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Abstract: In this article, we provide further asymptotic analysis to the higher-order statistics (HOS) of the channel
capacity over generalized fading channels, especially by proposing simple and closed-form expressions each of which can
be easily computed as a tight bound revealing the existence of constant gap between the actual and asymptotic HOS
of the channel capacity in the limit of both high and low signal-to-noise ratios. As such, we show that these closed-
form asymptotic expressions are insightful enough to comprehend the diversity gains. The mathematical formalism we
followed in this article is illustrated with some selected numerical examples that validate the correctness of our newly
derived asymptotic results.
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1. Introduction
In the literature of wireless communications, the first-order statistics (FOS) of the channel capacity (CC) is
well known as averaged CC (ACC) and defined by C(γend) = E[log(1 + γend)] for a certain averaged (signal-
to-noise ratio) SNR γend = E[γend] , where γend denotes the end-to-end instantaneous SNR, E[·] denotes the
expectation operator, and log(·) denotes the natural logarithm. We note that the FOS of the channel capacity
has been extensively investigated in the literature, considering different fading environments [1–8, and references
therein]. In particular, Yilmaz and Alouini proposed in [4] a moment generating function (MGF)-based
approach for the ACC analysis, specifically introducing how to unify the ACC analyses of diversity combining
and transmission schemes into a single MGF-based analysis. Recently, in order to ensure the reliability of
wireless transmissions in addition to its quality, many theoreticians, practitioners and researchers[8–15] turn
their attention to the higher-order channel capacity (HOCC), defined as the higher-order statistics (HOS) of
the CC, that is C(n; γend) = E[logn(1 + γend)] , where n ∈ N denotes the order of the statistics. The HOCC
is easily utilized to statistically characterize the maximum transmission throughput over fading channels with
a negligible small bit error rate (BER). However, since being analytically intractable, the HOCC over fading
channels has scarce literature, especially when compared to the FOS. In particular, to achieve the exact HOCC
analysis, Di Renzo et al. proposed in [8, Theorem 6] a numerical approach for maximum ratio combining
(MRC) over generalized fading environments. However, we note that this numerical approach cannot be easily
performed in closed-form even in typical scenarios of wireless transmission. The next framework [9], presented
by Sagias et al., is a probability density function (PDF)-based framework valid only for diversity combining
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receivers in Rayleigh and Nakagami-m fading environments. Later, the approach presented in [10] is the first
MGF-based approach for the exact HOCC anaysis in fading environments such that it eliminates all difficulties
emerging from [8] and [9]. The HOCC analysis is also studied in [11, 12] for multihop transmission (MT), in
[13] for equal gain combining (EGC), in [14] for dispersed spectrum cognitive radio over η− µ fading channels,
and in [15] for spectrum aggregation systems. However, all HOCC analyses, mentioned above, generally lead
to complicated expressions either involving a single integration or the evaluation of advanced special functions
— they are therefore not insightful enough to comprehend the diversity gains. In this context, Yilmaz and
Alouini introduced in [16] a simple and comprehensive asymptotic framework for the analysis of the HOCC over
generalized composite fading environments.

In agreement with the literature above, let C̄(n; γend) denote the HOCC in generalized fading environ-
ment, and C̄AWGN(n; γend) denote the HOCC of additive white Gaussian noise (AWGN) channel in nonfading
environment. We note that there exist gaps between C̄(n; γend) and C̄AWGN(n; γend) both in high-SNR or
low-SNR regimes since these two environments have distinct diversity gains. Accordingly, we show that these
gaps are constant in log-domain, as seen in Figure 1, that is

lim
γend→∞

log

(
C̄AWGN(n; γend)

C̄(n; γend)

)
≈ ∆High-SNR, and lim

γend→0
log

(
C̄(n; γend)

C̄AWGN(n; γend)

)
≈ ∆Low-SNR, (1)

where ∆High-SNR ≥ 0+ and ∆Low-SNR ≥ 0+ are the positive constant gaps in high- and low-SNR regimes,
respectively. Further, we propose novel expressions on the asymptotic HOCC analysis in terms of computable
closed-form expressions, each of which is insightful enough to comprehend the diversity gains. In addition to our
asymptotic and closed-form expressions, we obtain the boundary SNR values specifying for which SNR values
the wireless transmission in a specified fading environment certainly enters either in high-SNR or low-SNR
regimes. In this context, we exemplified our asymptotic and closed-form expressions for different generalized
fading environments commonly used in the literature. All these expressions have been checked numerically for
their validation, correctness, and accuracy.
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Figure 1. Example illustration of the existence of constant gap between the HOCCs of different fading environments.

We organized the remainder of this article as follows. In Section 2, we shortly explain the notations
used through the article, and establish the channel and system model, and discuss in detail the HOS of the CC
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and the HOCC. In Section 3 and Section 4, we provide simple asymptotic and closed-form expressions for the
HOCC analysis both in high-SNR and low-SNR regimes, respectively, with the introduction of the auxiliary
coefficient needed for the asymptotic analysis. Eventually, some key results are presented for some well-known
fading environments. Moreover, in Section 3 and Section 4, we define boundary SNR values to determine for
which SNR values high- or low-SNR regime starts. With the aid of the boundary SNR values, we extend
our asymptotic analysis to the analysis of the higher-order ergodic capacity in low-SNR regimes. These newly
obtained results are presented and applied to some well-known fading environments. Finally, we summarize the
main results and draw some conclusions in the last section.

2. HOCC in generalized fading environments
Let us consider a transmission of band-limited signal over AWGN channel in fading environments. We can write
the mathematical model of the signal received by the receiver as follows

Rend = αS +N, (2)

where Rend denotes the received signal, S denotes the transmitted symbol with the average power ES ≪ E[|S|2] ,
and α denotes the fading amplitude. Furthermore, N denotes the complex AWGN with zero mean and N0/2

variance per dimension. Without loss of generality, we assume that the channel state information (CSI) is known
at the receiver. Coherent detection at the receiver is therefore possible, which means that the instantaneous
SNR γend during one symbol duration is given by γend = Es

N0
α2 , where α is evidently considered to be a

random variable over all transmission. The statistical moments of γend , i.e. E[γnend] for all n ∈ N are therefore
important for statistical characterization.

