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Abstract: We study rectangular waveguide modes loaded with parity-time (PT ) transformation media derived by
complex transformation optics (CTO) approach. PT transformation media are obtained through mirror symmetric
complex coordinate transformations resulting in a balanced loss/gain media. It is shown that waveguide modes can be
controlled by simply changing the imaginary part of the complex coordinate transformation while not affecting any other
characteristic of the waveguide. The field distribution inside the waveguide can either be stretched towards the sides or
squeezed at the center of the waveguide by employing different loading configurations.
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1. Introduction
Transformation optics (TO) is a powerful technique that provides a systematic design methodology for the design
of novel optical devices with new functionalities [1, 2]. Relying on the form invariance of Maxwell’s equations,
TO exploits the duality between the metric of the space and the constitutive parameters in Maxwell’s equations
[3, 4]. Combined with metamaterial technology, TO has enabled extreme topologies to be realized in laboratory
environments, such as invisibility cloaks [5] and optical ”black holes” [6–8], in addition to other designed devices
[9].

Most TO applications rely on real-valued coordinate transformations implying that the derived material
properties are supposed to be lossless. However, metamaterials are resonant structures and inherently lossy.
Thus, TO-designed devices suffer from this associated unwanted loss [5]. Recently there has been an increased
interest in complex transformation optics (CTO), where complex-valued coordinate transformations are per-
formed to design novel devices [4, 8, 10–17]. With CTO, anisotropic loss/gain values can now be harnessed
for useful purposes [8, 18]. In this case, the additional degrees of freedom and the ensuing material loss/gain
enable new functionalities [8, 11–17] that are beyond the reach of conventional (real-valued) TO. In addition, be-
cause CTO-derived media are reflectionless, they can still perform the intended function even if the anisotropic
loss/gain levels are high. In fact, spurious reflections are precisely one of the reasons why the addition of loss into
real-valued TO-designed devices is so destructive. Perhaps the best-known example of CTO is that of perfectly
matched layers (PML), commonly used in numerical simulations to truncate computational domains [19–21].
Although there are different formulations of PML, it was shown that PML can be derived as a result of complex
coordinate transformation (or complex stretching) [4, 20, 22]. In addition, PMLs also serve as blueprints for
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physically realizable anisotropic absorbers [4, 21–23]. Another common use of CTO in electromagnetics is the
formulation of complex source point (CSP) fields, where a point source is hypothetically placed at a complex
location to obtain Gaussian beams in the paraxial regime [24–26]. Interestingly, it was shown that such an effect
can also be realized via CTO [12–14], where Gaussian beams are generated via properly designed transformation
media.

Waveguides are common components in many systems in areas of such as radar, communication, and
imaging [27]. There is an increasing demand for waveguide structures with new capabilities. Although the
basic characteristics of waveguides are enforced by their geometry, metamaterials have been extensively used for
waveguides to obtain new features [28–35] (i.e. backward wave generation [28, 34], waveguide miniaturization [29,
35], and wakefield generation [31]). Transformation optics has also been applied to waveguide structures for
different reasons [36–42]. It was shown that through TO, the waveguide modes can be preserved even in the
presence of sharp corners and bends in addition to distortions on the surface of the waveguide [37–39, 42].
Furthermore, the waveguide cut-off frequencies can be controlled by using transformation media allowing
miniaturization of waveguides [36, 40]. In addition, waveguide modes can be changed as desired by properly
designing the coordinate transformation [40, 41].

