/2015/08/IntelRNG.pdf [accessed 30 April 2019]
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used in an Intel TRNG, one of the very first TRNG designs. A thermal noise source was used as the source of
entropy in the Intel TRNG. The statistical properties of numbers obtained by sampling from the system were
not good. For this reason, the randomness properties of these numbers were improved through processing the
numbers first with Von Neumann postprocessing and then the SHA-1 algorithm. Numbers obtained from this
system successfully passed the FIPS 140-1 test. In another study, a resilient function was used for postprocessing
in an RO-based TRNG system proposed by Sunar [6]. In this TRNG design 114 ring oscillators (ROs), each
having 13 inverters, were used as the source of entropy. Using too many RO circuits in the system caused
various problems. These problems included high energy consumption, a reduction in the quality of randomness,
and correlation in the output because the ROs were not independent of each other. Therefore, the obtained
bit sequence was postprocessed using the resilient function. The data rate of the TRNG was reduced to 1/16
due to the resilient postprocessing used in the system. There have been RO-based TRNG designs, used as a
source of entropy, and various postprocessing methods have been used in these designs. In the TRNG system
developed by [7], an oscillator ring with two transparent latches, a buffer, and an inverter was used. The output
of the TRNG was postprocessed using an XOR function. For this reason, the data rate was low, and the
obtained rate was less than 1 Mbit/s. In [8], a TRNG that used a Galois ring oscillator (GRO) and Fibonacci
ring oscillator (FRO) was proposed. Outputs obtained from the FRO and GRO were unified using XOR, and
random numbers were generated by sampling the XOR output with a D-type flip-flop. The output bit sequence
was postprocessed by linear feedback shift register (LFSR)-based postprocessing. A bit rate of 12.5 Mbit/s
was achieved with this design. In [9], the design described in [6] was realized on a Xilinx Virtex II Pro FPGA
(field programmable data array) using an RO and the inverter numbers (110, 3), (110, 13), and (210, 3). The
strongest source of entropy was identified as (210, 3) during tests. The outputs obtained were postprocessed
using a resilient function and the final output rate was 2 Mbps. In [10], the logistics map is used to improve the
statistical properties of numbers that are obtained using an RO-based TRNG. There is no bit rate reduction in
this postprocessing. Furthermore, successful results were obtained in the NIST tests with the resulting chaotic
map. However, the biggest disadvantage of this system is the high energy consumption and low data rate. In
[11], performance differences between the conventional TRNG method that used a chaotic system and recently
designed FPGA-based chaotic systems have been compared. In [12], the authors proposed a novel type of
high‐speed TRNG based on chaos and ANN implemented in an FPGA chip. The generated random numbers
have been tested with the NIST 800.22 and FIPS 140‐1 test suites. The high quality of generated numbers has
been confirmed by passing all randomness tests. In [13], the authors proposed a new dual entropy core discrete
time chaos-based TRNG structure that has been implemented on an FPGA. The system has been synthesized
in an FPGA chip. The data rates of the designed dual entropy core TRNG units range between 390 and 464
Mbps. In [14], the Sundarapandian–Pehlivan chaotic system was modeled and simulated to generate random
numbers. The frequency of the proposed system is 293.815 MHz and the system can calculate 1,000,000 data
in 0.201 s. The proposed system is successful according to the FIPS-140-1 and NIST-800-22 test suites. In [15],
a true random number generator is formed by uniformly sampled ring oscillators and using the Hash function
for postprocessing. Both the generator and SHA-256 are realized on a 5-core Virtex FPGA. As a result of the
experiments, it was shown that at least 8 ring oscillators are required to make the system pass all statistical
tests. In [16], true random bit generation is achieved by using the random environmental noise signals coming
from the microphone port on a computer sound card. As a postprocessing method, a novel procedure for the
distribution of bits, “Mixing Bits in Steps and XORing of Adjacent Bits” (MiBiS&XOR), was proposed. The
proposed procedure divides input bits that are consecutive and specifically correlated by separating them in a
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simple and efficient manner. This procedure decreases the cumulative autocorrelation. Experimental statistical
randomness tests performed on the bit sequences obtained by this procedure validated the perfect quality of
TRNG outputs. In [17], an improvement by applying the N-bit Von Neumann (V NN ) postprocessing technique
is shown. A general algorithm that explains N-bit V NN and the application of 4-bit V N4 at the circuit level
are shown. With V N4 , an output rate of 40.6% was achieved. A new waiting strategy was proposed to further
improve the output rate. V N4+ waiting and V N8+ waiting achieved 46.9% and 62.5% rates, respectively.
When compared with the original Von Neumann (V N2) technique, they gave results improved by 1.88 and
2.50 times, respectively.