We introduce in [16] the nth order amount of fading (AOF), that is

AFn(γend) =
E[γnend]
E[γend]n

− 1. (3)

where n ∈ N denotes the order of the statistics. The first order AOF, often called AOF in the literature, is first
introduced in [17] as a measure of fading severity. In more details, the inverse of the first order AOF AF1(γend)

is a good approximation for the number of mutually independent replicas of the transmitted signals, that is
morder ≈ 1/AF1(γend) . Since the higher-order AOF AFn(γend) is characterized by the fading parameters,
rather than by the average power γend , it is successfully utilized in [18] as a tool to statistically characterize
γend for moment generating function (MGF), PDF, and cumulative distribution function (CDF), especially by
exploiting AFn(γend) in form of Laguerre moments (i.e. see [18, Eqs. (24)–(26)]).

Furthermore, following in the same manner, we introduce the other performance metric, known as the
instantaneous HOCC C (n; γend) , whose definition is given by

C (n; γend) = logn (1 + γend) , natsn/ snn/ Hzn, (4)

where n ∈ N denotes the order of the statistics. Due to reflections, refractions, scattering, and multi-
path propagation in fading environments, it is evidently considered to be a random variable whose average
C (n; γend) = E[C (n; γend)] is known either as the HOS of the CC or the HOCC in the literature, and readily
given by

C(n; γend) =

∫ ∞

0

logn (1 + γ) pγend
(γ; γend) dγ, natsn/ snn/ Hzn, (5)
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where pγend
(γ; γend) denotes the PDF of γend . Regarding the efficiency in numerical computation, we can

say that it is tedious and complicated to obtain (5) in simple and easy-to-compute closed-form expressions,
essentially because of the order n ∈ N . In this context, there exist two regimes for the instantaneous SNR γend ,
one of which is the high-SNR regime concerned with the diversity-multiplexing trade-off [19]. The other one is
the low-SNR regime involved with the energy efficiency [20–23]. The complexity of the numerical analysis for
the HOCC becomes more of an issue for high-SNR and low-SNR regimes. In the following sections, we introduce
a general framework yielding asymptotically tight bounds to achieve the analysis of the HOCC C(n; γend) , and
also attaining that of the ACC as a consequence.

3. HOCC in high-SNR regime of generalized fading environments
In this section, we deal with a sharp characterization of the HOCC in the form of an asymptotically tight
lower-bound in high-SNR γend ≫ 1 regime.

Theorem 1 Any fading environment leads in high-SNR regime when

γend ⪆ 17.5848747065 (12.4513927829 dB). (6)

Proof Note that the CDF of γend is defined by Pγend
(γ; γend) = E[θγ − γend] , where θ(·) denotes the

Heaviside’s theta function [24, Eq.(1.8.3)]. Particularly, in the high-SNR regime, we have Pγend
(γth; γend) ≈ 0

for a certain specified threshold γth ≪ γend ; thus, we reduce C(n; γend) to an asymptotically tight lower bound,
that is

C(n; γend) ⪆
∫ ∞

γth

logn (1 + γ) pγend
(γ; γend) dγ ≥

∫ ∞

γth

logn (γ) pγend
(γ; γend) dγ. (7)

Here we suggest to choose γth ≥ 8 by numerical observation, especially based on logn (1 + γth) ≈ logn(γth)

whose error is given by ϵ = 1 − logn(γth)/log
n(1 + γth) , where ϵ ∈ R+ is a small number. By saying

asymptotically tight bound, we mean that the difference between the actual HOCC and its lower bound becomes
zero in the high-SNR; and accordingly we readily note that the high-SNR regime certainly starts when

ψ(γth; γend) =
Pγend

(γth; γend)

1− Pγend
(γth; γend)

≤ 1. (8)

Frankly speaking, the fading environment leads in high-SNR regime when ψ(γth; γend) = 1/2 , specially meaning
that γend falls below or exceeds γth with the half probability (i.e. Pγend

(γth; γend) = 1/2). Accordingly, when
ψ(γth; γend) ≪ 1 , the fading environment is certainly in high-SNR regime. Therefore, for the critical value
Pγend

(γth; γend) = 1/2 , the minimum average SNR at which transmission leads in the high-SNR regime is given
by

γend = invγ {Pγend
(γth; γ)} (1/2), (9)

where invx {f (x)} (y) denotes the inverse function of y = f(x) such that invx{f(x)} (f(x)) = x . We emphasize
that in the course of linear or nonlinear fading environments, the worst-case fading amplitudes are well known
to be characterized by a one-sided Gaussian fading [25, Section 2.2.1], so the worst-case SNR distribution
follows the CDF given by Pγend

(γ; γend) = erf(
√

0.5γ/γend) , where erf(·) denotes the error function [26, Eq.
(8.250/1)]. Consequently, applying (9) on the CDF, we can readily derive γend = 0.5γth/inverf2(0.5) , where

365



YILMAZ/Turk J Elec Eng & Comp Sci

inverf(·) denotes the inverse error function [27]. Choosing γth = 8 for a good approximation, γend will be
obtained as in (6), which proves Theorem 1. 2

Note that, with the aid of both Jensen’s inequality (i.e. logn(E[γend]) ≤ E[logn(γend)]) [26, Sec. 12.411]
and the fact that log(·) is a monotonically increasing function over R+ , we can reduce C(n; γend) to an
asymptotically tight lower bound which is well-known in the literature, that is

C(n; γend) ⪆ logn(γend), (10)

which is, however, not insightful enough to comprehend the diversity gains since not revealing the existence of
differences (i.e. constant gaps in log-domain) among the HOCCs of different fading environments. On the other
hand, an asymptotically tight lower bound of the HOCC in generalized fading environments is obtained in the
following theorem.