In all of the above cases, the coordinate transformations were real-valued, resulting in real-valued material
properties. In this paper, we study rectangular waveguide modes loaded with parity-time (PT ) transformation
media derived from complex coordinate transformations. PT transformation media have been studied exten-
sively in recent years due to their rich characteristics enabled by the combination of loss and gain media [12–17].
PT transformation media can be derived via mirror-symmetric complex coordinate transformation, resulting in
balanced loss/gain media, i.e. ϵ(x) = ϵ∗(−x) . One important feature of the mirror-symmetric complex coordi-
nate transformations is that there is no imaginary residual inside the waveguide in the transformed coordinate
domain. As a result, the electrical thickness of the waveguide in the transformed coordinates is still real, i.e.
the propagation constant is still real. We show that modes inside the waveguide can be controlled to either
stretch or confine the mode profile by using two different loading configurations. With these mirror-symmetric
transformations (if the real part of the complex stretching part is equal to 1), the cut-off frequency and the
propagation constant remain unchanged while the field distribution is altered as desired. Since the media inside
the waveguides are balanced loss/gain media, there is no net field decay or amplification in the propagation
direction. Although not demonstrated here, by exploiting the real part (ax) or imaginary part (σx) of the com-
plex stretching parameter, one can control both the cut-off frequencies and mode distribution independently
inside the waveguide.

2. Waveguide modes under complex coordinate transformations

Throughout the paper, we work in the frequency domain with the e−iωt convention. Now, consider a rectangular
waveguide with PEC walls as depicted in Figure 1a. The waveguide has cross-section dimensions a × b and
is loaded with a transformation medium with a total thickness of 2t . Two different loading configurations are
studied as shown in Figures 1b and 1c, respectively. We define a coordinate transformation from physical
space (x, y, z) to an auxiliary space (x′, y, z) . The transformation for the side wall loading (Figure 1b) of the
waveguide is given by

x′ =

 slx for 0 ≤ x ≤ t
x1 + x− t for t ≤ x ≤ a− t
x2 + sg(x− (a− t)) for a− t ≤ x ≤ a,

(1)
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where x1 = x′(t) and x2 = x′(a − t) , where t is the thickness of the transformation region on each side. The
transformation for the center loading (Figure 1c) of the waveguide is given as

x′ =


x for 0 ≤ x ≤ t
sl(x− (a2 − t)) + a

2 − t for a/2− t ≤ x ≤ a/2
sg(x− (a2 + t)) + a

2 + t for a/2 ≤ x ≤ a/2 + t
x3 + x− (a2 + t) for a− t ≤ x ≤ a,

(2)

where x3 = x′(a2 + t) , sl = ax + iσx , and sg = ax − iσx with σx > 0 being complex stretching parameters
resulting in loss and gain media, respectively. Here, ax and σx are the real and imaginary stretching parameters.
Note that although similar transformations can be applied in other directions as well, we restrict ourselves to
(x) transformation only. Both ax and σx are functions of x only. Using TO, the effect of such coordinate
transformation can be mimicked in physical space by material tensors (transformation media) [ϵ] = ϵ0 [Λ] and
[µ] = µ0 [Λ] such that

[Λ] = diag {1/sx, sx, sx} , (3)

where [Λ] = det(S)−1 [S] [S]
T and S is the Jacobian of the transformation [1, 2, 4]. Note that outside of the

transformation region the transformation medium recovers the free space, i.e. [Λ] = 1 . The actual fields in
physical space can be found from those in the transformed space [1, 2, 4] as

′

Virtual space Physical space

(a) (b)

Physical space

(c)

′

0 , 0
t t t t

Figure 1. Cross-section of a rectangular waveguide in (a) transformed space, (b) physical space with transformation
medium loaded on the side walls, and (c) physical space with transformation medium loaded at the center of the
waveguide. The transformation region is shaded with two different colors to illustrate the PT transformation media
such that one of them is loss medium and the other is gain medium, i.e. ϵ(x) = ϵ ∗ (−x) .

E⃗ =
[
S−1

]T · E⃗′, (4a)

H⃗ =
[
S−1

]T · H⃗ ′. (4b)

Now we need to derive the fields in transformed coordinates so that the real field in physical space can be obtained
using Eq. (4). The fields in transformed coordinates can be found by applying an analytic continuation on
coordinate x . The field solutions in the transformed space (with ϵ0 and µ0 ) for TE modes can be found as [27]

E′
x =

(
−iωµ0ky
k2 − k2z

)
cos (kxx′) sin (kyy) e

ikzz, (5a)
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E′
y =

(
iωµ0kx
k2 − k2z

)
sin (kxx

′) cos (kyy) eikzz, (5b)

E′
z = 0, (5c)

and similarly for magnetic fields,

H ′
x =

(
−ikzkx
k2 − k2z

)
sin (kxx

′) cos (kyy) eikzz, (6a)

H ′
y =

(
−ikzky
k2 − k2z

)
cos (kxx′) sin (kyy) e

ikzz, (6b)

H ′
z = cos (kxx′) cos (kyy) eikzz, (6c)

with kx = mπ/a′ , ky = nπ/b , kz =
√
k2 − k2x + k2y , and a′ = x′(a) , where m and n are the mode indices.

