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Abstract: This communication presents a miniaturised series linear wideband array of notched rectangular dielectric
resonator antennas that operate in the band IEEE 802.11a. Three dielectric resonators (DRs) were excited through the
aperture slots coupled with a microstrip feed. To improve the array gain, the aperture slots were placed based on the
attributes related to the standing-wave ratio on a short-ended microstrip feeder to obtain optimal joint power for the
DRs, while the bandwidth was improved using the notched rectangular DRs. An equivalent impedance model of the
proposed array was postulated to provide physical insight into the array resonance behaviour. The impedance model was
simulated using the Agilent Advanced Design System software and optimised to determine the DRs’ dimensions. Then
the array prototype was simulated and experimentally implemented. The maximum measured gain across a 1.68-GHz
bandwidth was found to be 8.28 dBi. The antenna structure measured approximately 60× 40mm, thereby making it a
good component for wireless communication systems.
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1. Introduction
The first dielectric resonator antenna (DRA) was introduced by Long et al. in 1983 [1]. Since then, several
researchers have focused on investigating DRAs. Several advantages are ascribed to DRA, not limited to low
volume, low cost, minimal loss, light weight, and convenient excitation. The single DRA designs are normally
low gain but they can contribute to a broad radiation pattern. However, DRAs can be built into an array to
enhance the gain. Several types of feeding techniques have been explored by researchers, such as linear array of
DRAs on microstrip lines [2], slot coupled microstrip corporate feed linear DRA arrays [3], microstrip corporate
feed having probe coupling DRA arrays [4], and dielectric image guide feed [5].

So far, various serial feed DRA array topologies [2] and parallel feed topologies [6] have been reported.
The parallel and corporate feeds have advantages in terms of excitation networks for printed antenna arrays
and exhibit design flexibility and the possibility of forming two-dimensional arrays [6]. However, these methods
have some drawbacks during prototyping, including unbalanced pattern and mutual coupling effects between
the elements and feed network. The series feed topology represents a more concise network, because it requires
shorter transmission lengths and fewer junctions, thereby resulting in lower insertion loss.

The bandwidth of a conventional DRA is normally less than 10%, which limits its use. Hence, many
researchers have attempted to improve the bandwidth of DRAs. Kishk et al. suggested the use of stacked DRAs
made of multiple substances to obtain twofold resonance operations [7], and an improvement in bandwidth of
up to 25% was achieved. This was followed by others who also started using stacking methods [8–10]. Various
techniques have also been recommended to expand the bandwidth of DRAs, such as embedded DRAs [11,12],
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T-shaped structures [13], L-shaped structures [14], DRAs with an air space in between [15], notched DRAs
[16], and combining two or more DRA modes [17,18]. Bandwidth of 30%–65% may be obtained through these
methods, similar to those reported in the literature [2,19].

Very few rounded wideband DRA arrays have been mentioned in the reviewed literature. Petosa et
al. reported a wideband array that implemented the small-reflections theory [2]. The determination of a
configuration for the component space required a decrease in the fed reflection, thereby improving the impedance
bandwidth. The bandwidth improved up to 18% and the 3 dB addition pattern bandwidth was upgraded by
17%. Zhang et al. introduced a new type of DRA for a wideband that was built with an upper resonator that
was hexagon-shaped and a lower resonator that was triangle-shaped [20]. A 76.25% corresponding bandwidth
was attained with the radiation pattern (broad-side), where the impedance bandwidth covered a frequency
range of 5.1 to 11.1 GHz. Furthermore, Lee and Simons employed two parasitic dielectrics with one on each
side of a centre DRA placed above a grounded slot coupled with a coplanar waveguide [3]. The bandwidth was
increased by 3.7% using these parasitic dielectric resonator (DR) elements.

The present communication addresses a miniaturised design of a wideband DRA array operating in the
802.11ac band, considering gain enhancement. The array gain was enhanced using the characteristic concerning
the proportion of the standing wave on the short-ended microstrip. The wideband resonance was obtained by
introducing notched DRA elements, as a trade-off to the corresponding low Q (a mixture of air and DRA). A
slot coupling feeding technique was applied to isolate the DRs from the feeding network.