Theorem 2 An asymptotically tight lower-bound of C(n; γend) in high-SNR regime of fading environments is
given by

C(n; γend) ≥ logn (γend) +

n∑
k=0

(
n
k

)
µk logn−k (γend) , where µk =

∂k

∂nk
AFn(γend)

∣∣∣
n=0

. (11)

Proof Using [24, Eqs. (5.1.4/a) and (5.1.4/i)], we express logn(γend) in terms of the nth order differentiation,
that is

logn(γend) = γ−k
end

{
αk logn(κ) +

( ∂
∂k

)n(
γkend − κk

)}
, (12)

where n, k ∈ N and the constant term κ ∈ C . The right part of this result depends on an arbitrary value
of k , but the left part does not. For simplicity, we could choose k = 0 . Then, we have logn(γend) =

logn(κ) + limk→0

(
∂
∂k

)n(
γkend − κk

)
. Subsequently, substituting this result into (5) and exploiting (7), we simply

obtain C(n; γend) as follows

C(n; γend) ⪆
∫ ∞

0

logn (γ) pγend
(γ; γend) dγ = logn(κ) + lim

k→0

(
∂

∂k

)n ∫ ∞

0

(γkend − κk) pγend
(γ; γend) dγ. (13)

Furthermore, using the definition of the k th moment of γend , i.e. E[γkend] ≪
∫∞
0
γkpγend

(γ)dγ , and then

choosing κ = γend , (13) is easily rewritten as C(n; γend) ⪆ logn(γend) + limk→0 (∂/∂k)
nAFk(γend) γ

k
end which

is eventually and readily simplified into (11) by using the binomial differentiation rule [26, Section 0.42] and
[24, Eq. (5.1.4/s)], which proves Theorem 2. 2

Note that the first term on the right part of (11), i.e. logn(γend) is similar to (10), which evidently
indicates the slope in log-domain. The second term

∑n
k=0 (

n
k )µk logn−k (γend) is related to the diversity gains,

and it points out the differences (i.e. constant gaps in log-domain) among different fading environments, and the
second term can be obtained in closed form as shown in the following subsection. Further from numerical point
of view, since the nth-order derivative can be easily and efficiently accomplished utilizing Grunwald-Letnikov’s
differentiation [28–30], we can readily achieve the numerical computation of µk as follows

µk =
1

2ϵk

k∑
j=0

(−1)j
(
k
j

){
(−1)kAF(j ϵ)(γend) +AF(−j ϵ)(γend)

}
, (14)
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where ϵ is chosen as a small number (e.g., ϵ = 0.001). In addition, note that the other accomplishment of
Theorem 2 is to provide an asymptotically tight lower-bound for the ACC as shown in the following theorem.

Theorem 3 An asymptotically tight lower-bound of the ACC C(γend) ≡ E[log(1 + γend)] in high-SNR regime
of fading environments is given by

C(γend) ⪆ log (γend) + µ, where µ =
∂

∂n
AFn(γend)

∣∣∣∣
n=0

. (15)

Proof Proof is obvious using C(γend) ≪ C(1; γend) with Theorem 2. 2

Consequently, the analysis presented above eliminates the mathematically tedious analysis for the HOCC
in high-SNR regimes by means of establishing its sharp characterization of the HOCC using asymptotically
tight bounds. As such, the difference between the actual HOCC and its asymptotic bound is identically equal
to zero for γend ≫ 1 .

3.1. Auxiliary tools to obtain the auxiliary coefficient

Note that exponential-type random distributions such as exponential, gamma, Weibull, and generalized gamma
have been widely used in the literature to describe the fading phenomena, i.e. to statistically characterize
the variation in signal strength as a result of multipath propagation. Note that the higher-order moment of
exponential-type distributions are mostly in terms of the product of the gamma function Γ (a+ b k) and the
Gaussian function exp

(
a+ b k2

)
, where Γ (·) denotes the Gamma function [27, Eq. (6.5.3)]. Referring to

Theorem 2, the nth order differentiation of both Γ (a+ b k) and exp
(
a+ b k2

)
, i.e.

Ψ(n) (a, b, k) = (∂/∂k)
n
Γ (a+ b k) , (16a)

Φ(n) (a, b, k) = (∂/∂k)
n
exp

(
a+ b k2

)
, (16b)

are strictly required but easily computed by Grunwald–Letnikov’s numerical differentiation [28–30]. Fur-
thermore, using built-in functions in the core software coding of such mathematical software packages as
Mathematica®, both (16a) and (16b) are also respectively computed by

(∗Implementation for the HOD of the Gamma function : ∗)
PhiFunction[n_?Integers, a_, b_, k_] := Derivative[0 , 0, n] [Function[{u, v, w}, Gamma[u + v w] ] ] [ a, b, k ] ; (17a)

(∗Implementation for the HOD of the exponential function : ∗)
PsiFunction[n_?Integers, a_, b_, k_] := Derivative[0 , 0, n] [Function[{u, v, w}, Exp[u + v w^ 2 ] ] ] [ a, b, k ] ; (17b)

We note that both (17a) and (17b) are numerically efficient for small orders n ∈ N but erroneous for higher
orders. Therefore, their closed forms are evidently required. To the best of our knowledge, Ψ(n) (a, b, k) and
Φ(n) (a, b, k) are not given in closed-form expressions in the literature. In the following theorems, we obtain
both Ψ(n) (a, b, k) and Φ(n) (a, b, k) in two closed-form expressions by means of using special functions widely
used in the literature.
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Theorem 4 Ψ(n) (a, b, k) ≪ (∂/∂k)
n
Γ (a+ b k) is given in a closed-form expression as follows

Ψ(n) (a, b, k) = n! bnGn+2,0
n+1,n+2

[
1

∣∣∣∣ 1, 1, . . . , 1
a+ bk, 0, 0, . . . , 0

]
+ (−1)

n
n! bnG1,n+1

n+1,n+2

[
1

∣∣∣∣ 1, 1, . . . , 1
a+ bk, 0, 0, . . . , 0

]
, (18)

where Gm,n
p,q [·] denotes the Meijer’s G function [26, Eq. (9.301)].