3. Postprocessing

Postprocessing is usually used to increase the randomness in the signal. Postprocessed signal values are uniform
compared to the original signal. The second purpose of the postprocessing, which has gained much importance as
a countermeasure to combat side-channel attacks, is to make number generators more robust against tampering
and environmental changes. The security of the generator will increase depending on the postprocessing
algorithm. In the published literature, various postprocessing algorithms such as XOR corrector, Von Neumann
corrector, extractor function, H function, and resilient functions are used [4–6]. These postprocessing methods
are described below.

3.1. XOR corrector

In the XOR corrector shown in Figure 2. The bit sequence obtained is separated into n-bit (n = 2) blocks
in order to produce an output bit. Each separated block is processed on its own with the XOR function.
This procedure causes the output bit efficiency to decrease 1/n times while it removes bias in the output bit.
However, bias in the output bit sequence will only decrease on the condition that the input bits are independent.
The advantage of this corrector is that it is simple and can achieve a constant output bit rate1.

Figure 2. XOR postprocessing (n = 2) .

1Davies RB (2002) Exclusive OR (XOR) and hardware random number generators [online]. Website
http://www.robertnz.net/pdf/xor2.pdf [accessed 14 April 2019]
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3.2. Von Neumann corrector
This is the oldest and simplest method to remove irregularities in the bit sequence. As shown in Table 1, Von
Neumann generates uniform 0 and 1 bits. It takes into consideration the synchronous pairs coming from the
TRNG. If the bit sequence is (1, 0), it produces a 1. If the bit sequence is (0, 1), it produces a 0. Bit sequences
(0, 0) and (1, 1) are discarded. The change in the bit rate is shown in Table 2. This corrector makes the entropy
close to the ideal value of 1 and hence contributes to its improvement. However, since some bit sequences
coming from the TRNG are discarded, the Von Neumann output bit rate relies on the TRNG output and is
therefore not constant. The bit rate is reduced to 1/4 of the input bit rate [4].

Table 1. Von Neumann corrector.

Input Bit Pairs Von Neumann Output
00 No output
01 0
10 1
11 No output

Table 2. Change in the bit rate due to Von Neumann.

0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1 Pure Bits
from TRNG

0 - - 1 1 - - 0 1 0 0 1 - Von Neumann
Output

3.3. H function
The H postprocessing function shown in Figure 3 is proposed by Dichtl to prevent bias in a TRNG [5]. It
is based on the quasigroup sequence transformation. The postprocessing algorithm uses 16 bits of the source
randomness to obtain an 8-bit output. The input bits for the postprocessing are a0, a1, ......, a15 . The 8-bit
b0, b1, . . . , b7 is defined as bi = ai ⊕ ai+1mod8 . There are only 128 possible values for b0, b1, . . . , b7 . When the
input is a perfect random number generator, one bit of the entropy is removed. The output of the postprocessing
function c0, c1, . . . , c7 is defined as ci = bi ⊕ ai+8 . This function is called the H function. The 16-bit sequence
in the input is divided into two: A1 = a0, a1, a2, a3, a4, a5, a6, a7 and A2 = a8, a9, a10, a11, a12, a13, a14, a15.