Similar expressions can be written for TM modes and for the associated magnetic fields as well. For brevity, those
expressions are not given here as we focus only on the dominant TE10 mode. Finally, the expressions for the
real fields Ex, Ey, Ez in the rectangular waveguide with transformation media can be found by straightforward
combination of Eq. (4), Eq. (5), and Eq. (6). The associated cut-off frequencies can also be obtained as

fc =
1

2π
√
ϵ0µ0

√
k2x + k2y. (7)

As can be seen from Eq. (7), the cut-off frequencies can be easily controlled by using the real stretching
parameter ax as a result of altered waveguide dimensions (a′ ). With the transformations given above, when
ax = 1 the cut-off frequency does not change for PT transformation media compared to the empty waveguide
as the value of a′ = a . However, if it were to be loaded with only a loss or gain medium there would be no
cut-off frequency as the propagation constant becomes complex due to the now-complex waveguide length a′ .
For lossy media, small inclusion of loss will cause the waves to decay quickly before achieving any mode control.
On the other hand, in gain media the field values will increase exponentially in the propagation direction. This
case is interesting but difficult to implement as most gain media are nonlinear. As a result, the field amplitudes
can quickly pass the gain saturation threshold and no mode control can be achieved. Therefore, we only focus
on the mirror-symmetric coordinate transformation case in the following.

3. Results and discussion
In this section, we show analytical and numerical results for waveguides loaded with transformation media
obtained by the complex transformation optics defined in Eq. (1)–(3). Numerical simulations are obtained
using Comsol Multiphysics software. Note that such transformations are PT -symmetric and the resulting
media are balanced loss/gain media. In the following, we study two different loading configurations, each with
different mode behaviors.
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3.1. Side loading

Side loading of the transformation media is given in Figure 1b based on Eq. (1). The real-valued transformations
have been studied before [40] and will not be pursued here. Instead, we show that one can achieve similar control
over waveguide modes just by changing the imaginary part (σx ) of the complex stretching factor. The real
and imaginary parts of the complex coordinate x′ are given in Figure 2a. As already mentioned, the real
part is chosen as ax = 1 while the imaginary part varies. Note that because the imaginary part switches signs
in the second transformation region, the corresponding material comprises balanced loss/gain media. Thus,
we have loss and gain media inside the waveguide simultaneously. The loss and gain media are depicted with
different colors in Figure 2a for the corresponding increasing and decreasing profile of the imaginary profile of
the transformed coordinate x′ .
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Figure 2. (a) The profile of the complex coordinate x′ for the side loading of PT transformation media. The loss and
gain region is depicted with different colors for the corresponding region. Here, ax = 1 and σx = 1.25 . (b) |E| along
the x direction (y = b/2) for the values of σx = 0, 0.75, 1.25 (Solid lines (analytical), dashed lines (numerical). (c–e)
Analytical results of electric field magnitude (|E|) on a cross-section of the waveguide for each value of σx given above.
(f–h) Numerical results for the cases in c–e.

Figure 2a shows the real and imaginary part of the transformed coordinate x′ with respect to the
original coordinate x . Figure 2b shows the magnitude of the electric field along the x direction (horizontal cut
(y = b/2)) for various values of σx both for analytical and numerical results. Figures 2c–2e show the analytical
results of the electric field distribution for different σx values on a cross-section. Note that the electric field
distribution becomes more uniform inside the waveguide as σx increases, which can also be achieved by using
only real transformations with ax > 1 [37]. We would like to note that no optimization is done here to tune
the values of transformation domain thickness and the σx values. Particularly, the σx values used here are to
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demonstrate the effect of the approach rather then to provide the practical values for engineering purposes. It
is beyond the scope of this paper to find the necessary parameters to get the best results. Figures 2f–2h show
the numerical (Comsol) results of electric field distribution for same σx values. Excellent agreement is seen
between the results.