Proof Note that using both the upper-incomplete Gamma function Γ (α, x) =
∫∞
x
e−uuα−1du [26, Eq.

(8.350/1)] and the lower-incomplete Gamma function γ (α, x) =
∫ x

0
e−uuα−1du [26, Eq. (8.350/2)] and then

utilizing the well-known relation Γ (α) = Γ (α, x) + γ (α, x) [26, Eq. (8.356/3)], we can rewrite Ψ(n) (a, b, k) as

Ψ(n) (a, b, k) = bn
{∫ 1

0

ua+b k−1e−u logn(u) du+

∫ ∞

1

ua+b k−1e−u logn(u) du

}
. (19)

The Meijer’s G representation of logn(u) is given by [31, Eq. (01.04.26.0046.01)] for u > 1 ; and by [31, Eq.
(01.04.26.0045.01)] for 0 < u ≤ 1 . Note that, referring to [26, Eq. (9.301)], the Mellin–Barnes representations
of both Meijer’s G functions can be obtained and then substituted into (19). Accordingly, using [26, Eqs.
(8.350/1), (8.350/2) and (8.356/3)] after changing the order of the integrals, we rewrite (19) in terms of the
Mellin–Barnes contour integration, that is

Ψ(n) (a, b, k) = n! bn
{

1

2πi

∮
C1

Γn+1(−s)Γ(a+ b k + s)

Γn+1(1− s)
ds+

(−1)n

2πi

∮
C2

Γn+1(s)Γ(a+ b k + s)

Γn+1(1 + s)
ds

}
, (20)

where the contour integrals C1 and C2 are chosen counter-clockwise in order to ensure the convergence. Finally,
using the Mellin–Barnes representation of Meijer’s G function [26, Eq. (9.301)], (20) can be represented in terms
of Meijer’s G function as shown in (18), which proves Theorem 4. 2

Theorem 5 Φ(n) (a, b, k) ≪ (∂/∂k)
n
exp

(
a+ b k2

)
is given in a closed-form expression as follows

Φ(n) (a, b, k) = πea(−2)nbn/2G2,0
2,3

[
bk2

∣∣∣∣ 1−n
2 , 1−n

2
0, 12 ,

1−n
2

]
. (21)

Proof Note that substituting the Mellin–Barnes representation of Meijer’s G function [26, Eq.(9.301)] into
[32, Eq. (8.4.3/5)] and then performing algebraic manipulations, we can re-write Φ(n) (a, b, k) as

Φ(n) (a, b, k) = π exp(a)

(
∂

∂k

)n

G1,0
1,2

[
bk2

∣∣∣∣ 1/2
0, 1/2

]
= π exp(a)(−2)n bn/2

1

2πi

∮
C

Γ(sn+1
2 )Γ(s+ n

2 )(b k
2)−s

Γ( 12 − s)Γ( 12 + s)Γ( 12 + s)
ds,

(22)
which can be represented in terms of Meijer’s G function as shown in (21), which proves Theorem 5. 2

With the aid of [26, Eqs. (9.303) and (9.304)], both (18) and (5) can also be expressed in terms of the
sum of generalized hypergeometric functions nFn+1 [·; ·; ·] [26, Eq. (9.14/1)], which may be useful for researchers
and theoreticians. In addition, referring to Theorem 3, needed for the asymptotic analysis of the ACC in fading
environments are both Ψ(1) (a, b, k) and Φ(1) (a, b, k) . Accordingly, substituting n = 1 in (18) and using [32,
Eq. (8.2.2/3)] and [32, Eq. (8.4.51/1)], we have

Ψ(1) (a, b, k) = bΓ (a+ b k)Ψ(a+ bk), (23)
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where Ψ· is the digamma function defined in [27, Eq. (6.3.1)]. Similarly, substituting n = 1 in (21) and using
both [32, Eq. (8.2.2/15)] and [32, Eq. (8.4.3/5)], we have

Φ(1) (a, b, k) = 2bk exp
(
a+ b k2

)
. (24)

In addition, the k th order moment of such fading distributions as κ − µ and η − µ distributions consists of
generalized hypergeometric function pFq [a1, a2, . . . , ap; b1, b2, . . . , bp;x] [32, Eq. (7.2.3/1)] whose parameters
{aℓ}p1 , {bℓ}q1 and x could be a function of the moment order k . As a consequence of both Theorem 2 and
Theorem 3, the higher-order differentiation of generalized hypergeometric (HOD-GH) function is defined in the
following theorem.

Theorem 6 The HOD-GH function is defined by

pFq

[
a1, . . . , ap; b1, . . . , bq;x
m1, . . . ,mp;n1, . . . , nq; k

]{ p∏
i=1

∂mi

∂ami
i

}
q∏

j=1

∂nj

∂b
nj

j


{
∂k

∂xk

}
pFq [a1, . . . , ap; b1, . . . , bp;x] , (25)

where for all i ∈ {0, 1, 2, . . . , p} , j ∈ {1, 2, . . . , q} , the values mi, nj , k ∈ N denote the differentiation orders.

Proof The proof is obvious using some special cases [31, Eqs. (07.31.20.0009.01) and (07.31.20.0010.01)]. 2

We find that the HOD-GH function (i.e. (25)) is fortunately implemented, but not well-documented, in
the core software coding of Mathematica® [31], and further its traditional form is specifically introduced in
Mathematica® as pFq

({m1,...,mp},{n1,...,nq},k)[a1, . . . , ap ; b1, . . . , bq ;x] . Accordingly, both the implementation
and the example usage of the HOD-GH function is nicely presented as

(∗Implementation of the HOD−GH function : ∗)
HODHypergeometricPFQ[m_, n_, k_] [a_, b_, x_] := Derivative [m, n, k ] [ Function[{u, v , w} , HypergeometricPFQ[u

, v , w] ] ] [ a , b, x ] ;

(∗Example usage : ∗)
In [1]:= HODHypergeometricPFQ[{1 , 0}, {1}, 0] [{1 , 2}, {3}, 0 . 5 ] ] // N

Out[1]:= −0.3795244284791705

(26)

which is numerically efficient and symbolically useful for a wide range of scientific computing and analysis.
Consequently, with the aid of all computable tools presented above, we can efficiently compute (11) and so
(15). Therefore, let us consider some special cases in order to check analytical simplicity and accuracy of both
Theorem 2 and Theorem 3.