The A1 byte is shifted left 1 bit by rotateleft(A1, 1) .

bi = ai ⊕ ai+1mod8 = A1 ⊕ rotateleft(A1, 1) (1)

ci = H(A1, A2) = A1 ⊕RL(A1, 1)⊕A2 (2)

3.4. Extractor function
The extractor function was proposed by Barak et al. [18] to make the TRNG more robust against changing
environmental conditions. This is a very strong function with measurable properties. This strong stateless
function with measurable properties was first developed as a tool for complexity theory. In [18], a mathematical
model was proposed to capture the impact of an attacker on the randomness source. This provides an open
structure based on the correlation of the summary functions proven for the output properties with the input
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Figure 3. H postprocessing function [17].

through unknown causes, should such a thing exist. The definition of an extractor is provided below [18]:
An extractor is a function E : {0, 1}n × S → {0, 1}m for some data set S. It is denoted by Eπ(·) = E(·, π) , a
single-input function that is the result of fixing the parameter π to the extractor E. It is desirable for the output
E(X,π) = Eπ(X) to be (close to) uniformly distributed, where X ∈ {0, 1}n is the output of the high-entropy
source and π ∈ S is the public attribute. Defining security, we consider the following ideal setting:

1. An adversary chooses 2t distributions D1, . . . , D2t over {0, 1}n , such that min − Ent(Di) > k for all
i = 1, . . . , 2t .

2. A public attribute π is chosen at random and is independent of the choices for Di .

3. The adversary is given π and selects i ∈ {1, . . . 2t} .

4. The user computes Eπ(X) , where X is drawn from Di .

3.5. Resilient function
A resilient function involves the filtering of deterministic bits. In a study by Sunar et al., the affected
deterministic bits were used to investigate the tolerance of the properties of the resilient function [6]. The
high degree of flexibility and the expected number of deterministic bits in the sample determines the amount
of tolerance of the TRNG of an active enemy. The (n,m, t)−resilient function is defined as follows:

Definition 1 An (n,m, t)-resilient function is a function of the type F (x1, x2, ..., xn) = (y1, y2, ..., ym) . For
Zn
2 to Zm

2 it has the property that, for any t coordinates i1, ..., it , for any constants a1, ..., at from Z2 , and
any element y of the codomain: Prob [F (x) = y|xi1 = a1, ..., xit = at] = 1/2m . In computing this probability,
all xi for i /∈ {i1, ..., it} are viewed as independent random variables, each of which takes on the value 0 or 1
with a probability of 0.5.