2. Antenna geometry
The DRA is fed with a 50-Ω microstrip with a width of 1.4 mm on an RO4003C substrate with εs of 4.6
and 0.75 mm thickness. ZrSnTiSiO material with a dielectric constant εr = 10 was exploited as a resonator.
Microstrip fed slot coupled antennas were first introduced in 1985 [21]. The convenient coupling with microwave
integrated circuits at RF makes this technique common. It is also important to carefully choose the rectangular
slot length and width to provide effective DRA coupling. However, it should not be so large as to produce
vibrations in the operating frequency, which normally results in a relevant back-lobe radiation [22,23].

Figure 1 depicts the notched rectangular DRA architecture. The low permittivity rectangular DRAs
can offer a bandwidth of approximately 10%. To improve the bandwidth, the notched rectangular DRA, as
illustrated in Figure 1, is introduced, presenting a bandwidth amounting to 28% [16]. A notched DRA normally
has a lower Q-factor in comparison with a solid rectangular DRA, where a broader bandwidth can be obtained.
The Q-factor can be reduced by eliminating the fundamental slice of a rectangular DRA, because it is mixed
with air permittivity (ε1= 1). The notch is adjusted in terms of its width and length, as a wideband or dual
band. The dimensions were optimised for the maximisation of the bandwidth, and simultaneously maintaining
the levels of low cross-polarisation. The bandwidth of the DRA can be calculated using the radiation Q-factor
[24] as follows:

BW = β/Q
√
β, (1)

where β denotes the maximum voltage standing wave ratio.
The concept of the short-circuited quarter-wavelength was exploited to develop the microwave-circuit

application. The concept of a λ/4 stub on the short-ended feed line was implemented to maximise the coupled
power in the antenna [17,23]. The stub length was calculated as follows:

S = λg/4, (2)

where λg represents the guided wavelength.

395



QASAYMEH et al./Turk J Elec Eng & Comp Sci

Figure 1. Architecture of the notched rectangular DRA: (a) top view and (b) side view.

The antenna structure consisted of three slots located on a ground plane and a microstrip line on the
front plane, whereas the DRs were mounted above the slots. The first slot was placed λ/4 apart from the end
of the microstrip. Because the antinodes repeated themselves every half-wavelength over the shorted-microstrip
next to the first antinode, the remaining two coupling slots were each placed at λ/2 toward the front of the
microstrip to achieve all-out coupling for maximisation of the radiation of the DRs. Figure 2 depicts the
suggested array. The antenna comprises the feeder (microstrip) and the slots that couple the DRs. The DR
elements that are mounted above the slots are omitted for better visualisation of the feeding technique used in
coupling. The separation of elements, S2 , is equivalent to a half-wavelength, whereas the quarter-wavelength,
S1 , denotes the eventual array element. The distance between the source and starting element, which is less
than the half-wavelength to prevent excess antinodes above the microstrip, is represented by X.

Figure 2. Suggested array demonstrating the spaces between the elements.

3. DRA-array modelling

The impedance of the proposed antenna was analysed to determine the length, width, and height of a rectangular
DR, as an alternative method to the equations reported previously [22], which must be solved recursively. To
achieve a wideband operation along with directive radiation, three DR array elements were assumed to be
different in dimensions. An equivalent circuit model was postulated to describe and enable the quantification of
individual resonant frequencies of the three DRs composing the array. Figure 3 depicts an equivalent model of a
single DR antenna, fed with a coupled microstrip slot. The DRA array model comprises three resonance circuits
representing three different frequencies: f01 , f02 , and f03 . A procedure is presented to give a physical insight
into the wideband resonance of the DRA array, as illustrated previously [10,23]. The frequency resonance of
the initiated DRA array suggests that the antenna supports triple resonance operations. This is evident by
observing the input reflection coefficient, indicating three close valleys, which can be manipulated by changing
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the dimensions of the DRs. In addition, different slot dimensions were assumed to obtain different resonant
frequencies.

Figure 3. Microstrip slot-coupled single DR equivalent circuit model.

The equations that represent the DR as a parallel RLC model were reported before [25], once the DR
was coupled with an excitation source:

Rr = (2n2z0S11)/(1− S11), Cr = (Q0)/(ω0Rr), Lr = (1)/(ω0Cr), (3)

where S11 denotes the reflection coefficient, z0 is the characteristic impedance, Q0 is the quality factor, and n

is the coupling magnitude between DR and slot.
It is evident from Equation (3) that the value of Rr has a significant role in the determination of Cr

and Lr . It has been reported [25] that the Rr value can be selected. For that, a complex process is required
to achieve a reasonable value for Rr . To achieve this, the Agilent Advanced Design System (ADS) software is
used to optimise the values of RLC . Next, MATLAB is used to determine the dimensions of DR based on the
optimised RLC values. The symbol n in Equation (3) denotes the amount of coupling between the excitation
source and DR (slot in this case), which plays a significant part in determining Rr , Cr , and Lr later.