3.1.1. HOCC in high-SNR regime of generalized Nakagami-m fading environments

In generalized Nakagami-m fading environments [33], γend follows the PDF given by

pγend
(γ; γend) =

ξ

Γ (m)

(
β

γend

)ξm

γξm−1 exp

(
−
(

β

γend

)ξ

γξ

)
, (27)

where γend denotes the average power (i.e. γend = E[γend]) as mentioned before. Further, m and ξ denote the
fading figure (0.5 ≤ m) and the shaping parameter (ξ > 0) , respectively; accordingly, β = Γ (m+ 1/ξ) /Γ (m) .
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The special or limiting cases of the generalized Nakagami-m distribution are well-known in the literature as the
Rayleigh (m = 1, ξ = 1) , Half-Normal (m = 1/2, ξ = 1) , Nakagami-m (ξ = 1) , Weibull (m = 1) , lognormal
(m→ ∞, ξ → 0) , and AWGN (m→ ∞, ξ = 1) . In order to use Theorem 2, the higher-order AOF AFn(γend)

is easily attained by using the nth-moment of the generalized gamma distribution obtained in [33, Eq. (23)
with the special case N = 1 ], that is

AFn(γend) =
Γ (m+ n/ξ)

Γ(m)
β−n − 1. (28)

Next, substituting (28) into Theorem 2 and using the binomial differentiation rule [26, Sec. 0.42] with (16a),
we have

µk =

k∑
j=0

(−1)
j

(
k
j

)
Ψ(k−j) (m, 1/ξ, 0) log

j (β)− δk,0, (29)

where δi,j is the Kronecker’s delta (i.e. δi,j = 1 if j = j , and 0 otherwise) [27]. Accordingly, substituting (29)
into (11), we asymptotically estimate the HOCC C(n; γend) in high-SNR regime as

C(n; γend) ⪆
n∑

k=0

(
n
k

)
logn−k (γend)

k∑
j=0

(−1)
j

(
k
j

)
Ψ(k−j) (m, 1/ξ, 0) log

j (β) , (30)

where substituting n = 1 yields

C(γend) ⪆ log (γend)− log (β) + Ψ(m/ξ), (31)

which is the ACC in high-SNR regime of generalized gamma fading environment. Note that (31) is a simpler
expression as compared to [34, Eq. (18)]. Furthermore, setting the fading figure to an integer value (i.e.
m ∈ Z+ ) and then using [27, Eq. (6.3.2)], the asymptotic ACC simplifies to a much simpler expression, i.e.
C(γend) ⪆ log (γend)− log (β) + 1

ξ

∑m−1
k=1

1
k − E

ξ , where E = 0.5772156649... is Euler-Mascheroni constant [27].

For consistency, let us consider some special cases of generalized Nakagami-m fading environments.
Accordingly, substituting m = 1 into (31), we obtain the asymptotic ACC in high-SNR regime of Weibull
fading environments, that is

C(γend) ⪆ log (γend)− log (Γ(1 + 1/ξ))− E/ξ. (32)

Similarly, substituting ξ = 1 into (31), we obtain the asymptotic ACC in Nakagami-m fading environments,
that is

C(γend) ⪆ log (γend)−log (m)+Ψ(m) for m ∈ R+ , and C(γend) ⪆ log (γend)−log (m)+
∑m−1

k=1
1
k−E for m ∈ Z+ .

(33)
Accordingly, the asymptotic ACC in Rayleigh fading environments (m = 1, ξ = 1) is written as C(γend) ⪆
log (γend)−E. The other important special case is the AWGN (m→ ∞, ξ = 1) . Then, substituting m→ ∞ and
ξ = 1 in (31) and using the approximation lim(m)→∞ Ψ(m) ≈

∑m−1
k=1

1
k −E ≈ log(m) that is obtained with the

aid of [27, Eq. (4.1.32)], the ACC of the AWGN channels is obtained for high-SNR regime as C(γend) ⪆ log (γend)

as expected.
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3.1.2. HOCC in high-SNR regime of lognormal fading environments

In lognormal fading environments, γend follows the PDF given by [25, Eq. (2.53)]

pγend
(γ; γend) =

κ√
2π σ γ

exp

(
− (κ log(γ)− µ)

2

2σ2

)
, (34)

where κ = 10/ log(10) , and where µ and σ denote the mean and the standard deviation of γend , respectively.

The nth order moment of lognormal fading distribution is given by E[γnend] = exp
(
µ
κn
)
exp
(

σ2

2κ2n
2
)

[25,
Eq (2.55)]. With this result, we readily obtain the higher-order AOF AFn(γend) as

AF (n) = exp

(
− σ2

2κ2
n

)
exp

(
σ2

2κ2
n2
)
− 1, (35)

After substituting (35) into Theorem 2 and then performing some algebraic manipulations utilizing (16b), we
derive the auxiliary coefficient µk as

µk =

k∑
j=0

(−1)
j

(
k
j

)
Φ(k−j)

(
j log

(
σ2

2κ2

)
, σ2

2κ2 , 0
)
− δk,0. (36)

Accordingly, the HOCC C(n; γend) for high-SNR regime can be asymptotically estimated as

C(n; γend) ⪆
n∑

k=0

(
n
k

)
logn−k (γend)

k∑
j=0

(−1)
j

(
k
j

)
Φ(k−j)

(
j log

(
σ2

2κ2

)
, σ2

2κ2 , 0
)
. (37)

Eventually, either setting n = 1 in (37) or utilizing Theorem 3 with (35), the ACC is obtained as

C(γend) ⪆ log (γend)−
σ2

2κ2
. (38)

Note that, as seen in (38), the ACC for high-SNR regime in lognormal fading environments does not seem to
depend on the mean parameter µ but it is hidden in γend . In more details, γend strictly depends on both µ

and σ ; so given by γend = exp
(
µ
κ

)
exp
(

σ2

2κ2

)
[25, Eq (2.55)]. Then, substituting this γend into (38), the ACC in

high-SNR regime of lognormal fading environments becomes C(γend) ⪆ µ
κ which itself does not depend on the

deviation parameter σ .