4. Proposed postprocessing

The name S-box comes from the English word substitution. S-box usually appears in methods that use one
symmetric encryption variant called block encryption. The goal is to determine the topology of a table using the
table. S-box is the only nonlinear component in block encryption systems such as DES and AES and provides
the property of confusion. That is why, to be able to design strong encryption systems, S-boxes with good
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cryptological properties must be developed3. Regardless of the S-box type or category created, an S-box must
display specific attributes in order to be effective. It is not possible to design a good S-box by combining any
arbitrary substitution schemes. One way to generate these inputs in S-boxes is to create a nonlinear Boolean
function that maps the n-bit input to an m-bit output. A special Boolean function set, called bent functions, can
be used to achieve maximum nonlinearity4. In an n×m S-box, S is a mapping where S : {0, 1}n → {0, 1}m . S
can be represented as 2n m−bit numbers, denoted r0, , r2n−1 , in which case S(x) = rx ,0 ≤ x ≤ 2n and ri are
the rows of the S-box. Alternatively, S(x) = [cm−1(x), cm−2(x), . . . , c0(x)] , where ci are fixed Boolean functions
ci : {0, 1}n → {0, 1} ∀i; these are the columns of the S-box. Finally, S can be represented by a 2n ×m binary
matrix M, where the i , j entry is bit j of row i . A linear combination of two functions f, g : {0, 1}n → {0, 1}
is defined to be: (f ⊕ g)(x) = f(x) ⊕ g(x) , where ⊕ denotes modulo2 addition. Let Vn denote the set of
functions mapping {0, 1}n → {0, 1} . Let Ln denote the set of linear functions mapping {0, 1}n → {0, 1} . Let
An denote the set of affine functions mapping {0, 1}n → {0, 1}5. There are other criteria that must be met in
the design of an S-box. These criteria are confusion and diffusion. Generally, the design criteria below must
be met for a good S-box. A. Strict avalanche criterion The strict avalanche criterion was first published
by Webster and Tavares [19]. A function satisfying the strict avalanche criterion means that changing a single
input bit has a probability of changing half of the output bits. B. Bit independence criterion (BIC) The
bit independence criterion requires the output bits to move independently. In other words, a statistical model
or dependency between output vectors and output bits must not exist [19] For a function f : {0, 1}n → {0, 1}n ,
where i, j, k ∈ {1, 2, ..., n} and j ̸= k , for all i , j , k values, when the input bit i is inverted, if the output
bits j and k can be changed independently, BIC is satisfied [19]. C. Nonlinearity criterion An S-box is
not a linear mapping from input to output. If it was, that would make the cryptosystem more vulnerable to
attacks. When an S-box is formed by Boolean functions with maximum nonlinearity, it will be incompatible
with linear functions and therefore it becomes harder to break the cryptosystem. D. Balance This means that
every Boolean vector responsible for the S-box contains the same amount of 0s and 1s. It is not possible to
satisfy all these criteria simultaneously. A compromise must be made for some of the criteria. For example,
the bit independence criterion conflicts with the nonlinearity criterion, while the nonlinearity criterion conflicts
with the balance criterion at the same time. The S-box that is designed for DES is listed in Table 3 . The S-box
designed for DES uses a 6-bit input and a 4-bit output. As shown in Figure 4, the most and the least significant
bits of the 6-bit input determine the rows, and the other bits determine the columns. The integer at the chosen
row and column is used as the output. In the present study, the binary equivalent of this integer is used as the
random number generated [20]. For example, suppose that the bit sequence 011000010001011110… is produced
by the number generator. The first 6 bits of this sequence are 011000 and let the S-box that is going to be used
for S1 be like Figure 4. The most and the least significant bits, 00, will be used for determining the row, and the
other bits, 1100, will be used for determining the column. As shown in Table 4, the determined output for the
row and column chosen according to the S-box S1 is the integer 5. The binary representation of this number is
0101. As a result, the number 0101 will be produced by the generator using S-box postprocessing for the 6-bit
number 011000. An example bit sequence generated via S-box and the pseudocode is given below.

3Özkaynak F, Özer AB. Rasgele seçim tabanlı s-box yapıları. Cryptodays [online]. Website
http://mcs.bilgem.tubitak.gov.tr/cryptodays/files/posters/Fatih%20Ozkaynak_Ozer.pdf [accessed 25 April 2019 ]

4Modern Cryptography: Applied Mathematics for Encryption and Information Security [Online]. Website
https://www.oreilly.com/library/view/modern-cryptography-applied/9781259588099/. [accessed 02 May 2019].

5Practical S-Box Design [Online]. Website https://www.researchgate.net/publication/2584910_Practical_SBox_Design. [ac-
cessed 02 May 2019].
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Table 3. S-boxes used for DES [20]

S1
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3
13 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 7
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Figure 4. S-box rule [21].

Pseudocode:
Step1. 48 bits are taken from the generated random bit sequence

011000 010001 011110 111010 100001 100110 010100 100111

Step2. The 48-bit block is divided into 8 separate parts, each having 6 bits (S1, S2, S3, S4, S5, S6, S7, S8)

Step3. The most and the least significant (the first and the last) bits of S1 are taken and used to determine the
row.

Step4. The remaining bits determine the column.

Step5. The new value is taken by looking up the specified row and column of the S-box.

Step6. The new bit sequence is obtained by writing the new value in a binary representation.

Step7. Go to Step 2 unless S8 has been reached.

Step8. A 32-bit block is generated by S1, S2, S3, S4, S5, S6, S7, and S8.