The second step is to find the input impedance of the slots. Once the microstrip is terminated by a stub
of length λg/4 (antinode), the fed impedance is calculated using the line, which is assumed to be infinitely long,
and added to the series reactance, X = −j Zc cot(βfLt) :

Zslot = zc × (2S11/S11 − 1) +X = zc × (2S11/S11 − 1) + jZccot(βfLt), (4)

where Zc is the characteristic transmission-line impedance [26], S11 is the reflection coefficient, βf is the
propagation constant, and Lt is the stub length. Zslot can be measured by the program given previously [27].

The third step is to find the microstrip fed line input impedance. The input impedance at the locations
of antinodes offers high resistance. As shown previously [23], the admittance as an input Ym turns out to be
equivalent to Grm + jBm , where Grm represents the radiation conductance and Bm denotes the susceptibility
of the bordering field capacitance of the microstrip. Grm and Bm were reported previously [28,29], expressed
by

Grm = (160π2h2)/(z2cmλ2εcm) (5)

Bm = ω0Cl, Cl = (leqC
√
εcm)/(Zcm), (6)
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where h denotes the substrate height, Zcm is the characteristic impedance of the microstrip, εcm is the effective
dielectric constant, leq is the equivalent extra length of the microstrip, and c is the speed of light.

The last step is the transformation of the impedance that exists in the slot along the microstrip. The
inductance between the slot and microstrip was reported previously [30] and represented as

M = (µ0Ws)/(2π) ln sec(Θ),Θ = aractan(Ls/2h), (7)

where Ws is the slot width, Ls the slot length, h is the substrate height, and µ0 is the free space permeability.
Every antenna impedance function has an equivalent circuit in Darlington form. The dimensions of the

slots were assumed, and their relative impedances were calculated using Equation (4). The impedances of 50
microstrips were calculated from Equations (5) and (6). The three-stage circuit, as shown in Figure 3, was built
in Agilent ADS, which represents the array including the uncalculated values of parallel RLCs, representing the
three DRs. Using Agilent ADS, the three parallel RLCs were tuned to resonate at the desired frequency, and
then a MATLAB program based on Equation (3) was used to extract the dimensions of each DR according to
its resonant frequency. No wideband operation was expected in this stage, because the model does not include
the mutual coupling between the DRs. Once the input impedance model is successful, the antenna will be
modelled in computer simulation technology (CST). The measurements for return loss, radiation pattern, and
gain, compared with the results obtained from CST, will be the final step in the design.

4. Outcomes with discussion
Three DRA array elements were modelled in the corresponding impedance circuit using Agilent ADS. Diverse
measurements of length and width in the slots were presumed for varying quantities of coupling to attain a
wideband operation. The impedance that exists between the microstrip, slot, and coupling can be calculated
using Equations (5)–(7), as illustrated in Section 3. Because the impedances of the slot and microstrip are
static, the parallel RLC network that represents the DR can be adjusted by Agilent ADS, thereby enabling the
antenna to strike resonance at three distinct resonant frequencies. As mentioned in Equation (3) and explicated
in Section 3, the value of Rr is significant in determining Cr and Lr . Thus, Rr was set to be 55 to obtain
the values of rational Cr and Lr . Next the optimised Rr, Lr , and Cr values were put into MATLAB to
derive the dimensions of DRs, by solving Equation (3). Figure 4 depicts the impedance model of the proposed
three-element DRA array. Figure 5 demonstrates the dimensions of the suggested array elements. During the
calculating and modelling of the DRs, they were assumed to be rectangular without a notch in the centre,
because the notch size is smaller in comparison with the size of the DR. The same height of 0.5 mm was applied
to every notch in each DR. By solving Equation (2), at a frequency of 5.8 GHz, the λ/4 wavelength S1 and
λ/2 wavelength S2 were found to be 7.9 and 15.8 mm, respectively, whereas the value of X was set to be 10
mm to prevent further antinodes on the feeder.

Figure 6 depicts the simulated power antinodes on the microstrip executed with the CST software. The
figure shows how the antinodes take their positions at the locations obtained from Equation (2) at 5.8 GHz.
The DRs were mounted above the coupling slots placed over the antinodes.