3.1.3. HOCC in high-SNR regime of extended generalized-K (EGK) fading environments

The extended generalized-K (EGK) distribution, which is proposed in [6, 7], is such a distribution that several
fading distributions are either its special or limiting cases such as Rayleigh, lognormal, Weibull, Nakagami-m,
generalized Nakagami-m, generalized-K, and the others listed in [6, Table I], [7, Table I]. Regarding this disclosed
versatility, the EGK distribution offers a unified theory to statistically characterize the envelope statistics of
known wireless/optical communication channels. In EGK fading environments, γend follows the PDF given by
[6, Eq.(3)], [7, Eq.(5)]

pγend
(γ; γend) =

ξ

Γ(ms)Γ(m)

(
βsβ

γend

)mξ

γmξ−1Γ

(
ms −m

ξ

ξs
, 0,

(
βsβ

γend

)mξ

,
ξ

ξs

)
, (39)
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where m (0.5 ≤ m <∞) and ξ (0 ≤ ξ <∞) denote the fading figure (diversity severity / order) and the fading
shaping factor, respectively. Furthermore, ms (0.5 ≤ ms < ∞) and ξs (0 ≤ ξ < ∞) denote the shadowing
severity and the shadowing shaping factor (homogeneity), respectively. Accordingly, β and βs are defined
as β = Γ (m+ 1/ξ) /Γ (m) and βs = Γ (ms + 1/ξs) /Γ (ms) , respectively. In (39), Γ (·, ·, ·, ·) is the extended
incomplete Gamma function defined as Γ (α, x, b, β) =

∫∞
x
rα−1 exp

(
−r − br−β

)
dr , where α, β, b ∈ C and

x ∈ R+ [35, Eq. (6.2)].

Lemma 1 (Multinomial differentiation rule) Let {Fn(x)} be a function set of size N , each of which is

continuous and the k -order differentiable over x ∈ C . The k th derivative of the product of
∏N

n=1 Fn(x) is
given by

(
∂

∂x

)k N∏
n=1

Fn(x) =

k∑
j1+j2+...+jN=k

(
k

j1, j2, . . . , jN

) N∏
n=1

[(
∂

∂x

)jn

Fjn(x)

]
. (40)

Proof The proof is obvious and follows by induction from Leibnitz’s rule. 2

Note that the nth order moment E[γnend] is given in [7, Eq. (9)]. Accordingly, we obtain the higher-order
AOF AFn(γend) as follows

AFn(γend) =
Γ (m+ n/ξ) Γ (ms + n/ξs)

Γ(m)Γ(ms)
(β βs)

−n − 1. (41)

In order to obtain the auxiliary coefficient µk , its higher-order differentiation can be obtained by using the
multinomial differentiation rule given in the lemma above. Substituting (41) into Theorem 2 and then exploiting
Lemma 1, we derive the auxiliary coefficient µk as

µk =

k∑
i+j+l=k

(−1)
l

(
k

i, j, l

)
Ψ(i)(m, 1/ξ, 0)Ψ(j)(ms, 1/ξs, 0) log

l(β βs)− δk,0, (42)

where the parameters β and βs are mentioned before. Accordingly, substituting (42) into (11), the HOCC in
high-SNR regime can be accurately estimated as

C(n; γend) ⪆
n∑

k=0

(
n
k

)
logn−k (γend)

k∑
i+j+l=k

(−1)
l

(
k

i, j, l

)
Ψ(i)(m, 1/ξ, 0) Ψ(j)(ms, 1/ξs, 0) log

l (β βs) .

(43)
Following the same steps in both Section 3.1.1 and Section 3.1.2, we can accurately estimate the ACC C(γend)

in high-SNR regime of the EGK fading environments, that is

C(γend) ⪆ log (γend)− log (ββs) + Ψ(m/ξ) + Ψ(ms/ξs). (44)

In addition, for the special or limiting cases listed in both [6, Table I] and [7, Table I], the ACC in high-SNR
regime can be easily obtained by means of (44). For instance, for ξ = 1 and ξs = 1 , (44) simply simplifies to

C(γend) ⪆ log (γend)− log (mms) + Ψ(m) + Ψ(ms), (45)

which is the ergodic capacity of the generalized-K fading channels for high-SNR regime.
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3.1.4. HOCC in high-SNR regime of κ− µading environments
In the case of line-of-sight environment, the κ − µ distribution can be used to statistically characterize the
small-scale variation of the fading signal. In κ − µ fading environments, the instantaneous SNR γend follows
the PDF [36]

pγend
(γ; γend) =

µ(κ+ 1)
µ+1
2 γ

µ−1
2

κ
µ−1
2 exp (µκ) γ

µ+1
2

end

exp

(
−µ(κ+ 1)

γend
γ

)
Iµ−1

(
2µ

√
κ (κ+ 1) γ

γend

)
, (46)

where κ denotes the ratio of the total power of the dominant component to that of scattered components, and
µ denotes the line-of-sight parameter defined as µ = (2κ + 1)/((κ+ 1)

2
AF1(γend)) . Moreover, In (·) denotes

the modified Bessel function of the first kind of the order n [27, Eq. (9.6.10)]. Evidently, following the same
steps in the previous examples and then using the nth moment E[γnend] given in [36, Eq. (5)], we obtain the
higher-order AOF AFn(γend) as

AF (n) =
Γ(µ+ n)