Step9. The End
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In the present study, in order to demonstrate the use of S-boxes as a postprocessing method, random bit
sequences obtained from the RO-based TRNG system were proposed as a source of entropy by Sunar. In the
published literature, Sunar performed random number generation and obtained successful results with a TRNG
[10, 22]. In [10], bit sequences obtained without postprocessing are used. According to the results obtained
from [10], an RO-based TRNG does not pass the NIST test without postprocessing.

The TRNG system shown in Figure 4 has 114 ROs and 13 inverters in each RO. Random signals obtained
from the RO are unified by the XOR function. After the XOR function, the signals obtained are sampled using
a D type flip-flop. Sunar used the resilient function in postprocessing to mitigate the statistical weaknesses
occurring in this design [6]. In the present study, instead of the resilient function, the S-box that is proposed
for postprocessing is shown in Figure 5.

As shown in Figure 5, an FPGA application is realized in order to apply S-box postprocessing to bits
obtained from the RO-based TRNG. Figure 6 shows the hardware used for the S1 box. The Rom data module
shows the memory unit that stores the raw bits obtained from the RO-based random number generator. The
most and the least significant bits of the 6-bit number that will be read from the first address are given to the
Dec decoder module as input. The value 00 ensures the 0th row, 01 the 1st row, 10 the 2nd row, and finally
11 the 3rd row of the S1 box is chosen, each of these values being input to this module. The other 4 bits choose
the column for the chosen row. Memory modules Sbox11 , Sbox12 , Sbox13 , and Sbox14 are used. The outputs
of these 4 memory units are the random numbers generated and they are recorded into a Ram module with the
help of a Mux in order to perform statistical tests. Cdata and Dec1 modules are only used to perform type
conversions. For example, in the Cdata module, the 6-bit vector is converted to a 4-bit vector and 2 × 1 bit
output.

Figure 5. The postprocessing model based on an S-Box (ring oscillator)

5. Results obtained from S-box-based postprocessing

Bit sequences generated by random number generators may show statistical weaknesses. The generated bit
sequence is therefore subject to postprocessing in order to remove these weaknesses. Postprocessing applications
cause a reduction in the bit rate while removing these weaknesses. Table 4 provides a comparison between the
proposed S-box-based postprocessing and other postprocessing methods in the published literature.

The proposed S-box based postprocessing algorithm in the present study reduces the data rate of the
TRNG to 2/3 of the original, and so using an S-box causes less data rate reduction than other postprocessing
methods. In order to use the developed system in cryptographic applications in a secure manner, randomness
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Figure 6. Realization of the S-box S1 on an FPGA.

Table 4. Bit reduction rates for the postprocessing methods.

Postprocessing Bit rate
Van Neumann About 1/4
XOR 1/2
H function 1/2
Resilient/Extractor 1/16
Proposed S-box postprocessing 2/3

tests must be applied to it. Many test suites have been developed to analyze the randomness of generated
numbers. One of these tests is the statistical NIST 800.22 test suite. In this test suite, there are 16 tests in
total and the parameters of each test are explained in detail [23]. According to this test suite, statistical tests
on the generated numbers by the system are performed by the developed software [24]. The statistical test
results performed by the NIST 800.22 test suite are given in Table 5 and Table 6 below. Table 5 shows the
statistical test results of the S-box-based postprocessed bit sequence obtained from the Sunar TRNG system.
Successful results are achieved by postprocessing the source of entropy. Table 6 shows a comparison between the
proposed S-box postprocessing method and the other postprocessing algorithms. While the entropy of the pure
bits generated by the RO-based TRNG is 0.989, with the proposed S-box postprocessing it is increased to 1.0.
Entropy values of both the S-box and the other postprocessing algorithms are given in Table 7. These results,
together with the NIST test results, show that S-box postprocessing can be used in TRNG systems because it
can produce bit sequences with no statistical correlation between the sequences. Autocorrelation test results
are given in Table 8. Correlation shows the linear relationship between two or more variables. It takes a value
between +1 and −1 . If it is 0 or close to 0, there is no linear relationship between these variables. As shown in
Table 8, for values 8 and 15 for D, successful results are achieved by the S-box postprocessing [25]. In Table 9,
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the statistical complexity measure is shown. For aperiodic sequences, the statistical complexity measure must
be zero or close to zero. Table 9 shows that successful results are achieved for the S-box method [25].