3.2. Center loading

The profile of the transformation for center loading is given with Eq. (2) and depicted in Figure 3a. The first
transformation region corresponds to loss media while the second region corresponds to gain media. The electric
field along the x direction (y = b/2) is given in Figure 3b for different values of σx for both analytical and
numerical results. The corresponding electric field distribution on the cross-section for different σx values are
shown in Figures 3c–3e for analytical and in Figure 3f–3h for numerical results, respectively. The effect of
center loading is to focus the mode at the center of the waveguide unlike side loading. For both configurations
one can have extreme control of mode by changing the complex stretching factor as well as the thickness of the
transformation region.
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Figure 3. (a) The profile of the complex coordinate x′ for the center loading of the PT transformation media. The
loss and gain region is depicted with different colors for the corresponding region. Here, ax = 1 and σx = 1.25 . (b) |E|
along the x direction (y = b/2) for the values of σx = 0, 0.75, 1.25 (Solid lines (analytical), dashed lines (numerical).
(c–e) Analytical results of electric field magnitude (|E|) on a cross-section of the waveguide for each value of σx given
above. (f–h) Numerical results for the cases in c–e.

Regardless of the configuration the field control can be enhanced by utilizing both the real (ax) and
imaginary (σx) part of the transformation. Depending on the application, either choice can be employed to get
the desired output. Note that because the transformation medium derived here comprises balanced loss/gain
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media, no net amplification or decay is realized in the propagation direction. As a result, such transformations
allow one to control the mode behavior without changing any other waveguide characteristics. For instance,
the real-valued transformations will change the cut-off frequency regardless of the nature of the transformation
as long as a′ ̸= a and b′ ̸= b . In that regard, CTO can provide independent control of the field distribution.
Figure 4 shows numerical (COMSOL) results of the real part of the electric (ℜe(E)) and magnetic (ℜe(H))

fields of empty, side-loaded (σx = 1.25), and center-loaded (σx = 1.25) waveguides, respectively.
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Figure 4. (a–c) Numerical results of electric field distribution inside (a) empty, (b) side-loaded, (c) center-loaded,
respectively. (d–f) Same results for magnetic field. In this example, the imaginary part of the complex stretching
parameter is chosen as σx = 1.25 .

4. Conclusions and further remarks
We have studied rectangular waveguide modes under complex coordinate transformations. We have particu-
larly focused on mirror-symmetric coordinate transformations, which yield PT -symmetry, resulting in balanced
loss/gain media. We have shown results for two different configurations based on the positions of the trans-
formation media loadings. The actual fields inside the waveguide are derived using the TO approach. It is
illustrated that the electric field distribution inside the waveguide can be made more uniform (‘stretched’) by
placing the PT transformation media at the side walls of the waveguide. By increasing the imaginary part
of the stretching parameter σx , the fields at the center of the waveguide can be made uniform in the extreme
case. In the second configuration, we observed field focusing (‘squeezing’) more at the center of the waveguide
in contrast to side loadings.

Contrary to real-valued transformations, with PT -symmetric complex transformations the cut-off fre-
quencies of the waveguide modes can remain unchanged. In addition, the propagation constant and other
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waveguide properties do not change with PT transformation media. Thus, with PT transformation media,
the field distribution can be controlled independently without affecting any other waveguide parameter unlike
real-valued transformations [40].

It should be noted that no attempt is made here to optimize any parameter for particular performance
criteria. Furthermore, it is assumed that we operate in a linear regime for gain media. Particularly, the values
of σx used here are chosen to illustrate the effect of the approach as the realization of those materials tensors
are subject to another study. With the advancement in metamaterial technology, such material tensors with
both loss and gain characteristics can be realized over a finite frequency range [43–45].
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