(κ+ 1)nµn 1F1 [−n;µ;−κµ]− 1, (47)

where 1F1 [·; ·; ·] denotes the Kummer’s confluent hypergeometric function [27, Eq. (13.1.2)]. After substituting
(47) into (15) and utilizing both Lemma 1 and Theorem 6, the auxiliary coefficient µk is readily obtained as

µk =

k∑
i+j+l=k

(−1)
j+l

(
k

i, j, l

)
Ψ(i)(µ, 1, 0) log

j (κµ+ µ) 1F1

[
0;µ;−κµ
l; 0; 0

]
− δk,0. (48)

Accordingly, substituting (48) into (11), the HOCC C(n; γend) for high-SNR regime can be accurately estimated
as

C(n; γend) ≒
n∑

k=0

(
n
k

)
logn−k (γend)

k∑
i+j+l=k

(−1)
j+l

(
k

i, j, l

)
Ψ(i) (µ, 1, 0) log

j (κµ+ µ) 1F1

[
0;µ;−κµ
l; 0; 0

]
.

(49)
With the aid of this result, the ACC in high-SNR regime of the κ− µ fading environment is obtained as

C(γend) ⪆ log (γend)− log ((κ+ 1)µ) + Ψµ− Γ(µ)1F1

[
0;µ;−κµ
1; 0; 0

]
, (50)

where 1F1

[
0;µ;−κµ
1; 0; 0

]
can be given in terms of series expansion of 1F1 [a; b;x] , specifically using [27, Eq.

(13.1.2)]. With that representation, it is clear that limκ→0 1F1

[
0;µ;−κµ
1; 0; 0

]
= 0 . In the following, substituting

κ → 0 and µ = m into (50) results in (33) which is the ergodic capacity for high-SNR regime in Nakagami-m
fading environments. ✓

Consequently, the closed-form expressions, presented in this section, demonstrate the usefulness of Theo-
rem 2 in the asymptotic analysis of the HOCC in high-SNR regime of generalized fading environments, and also
show that the auxiliary coefficient µk in (11) and the parameter µ in (15) can be easily derived using simple
functions.
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4. HOCC in low-SNR regime of generalized fading environments
In this section, we deal with the sharp characterization of the HOCC in low-SNR regime of generalized fading
environments. In low-SNR regime (i.e. γend ≪ 1), we have 1 − Pγend

(γth) ≈ 0 for γth ≫ γend , and therefore
using (5), we can approximate the HOCC C(n; γend) by means of

C(n; γend) ⪆
∫ γth

0

logn (1 + γ) pγend
(γ; γend) dγ, (51)

where γth is such a average SNR threshold that the low-SNR regime occurs for γend < γth . As the order n
increases, C(n; γend) remains almost the same, as contrary in high-SNR region. This behaviour is described by

∆(n; γend) =
C(n; γend)

C(γend)
− 1, (52)

which is a useful tool to distinguish the high-SNR and low-SNR regimes of the fading environments. Evidently,
when ∆(n; γend)< 0 , the fading environment is certainly in low-SNR regime, otherwise, in high-SNR regime.
We can ascertain a specific average SNR at which ∆(n; γend) approaches zero, particularly unfolding γth

between the high-SNR regime and the low-SNR regime. Hence, we indeed need to optimize all objective
functions {∆2(n+1; γend)}Nn=1 with respect to γend , where it is especially chosen as N = 4 since the first four
statistics including mean, variance, skewness, and kurtosis are quite enough for a statistical characterization.
Accordingly, referring multiobjective optimization (MOO) [37–39], a feasible (i.e. Pareto optimal) solution of
γth is determined as

γth = argmin
γend

N∑
n=1

wn ∆
2(n+ 1; γend) = argmin

γend

N∑
n=1

wn

( C(n; γend)
C(γend)

− 1
)2
, (53)

where the weights {wn}Nn=1 are positive real numbers chosen as
∑N

n=1 wn = 1 . Referring to Jensen’s inequality
[26, Section 12.411], the optimization problem apparently suggests that E[logn(1 + γend)] ≈ E[log(1 + γend)]

for all n ∈ N when γend = γth for any type of fading environment. The objective function has been depicted
in Figure 2 for different fading environments and the data-tips in Figure 2 provide a convenient way to view
information about the Pareto optimal values of γth for the considered fading environments. As it is apparently
observed, γth is distinctive for different fading environments. γth decreases when the channel quality gets worse
(i.e. the diversity order of the channel decreases) or it increases when the channel quality gets better. When there
is no fading (i.e. when the corresponding wireless environment is Gaussian), γth reaches its supremum-limit
value. Conversely, when the quality of the fading environment becomes the worst, γth reaches its infinum-limit
value.

Theorem 7 (Supremum-limit value of γth ) Any fadingless environment leads in low-SNR regime when

γend ⪅ γ+th = 1.71828182846 (2.35094397275 dB). (54)

Proof When the quality of the fading environment significantly gets better, we have pγend
(γ; γend) ≈

δ(γ − γend) , where δ(·) denotes the Dirac’s delta function [24, Eq. (1.8.1)]. Referring to (5) and then using
[24, Eq. (1.8.1/1)], we have C(n; γend) ≈ logn(1 + γend) , which convert (53) to a joint solution of a set of
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Figure 2. The boundary SNR for different fading environments.

equations logn(1 + γ+th) = log(1 + γ+th) for all n ∈ Z+ and n ̸= 1 . For the first four statistics, this equation set
has obviously one unique solution which is obtained as γ+th = 1.71828182846 as shown in (54) and depicted in
Figure 2, which proves Theorem 7. 2

Theorem 8 (Infinum-limit value of γth ) Any worst-fading environment leads in low-SNR regime when

γend ⪅ γ−th = 0.64117587677 (−1.93022825657 dB). (55)