Table 5. Statistical test results of the enhanced Sunar system with and without postprocessing.

Sunar Design without
postprocessing

Sunar Design with
S-box postprocessing

Test P-Value Result P-Value Result
Frequency (Monobit) Test - Not passed 0.639 Passed
Frequency Test within a Block - Not passed 0.108 Passed
Runs Test - Not passed 0.177 Passed
Test for the Longest Run of Ones in a Block - Not passed 0.123 Passed
Binary Matrix Rank Test 0.424 Passed 0.564 Passed
Discrete Fourier Transform Test - Not passed 0.147 Passed
Nonoverlapping Template Matching Test - Not passed 0.114 Passed
Overlapping Template Matching Test - Not passed 0.413 Passed
Maurer’s Universal Statistical Test - Not passed 0.552 Passed
Linear Complexity Test 0.615 Passed 0.265 Passed

Serial Test - Not passed 0.430 Passed
0.879 Passed 0.709 Passed

Approximate Entropy Test - Not passed 0.137 Passed
Cumulative Sums Test - Not passed 0.318 Passed

Table 6. Statistical test results of the Sunar system processed by the other postprocessing methods.

Test Sunar Design without
postprocessing

Von Neumann XOR H Function

Frequency (Monobit) Test - 0.365 - 0.241
Frequency Test within a Block - 0.596 - 0.924
Runs Test - 0.083 - 0.302
Test for the Longest Run of Ones in a Block - 0.382 - 0.038
Binary Matrix Rank Test 0.424 0.980 0.795 0.332
Discrete Fourier Transform Test - 0.021 0.184 0.692
Nonoverlapping Template Matching Test - 0.013 - -
Overlapping Template Matching Test - 0.322 0.272 0.156
Maurer’s Universal Statistical Test - 0.101 0.735 0.240
Linear Complexity Test 0.615 0.970 0.567 0.337

Serial Test - 0.435 - 0.634
0.879 0.126 0.178 0.883

Approximate Entropy Test - 0.154 0.012 0.126
Cumulative Sums Test - 0.280 - 0.192

6. Conclusions
The randomness of the numbers obtained from TRNGs depends on the source of entropy. There is a correlation
in the generated bit sequences due to the sources of entropy being affected by environmental changes. In the
present study, in order to remove the correlation problem, an S-box-based postprocessing method was proposed.
The proposed S-box postprocessing algorithm was applied to the pure bits obtained from the RO-based TRNG

299



AVAROĞLU and TUNCER/Turk J Elec Eng & Comp Sci

Table 7. The change in the entropy of postprocessing methods.

Method Entropy
Pure bit 0.989
XOR 0.992
H Function 1.0
Von Neuman 1.0
Proposed Sbox Postprocessing 1.0

Table 8. Autocorrelation test results.

D Value Pure Bit Von Neumann XOR H Function S-box

Autocorrelation 8 −2.875 0.208 1.193 0.088 0.526
15 −3.633 1.491 1.569 0.187 0.698

Table 9. Statistical complexity measure result.

Pure Bit Von Neumann XOR H Function S-box
Statistical Complexity Measure 0.013 0.305 0.217 0.204 0.102

system. Pure number sequences generated by the RO-based TRNG did not pass statistical tests. As a result of
applying an S-box to the pure bits, successful results were achieved with the NIST tests. Moreover, successful
results were achieved with autocorrelation and complexity measures. The proposed S-box postprocessing, when
compared to the other postprocessing algorithms, achieved an entropy value of 1, as for the H function and
Von Neumann methods. Another advantage of S-box postprocessing is that it can achieve 2/3 of the original
data rate for the generated bit sequences. Random bit sequences generated according to these results will be
suitable for many applications, such as cryptography.
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