Figure 7 shows the return-loss results through simulation and measurement. Three resonant frequencies
were obtained by Agilent ADS at 5.15, 5.39, and 5.74 GHz, which represent the operating frequencies of the three
single DRs. The simulated CST bandwidth was between 5.04 and 5.95 GHz, with minimal return loss of –22 dB
at 5.8 GHz with an impedance of 45.23–j5.33 Ω . The measured bandwidth ranges from 5.25 to 5.91 GHz, with
minimum return loss at 5.635 GHz of –25.116 dB and impedance of 48.55–j2.23 Ω . The consistency between
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Figure 4. Impedance model of the dielectric resonator array in Agilent ADS.

Figure 5. Designed structure in CST: a) slots’ dimensions, b) microstrip dimensions (width = 1.7mm), and c and d)
dielectric elements’ dimensions (all dimensions in mm).

the simulated and measured results is reasonable. The discrepancies are related to the minute fabrication error,
and the nonuniformity was caused by the manual soldering of SMA connectors. The microwave vector network
analyser model HP 8720D was used to execute the measurement.

Figure 8 depicts the antenna gain in the frequency between 5.1 and 5.9 GHz. The maximum simulated
gain of 8.4 dBi occurs at 5.9 GHz, which was derived from the CST software through simulation. The maximum
measured gain occurs at 5.9 GHz of 8.28 dBi, using the gain transfer method that compares the antenna to
a standard known gain monopole antenna. This indicates that the gain of the proposed DRA array was of
enhanced efficiency. During the measurements, a reflector can be used to enhance the gain up to 12.2 dBi. The
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signal generator model number HP83620B and spectrum analyser model number Agilent 8565E were used to
perform the measurement of the gain at different frequencies.

Figure 9 depicts the measured and simulated radiation patterns in the direction of the xz and yz plane
at 5.8 GHz. For the xz plane simulation radiation pattern, the main loop magnitude was 8.4 dBi, whereas the
measurement was 8.28 dBi for the same direction. For the radiation in the yz plane, the maximum simulated
magnitude was 3.3 dBi and maximum measured was 2.8 dBi. The agreement between the simulated and
measured results was fairly good. A reflector can be used to reduce the back loop radiation from the feeder side
and to focus the radiation more towards the DR elements. The signal generator model number HP83620B and
spectrum analyser model number Agilent 8565E were used for the measurement setup to measure the radiation
pattern at 5.8 GHz.

Figure 6. 5.8 GHz radiation power antinodes over the microstrip simulated using CST.

Figure 7. Measured and simulated return loss.

Figure 8. Measured and simulated gains of the antenna.
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Figure 9. Measured and simulated 5.8 GHz radiation patterns of the DRA in the xz and yz planes.

Table 1. Comparison of the work conducted in the present paper with serially fed wideband DRA arrays reported in
the literature.

Published work Wideband
technique

Frequency
band

Gain Array size [length, width,
height]

Petosa et al. (1996) [2] Paired DRAs
depending on
small theory
reflections

6.34 to 7.6
GHz 23.03%

14.1 dBi 7.04λ0×5.59λ0×0.00054λ0

Lin et al. (2017) [31] Rectangular
rings mounted
on DRs

6.72 to 9.88
GHz 38.1%

15.7 dBi 6.24λ0×1.037λ0×0.0127λ0

Nikkhah et al. (2013) [32] Adding slots
array below
the DRA
elements

8.8–9.6 GHz
4.3%

20 dBi 16.56λ0×1.073λ0×0.023λ0

Proposed work Notched DRA 5.25–5.91
GHz 59.13%

8.28 dBi 1.159λ0×0.773λ0×0.0145λ0

5. Conclusion

A three-element DRA array with a compact size of 60×40mm was presented in this study. A larger bandwidth
ranging from 5.25 to 5.91 GHz was obtained with a notable gain enhancement. A microstrip slot coupled
structure fed the postulated arrays employing the attribute of the short-ended microstrip line. The array
comprising the suggested notched DRA increased the gain and impedance bandwidth responses, thereby making
the array potentially useful in IEEE 802.11a band communication channels. Table 1 shows a comparison between
several reported series linearly fed DRA arrays and the array presented in the present report. Table 1 shows a
notable size reduction and a wider resonance impedance compared with those documented in the literature.
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