Proof Note that as the fading conditions get significantly worse, the diversity gain m ∈ R+ approaches to
m→ 1/2 . In addition to this case, the fading conditions also get worse when shape parameter (i.e. nonlinearity)
ξ decreases (i.e., when ξ→0). To the best of our knowledge, there is no physical justification in the literature
for such an extreme case that both the diversity order m→ 1/2 and the shape parameter ξ → 0 simultaneously
occur, specifically meaning that, for the worst-fading environments, the shape parameter ξ cannot be smaller
than one (ξ > 1) and the diversity order m cannot be smaller than half (m ≥ 1/2) as mentioned in [25, 40].
Also explicitly mentioned in [25], the worst-case fading conditions are accurately characterized by a one-sided
Gaussian distribution that follows the PDF

pγend
(γ; γend) =

exp
(
− 1

2γ/γend
)

√
2πγendγ

, for γ ∈ [0,∞) , (56)

whose substitution into (5) yields the HOCC C(n; γend) of one-sided Gaussian fading environments, that is

C(n; γend) = n!Yn+1,n+2
n+2,n+1

[
2γend

∣∣∣∣ (1, 1, 0.5/γend, 0.5) , (1, 1, 0, 1), . . . , (1, 1, 0, 1)
(0, 1, 0, 1), . . . , (0, 1, 0, 1)

]
, (57)

where Ym,n
p,q [·] denotes the generalized version of Fox’s H function, defined in [41] by Yilmaz and Alouini.

Eventually, substituting (57) into (53), we can find γ−th (i.e. the infinum-limit value of γth ). Although the
resultant optimization has no analytical solution, the Pareto optimal solution can always be easily obtained by
means of powerful optimization tools available in the mathematical software packages such as Mathematica®,
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Maple®, and MatlabTM. After accurately achieving optimization, the Pareto optimal γ−th is obtained as (55)
and depicted in Figure 2, which proves Theorem 8. 2

As a consequence, with the aid of both Theorem 7 and Theorem 8, we know that the SNR γth at which
the low-SNR regime starts will be 0.64117587677 < γth < 1.71828182846 for any kind of fading environments.
Consequently, using the results presented above, we can deal with both the HOCC and ACC in low-SNR regime
of fading environments, especially by asymptotically tight upper-bounds as shown below.

Theorem 9 An asymptotically tight upper-bound of C(n; γend) in low-SNR regime of fading environments is
given by

C(n; γend) ⪅ µ̂n γ
n
end, where µ̂n = AFn(γend) + 1. (58)

Proof According to Theorem 8, we know that γend will follow the distribution most possibly taking random
values much smaller than γ−th = 0.64117587677 . Using [26, Eq. (1.511)] with this fact, we can show that
C (n; γend) is upper-bounded as C (n; γend) ⪅ γ̂nend+O

(
γn+1
end

)
. Accordingly, utilizing (3), the HOCC C(n; γend)

can be compactly approximated as in (58), which proves Theorem 9. 2

Theorem 10 An asymptotically tight upper-bound of C(γend) in low-SNR regime of fading environments is
given by

C(γend) ⪅ E[γend] = γend. (59)

Proof The proof is obvious by setting n = 1 in (58). 2

Note that the ACC C(γend) in low-SNR regime does not depend on the fading conditions except for
γend . Since C(γend) cannot be greater than γend in low-SNR regime, the main challenge is to improve the
energy efficiency rather than increasing the diversity. In respect to the accuracy and analytical simplicity of
Theorem 9 and Theorem 10, let us consider some special cases for single link reception over generalized fading
channels. For the fading conditions in a non-line-of-sight environment, the η−µ distribution is commonly used
and it follows the PDF given by [36, Eq. (18)]

pγend
(γ) =

2
√
πhµ

Γ(µ)

(
µ

γend

)µ+ 1
2 ( γ

H

)µ− 1
2

exp

(
− 2µh

γend
γ

)
Iµ− 1

2

(
2µH

γend
γ

)
, (60)

where µ represents the channel non-line-of-sight severity, and η denotes i) the ratio between the powers of
the in-phase and quadrature components of the complex fading distribution (i.e. it is the first format by
0 < η <∞), or ii) denotes the correlation between the inphase and quadrature components (i.e. it is the second
format by −1 < η < 1). For these two formats, h and H are functions of η and vary from one format to
another [36] (i.e. h = (2 + η−1 + η)/4 and H = (η−1 − η)/4 for the first format, whereas h = 1/(1− η2) and
H = η/(1 − η2) for the second format). Note that, using the nth moment E[γnend] [36, Eq. (21)], the HOCC
C(n; γend) in low-SNR regime is obtained as

C(n; γend) ⪅
Γ(2µ+ n)

hµ+n(2µ)
n
Γ(2µ)

2F1

[
µ+

n

2
+

1

2
, µ+

n

2
;µ+

1

2
;

(
H

h

)2
]
γnend, (61)
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where substituting n = 1 and then using [32, Eq. (7.3.1/27)] results in the ACC C(γend) ⪅ γend in low-SNR
regime.

The other example is the HOCC C(n; γend) of the most versatile fading environment, known as EGK
fading distribution, whose PDF pγend

(γ) is given in (39) and its higher order AOF AFn(γend) in (41). The
HOCC C(n; γend) of the EGK fading environments is obtained as

C(n; γend) ⪅
Γ (m+ n/ξ) Γ (ms + n/ξs)

Γ(m)Γ(ms)
(β βs)

−n
γnend (62)

for low-SNR regime. Furthermore, for the other fading environments, for instance using the higher order AOFs
given in (28), (35), and (47), the HOCC in low-SNR region can be easily obtained.

5. Conclusion
In this article, we determine the boundary average SNRs between the high-SNR and low-SNR regimes in
generalized fading environments. For these two regimes, we propose some novel closed-form expressions for the
asymptotic analysis of both the HOCC and ACC in generalized fading environments, and show asymptotically
tight and closed-form expressions, each of which is checked either by numerical or simulation-based methods, for
different fading environments commonly used in the literature. The methodological soundness of our asymptotic
analysis clearly evidences that our closed-form expressions are insightful enough to comprehend the diversity
gains, and their analytical accuracy and simplicity will be beneficial for the researchers, practitioners, and
theoreticians in field of wireless communications.
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